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ON SINGULAR INTEGRAL EQUATIONS WITH
THE CARLEMAN SHIFTS IN THE CASE OF

THE VANISHING COEFFICIENT

LE HUY CHUAN AND NGUYEN MINH TUAN

Abstract. Based on the well-known necessary and sufficient condition for the
linear-fractional function to be the generator of a cyclic group of n-terms, this
paper describes the general form of all linear-fractional functions which are
Carleman shifts on the unit circle. Our main result deals with the solvability
in a closed form for a class of singular integral equations with Carleman shifts
on the unit circle in the case where the coefficient vanishes on the curve.

1. Introduction

The Noetherian theory of singular integral equations of Cauchy’s type was
started with works of Noether and Carleman in 1921, and then it has been de-
veloped by many others (see [1], [2], [3], [6], [8] and references therein). A reason
that this theory attracts a lot of attention is that there is an effective relation
between Riemann boundary-value problems of the analytic functions and the sin-
gular integral equations of Cauchy’s type. In [5], the author studied a singular
integral equation with the rotation on the unit circle under the assumption that
it’s coefficient has no zero-points on the curve. The cases of vanishing coefficients
in either differential equations or integral equations require new investigations.
In [9], one of us has investigated the solvability in a closed form for a class of
singular integral equations with the rotation on the unit circle in the case where
the coefficient has isolated zero-points on the curve.

In this paper, we study the solvability in a closed form for the class of singular
integral equations with the Carleman shifts being the linear-fractional functions
in the case where the coefficient has zero-points on the curve.

2. The cyclic group of linear-fractional functions
on the complex plane and on the unit circle

It is well-known that the linear-fractional function of the form
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ω(z) =
αz + β

γz + δ
(2.0.1)

caries out a one-to-one and conformal mapping of the extended complex plane C
in to itself. If

L1(z) =
α1z + β1

γ1z + δ1
and ÃL2(z) =

α2z + β2

γ2z + δ2

are two arbitrary linear-fractional functions then their product, denoted by L1 ◦
L2(z), is determined as follows:

L(z) = L1 ◦ L2(z) =
α1

α2z + β2

γ2z + δ2
+ β1

γ1
α2z + β2

γ2z + δ2
+ δ1

=
[(α1α2 + β1γ2)z + α1β2 + β1δ2)]
[(γ1α2 + δ1γ2)z + γ1β2 + δ1δ2)]

·

With the above product, the set of all linear-fractional functions is a group (see
[1] or [4]). In the sequel, this group will be denoted by V. It is easy to see that the
group V is infinite. In [1], the author gave a necessary and sufficient condition
for a linear-fractional function to be involution of n-order. In Subsection 2.1,
we present a brief survey on the results related to the condition given in [1]. In
Subsection 2.2, by using the mentioned results we establish a general form of the
linear-fractional functions which are the Carleman shifts on the unit circle.

2.1. The cyclic group of linear-fractional functions on the complex
plane. Two linear-fractional functions

L1(z) =
α1z + β1

γ1z + δ1
and L2(z) =

α2z + β2

γ2z + δ2
(2.1.1)

will be considered identical in the group V if and only if L1(z) = L2(z) for
all values of z ∈ C. For this to be so it is necessary and sufficient that the
corresponding coefficients be proportional to each other, i.e α2 = λα1, β2 = λβ1,
γ2 = λγ1, δ2 = λδ1, λ 6= 0 (see [4] p. 65). So we can assume that

αδ − βγ = 1(2.1.2)

whenever a linear-fractional function of the form (2.0.1) is dealt with in this paper.
On the other hand, we denote by W the set of all linear-fractional functions of
the form (2.0.1) satisfying condition (2.1.2). (Two elements of the form (2.1.1)
are identical in W if and only if α1 = α2, β1 = β2, γ1 = γ2, δ1 = δ2). For any
ω ∈ W, we write

Aω =
(

α β
γ δ

)
.

So Aω is a 2-order square matrix.
It is easy to prove the following remarks.
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Remark 2.1. Let ω1 and ω2 be in W. Then the following identity holds

Aω2◦ω1 = Aω2 .Aω1 .

Remark 2.2. The function

e(z) =
1z + 0
0z + 1

≡ −1z + 0
0z − 1

is the unit element of the group V.

In the sequel, we denote by I the unit element of V.

Remark 2.3. Suppose that ω ∈ W. Then ω = I if and only if either Aω = E or
Aω = −E, where E is the unit matrix.

Remark 2.4. Let ω(z) = αz+β
γz+δ be in W. Then for all n ∈ N we have

An
ω = λnAω − λn−1E,(2.1.3)

where λ0 = 0, λ1 = 1 and

λk − (α + δ)λk−1 + λk−2 = 0, k = 2, 3, 4, . . .(2.1.4)

Proof. We proceed by induction. For n = 1, (2.1.3) is trivial. Suppose that
(2.1.3) is true for n = k. Then for n = k + 1, we find

Ak+1
ω = Ak

ω.Aω =
(
λkAω − λk−1E

)
Aω = λkA

2
ω − λk−1Aω

= λk

(
(α + δ)Aω −E

)− λk−1Aω

=
(
λk(α + δ)− λk−1

)
Aω − λkE = λk+1Aω − λkE,

where λk+1 = λk(a + d)− λk−1.

Now we determine λk from formula (2.1.4). It is easy to see that (2.1.4) is a
linear difference equation of 2-order. So we have the following

Remark 2.5. Let ω(z) =
αz + β

γz + δ
∈ W and let n ∈ N be given.

• If α + δ = 2 then

λn = n.

• If α + δ = −2 then

λn = (−1)n+1n.

• If α + δ 6= ±2 then

λn =
1
θ1

(xn
1 − xn

2 ) =
1
θ2

(xn
2 − xn

1 ),

where θ1, θ2 are the square roots of the complex number (α + δ)2 − 4, and

x1 =
α + δ + θ1

2
, x2 =

α + δ + θ2

2
·
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Lemma 2.1. ([1], p. 534.) Suppose that ω ∈ W is of the form (2.0.1) and ω 6≡ I.
Then ωn ≡ I if and only if

α + δ = 2 cos
kπ

n
, for some k ∈ {1, 2, . . . , n− 1}.

Theorem 2.1. Let ω ∈ W be given and let n ∈ N, n ≥ 2 be fixed. Then ω
satisfies {

ωn ≡ I,

ωm 6≡ I,m = 1, 2, . . . , n− 1
(2.1.5)

if and only if



α + δ = 2 cos
kπ

n
for some k ∈ {1, . . . , n− 1}, (n, k) = 1,

αδ − βγ = 1.

Proof. By Lemma 2.1 we have α + δ = 2 cos
kπ

n
for some k ∈ {1, 2, . . . , n − 1}.

If (n, k) = l > 1 then

α + δ = 2 cos
kπ

n
= 2 cos

k

l
π

n

l

= 2 cos
k1π

n1
,

where n1 =
n

l
< n. By Lemma 2.1, ωn1 ≡ I, which contradicts the assumption

ωm 6≡ I for all m ∈ {1, 2, . . . , n− 1}. Hence (n, k) = 1.

Conversely, suppose that α + δ = 2 cos
kπ

n
for some k ∈ {1, . . . , n − 1} and

(n, k) = 1. From Lemma 2.1 it follows that ωn ≡ I. Suppose that there exists
m ∈ N, 2 ≤ m < n, such that ωm = I. Lemma 2.1 implies that there exists

k1 ∈ {1, 2, . . . , m− 1} such that α + δ = 2 cos
k1π

m
. Then we have

cos
kπ

n
= cos

k1π

m
,

which implies
kπ

n
=

k1π

m
. The last equality contradicts the condition (n, k) = 1.

To end the proof, we have to show that ω 6≡ I. Suppose that ω ≡ I, i.e.
αz + β

γz + δ
= z, ∀ z ∈ C.

By Remark 2.3 we have either α = δ = 1 or α = δ = −1. From the assumption it

follows that either cos
kπ

n
= 1 or cos

kπ

n
= −1 for some k ∈ {1, . . . , n− 1}. None

of them is possible.

Remark 2.6. If ω ∈ V satisfies condition (2.1.5) then ω is the generator of the
n-terms cyclic group.
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2.2. The cyclic group of linear-fractional functions on unit circle. Let
Γ = {t ∈ C : |t| = 1} be the unit circle. In this section, we will determine a
general form of the linear-fractional functions ω(z) satisfying the condition

ω(Γ) ⊂ Γ, ωn ≡ I, ωm 6≡ I, m = 1, 2, . . . , n− 1,(2.2.1)

where n ∈ N, n ≥ 2 is given.
It is well-known that the linear-fractional function ω(z) maps Γ into Γ if and

only if that it is of the form

ω(z) = eiθ z − α

ᾱz − 1
,(2.2.2)

where θ ∈ R, α is the zero-point of ω(z), i.e α ∈ C, ω(α) = 0 (see [4], p. 83).
We now consider two cases

Case 1: α = ∞. By (2.2.2) we get ω(z) = eiθ 1
z

and ω2 = I. So we can conclude
that

• If n = 2 then ω(z) = eiθ 1
z ;

• If n > 2 then ω(z) does not exist.

Case 2: |α| < ∞. From the condition ω(z) ∈ Γ for every z ∈ Γ it follows that
|α| 6= 1. Denote by θ1 one of the two square roots of

√
αᾱ− 1. Dividing both

numerator and denominator of (2.2.2) by e
iθ
2 θ1 we get

ω(z) =

e
iθ
2

θ1
z − e

iθ
2

θ1
α

e
−iθ
2

θ1
αz − e

−iθ
2

θ1

·

According to Theorem 2.1,

e
iθ
2

θ1
+
−e

−iθ
2

θ1
= 2 cos

kπ

n
,

for some k ∈ {1, 2, . . . , n− 1}, (k, n) = 1. Therefore

sin
θ

2
= θ1. cos

kπ

n
.(2.2.3)

• If n = 2 then k = 1. From (2.2.3) it follows that θ = 2mπ for some m ∈ Z.
Then we have

ω(z) = e2mπi z − α

αz − 1
=

z − α

αz − 1
·
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• If n > 2, then from the conditions k ∈ {1, 2, . . . , n − 1} and (n, k) = 1 it

follows that cos
kπ

n
6= 0. Hence we get

sin
θ

2

cos
kπ

n

= θ1.

It implies that θ1 is a real number; therefore |α| < 1. So the condition
|α| < 1 is necessary. We then have

cos θ = 1− 2(1− αᾱ) cos2
kπ

n
·

So we have proved the following theorem.

Theorem 2.2. Suppose that ω(z) is a linear-fractional function satisfying the
condition

ω(Γ) ⊂ Γ, ωn ≡ I, ωm 6≡ I, m = 1, 2, . . . , n− 1,

where n ∈ N, n ≥ 2 is given.

1) If n = 2 then ω is of the form

ω(z) = eiθ 1
z
, θ ∈ R,

or

ω(z) =
z − α

ᾱz − 1
|α| 6= 1.

2) If n > 2 then ω is of the form

ω(z) = eiθ z − α

ᾱz − 1
,

where |α| < 1, cos θ = 1−2(1−αα) cos2
kπ

n
, for some k ∈ {1, 2, . . . , n−1},

(k, n) = 1.

Remark 2.7. Suppose that the linear-fractional function ω(z) satisfies (2.2.1)
and it is the shift in positive orientation of Γ, i.e.





ω(Γ) ⊂ Γ,

ωn ≡ I,

ωm 6≡ I, m = 1, 2, . . . , n− 1,

ω positive orientation of Γ,

(2.2.4)

then in the conclusion we have to add the condition |α| < 1. In this case, we can
conclude that

• If n = 2 then ω is of the form

ω(z) =
z − α

ᾱz − 1
(|α| < 1).



ON SINGULAR INTEGRAL EQUATIONS WITH THE CARLEMAN SHIFTS 325

• If n > 2 then ω is of the form

ω(z) = eiθ z − α

ᾱz − 1
,

where |α| < 1, cos θ = 1− 2(1− αα) cos2
kπ

n
for some k ∈ {1, 2, . . . , n− 1},

(k, n) = 1.

3. On a class of singular integral equations
with shifts on the unit circle

In this section, we consider the solvability in a closed form of the following
equation in Hµ(Γ) (0 < µ < 1):

a(t)ϕ(t) +
b(t)
n

n−1∑

k=0

εn−k
`

1
πi

∫

Γ

ϕ(τ)
τ − ωk(t)

dτ = f(t),(3.0.1)

where 1 ≤ ` ≤ n − 1, ε1 = e
2πi
n , e` = ε`

1, ω(z) =
αz + β

γz + δ
, (αδ − βγ = 1) is a

linear-fractional function satisfying (2.2.4), and a(t), b(t), f(t) are given functions
in Hµ(Γ).

Consider the following operators in X := Hµ(Γ) :

(Sϕ)(t) =
1
πi

∫

Γ

ϕ(τ)
τ − t

dτ,(3.0.2)

(Wϕ)(t) = ϕ(ω(t)),(3.0.3)

Pk =
1
n

n∑

j=1

εn−j−1
k W j+1, k = 1, 2, . . . , n.(3.0.4)

In the sequel, we shall need the following identities (see [5], [8]):




W k =
n∑

j=1
εk
j Pj , k = 1, 2, . . . , n,

PkPj = δkjPj , k, j = 1, 2, . . . , n,
n∑

j=1
Pj = I,

(3.0.5)

where δkj is the Kronecker symbol. For every a ∈ X we write (Kaϕ)(t) = a(t)ϕ(t).

Lemma 3.1. ([7]) Suppose that a ∈ X is fixed. Then for any k, j ∈ {1, 2, . . . , n},
there exists an element b ∈ X such that KbX ⊂ Xk and PkKaPj = KbPj, where
Xk := PkX.

Lemma 3.2. ([9]) Let a ∈ X be fixed. Then for any k, j ∈ {1, 2, . . . , n}. we
have

PkKakj
= Kakj

Pj ,
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where akj(t) are determined as follows

akj(t) =
1
n

n∑

υ=1

εj−k
υ+1a(ωυ+1(t)).(3.0.6)

Lemma 3.3. Let ϕ ∈ X. Then the following identity holds

(SWϕ)(z) = (WSϕ)(z)− (Sϕ)
(α

γ

)
,(3.0.7)

where α, γ are the coefficients of ω(z) =
αz + β

γz + δ
.

Proof. We have

(SWϕ)(z) =
1
πi

∫

Γ

ϕ(ω(τ))
τ − z

dτ.

Put

τ = ω−1(x) =
δx− β

−γx + α
(see [4]).

Then

dτ =
1

(−γx + α)2
dx.

Therefore

(SWϕ)(z) =
1
πi

∫

Γ

ϕ(x)
1

(γx− α)2
δx− β

−γx + α
− z

dx

=
1
πi

∫

Γ

ϕ(x)
(−γx + α)(δx− β − z(−γx + α))

dx

=
1
πi

∫

Γ

( 1

x− αz + β

γz + δ

− 1

x− α

γ

)
ϕ(x)dx

=
1
πi

∫

Γ

ϕ(x)
x− ω(z)

− 1
πi

∫

Γ

ϕ(x)

x− α

γ

dx = (WSϕ)(z)− (Sϕ)
(α

γ

)
.

Lemma 3.4. Let ϕ ∈ X. Then

1) (SW kϕ)(z) = (W kSϕ)(z)− (W k−1Sϕ)
(α

γ

)
, k = 1, 2, . . . , n, W 0 = I.

2) (PkSϕ)(z) = (SPkϕ)(z) +
1

εk − 1
(SPkϕ)

(α

γ

)
, k = 1, 2, . . . , n− 1.
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Proof. 1) We prove by induction on k. For k = 1, the assertion follows imme-
diately from Lemma 3.3. Suppose 1) is true for k = m. For k = m + 1 we
find

(SWm+1ϕ)(z) = [SW (Wmϕ)](z)

= [WS(Wmϕ)](z)− [S(Wmϕ)]
(α

γ

)
= W [(SWmϕ)(z)]− (SWmϕ)

(α

γ

)

= W [(WmSϕ)(z)− (Wm−1Sϕ)(
α

γ
)]− [(WmSϕ)(

α

γ
)− (Wm−1Sϕ)(

α

γ
)]

= (Wm+1Sϕ)(z)−W [(Wm−1Sϕ)(
α

γ
)]− (WmSϕ)(

α

γ
) + (Wm−1Sϕ)(

α

γ
).

Hence W [(Wm−1Sϕ)(
α

γ
)] = (Wm−1Sϕ)(

α

γ
), provided that (Wm−1Sϕ)(

α

γ
) is a

constant. Therefore

(SWm+1ϕ)(z) = (Wm+1Sϕ)(z)− (WmSϕ)(
α

γ
).

The first part of the lemma is proved.
2) Rewrite the equality in 1) in the form

(W kSϕ)(z) = (SW kϕ)(z) + (W k−1Sϕ)(
α

γ
).

We find

(PkSϕ)(z) =
1
n

n∑

j=1

εn−j−1
k (W j+1Sϕ)(z)

=
1
n

n∑

j=1

εn−j−1
k

[
(SW j+1ϕ)(z) + (W jSϕ)(

α

γ
)
]

=
[
S

( 1
n

n∑

j=1

εn−j−1
k W j+1

)
ϕ
]
(z) +

1
εk

[( 1
n

n∑

j=1

εn−j
k W j

)
Sϕ

]
(
α

γ
)

= (SPkϕ)(z) +
1
εk

(PkSϕ)(
α

γ
).(3.0.8)

Substituting z =
α

γ
into formula (3.0.8), we get

(1− 1
εk

)(PkSϕ)(
α

γ
) = (SPkϕ)(

α

γ
).(3.0.9)

If k ∈ {1, 2, . . . , n− 1} then εk 6= 1. In this case, substituting (3.0.9) into (3.0.8)
we obtain

(PkSϕ)(z) = (SPkϕ)(z) +
1

εk − 1
(SPk)ϕ(

α

γ
).



328 LE HUY CHUAN AND NGUYEN MINH TUAN

3.1. Reducing equation (3.0.1) to a system of singular integral equa-
tions. Now we represent the equation (3.0.1) in the following form

a(t)ϕ(t) + b(t)(P`Sϕ)(t) = f(t),(3.1.1)

where a, b, f ∈ X are given and S, P`, (1 ≤ ` ≤ n− 1) are the operators defined
by (3.0.2), (3.0.3), (3.0.4). Suppose that the function a(t) is of the following form

a(t) =
m∏

j=1

(t− αi)rjs(t),

where αj ∈ Γ, rj are positive integers (j = 1, 2, . . . , m) and s(t) is a non-
vanishing function on Γ. Without loss generality we may assume that s(t) =
1. Our assumption means that a(t) has some isolated zero-points with a finite
multiplicity on Γ.

Lemma 3.5. Let ϕ ∈ X. Then ϕ is a solution of (3.1.1) if and only if {ϕk =
Pkϕ, k = 1, 2, . . . , n} is a solution of the following system

a∗(t)ϕk(t) + b∗k`(t)(Sϕ`)(t) +
b∗k`(t)
ε` − 1

(Sϕ`)(
α

γ
) = f∗k (t), k = 1, 2, . . . , n,(3.1.2)

where

a∗(t) =
n∏

j=1

a(ωj+1(t)),

b∗k`(t) =
1
n

n∑

j=1

ε`−k
j+1b(ω

j+1(t))
n∏

µ=1
µ6=j

a(ωµ+1(t)),(3.1.3)

f∗k (t) =
1
n

n∑

j=1

εn−1−j
k f(ωj+1(t))

n∏
µ=1
µ6=j

a(ωµ+1(t)).

Proof. Since ϕ ∈ X is the solution of (3.1.1), we have

n∏

µ=1

a(ωµ+1(t))ϕ(t) + b(t)
n∏

µ=1
µ6=n−1

a(ωµ+1(t))(P`Sϕ)(t)

= f(t)
n∏

µ=1
µ6=n−1

a(ωµ+1(t)).(3.1.4)
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Applying the projections Pk, k = 1, 2, . . . , n to both sides of (3.1.4) and using
Lemma 3.1, we obtain

a∗(t)(Pkϕ)(t) +
[ 1
n

n∑

j=1

ε`−k
j+1b(ω

j+1(t))
n∏

µ=1
µ6=n−1

a(ωµ+j+2(t))
]
(P`Sϕ)(t)

=
1
n

n∑

j=1

εn−j−1
k f(ωj+1(t))

n∏
µ=1

µ6=n−1

a(ωµ+j+2(t)).(3.1.5)

It is easy to see that
n∏

µ=1
µ6=n−1

a(ωµ+j+2(t)) ≡
n∏

µ=1
µ6=j

a(ωµ+1(t)) for any j = 1, 2, . . . , n.

Hence, (3.1.5) is equivalent to the following system

a∗(t)(Pkϕ)(t) + b∗k`(t)(P`Sϕ)(t) = f∗k (t), k = 1, 2, . . . , n.(3.1.6)

By Lemma 3.4, we can rewrite system (3.1.6) in the form

a∗(t)(Pkϕ)(t) + b∗k`(t)(SP`ϕ)(t) +
b∗k`(t)
ε` − 1

(SP`ϕ)(
α

γ
) = f∗k (t), k = 1, 2, . . . , n.

Thus (P1ϕ,P2ϕ, . . . , Pnϕ) is a solution of (3.1.2).
Conversely, suppose that there exists ϕ ∈ X such that (P1ϕ,P2ϕ, . . . , Pnϕ) is

a solution of (3.1.2). Summing by k from 1 to n, we obtain

a∗(t)ϕ(t) +
n∑

k=1

b∗k`(t)
[
(SP`ϕ)(t) +

1
ε` − 1

(SP`ϕ)(
α

γ
)
]

=
n∑

k=1

f∗k (t).(3.1.7)

From (3.1.3), we get
n∑

k=1

b∗k`(t) =
n∑

k=1

1
n

n∑

j=1

ε`−k
j+1b(ω

j+1(t))
n∏

µ=1
µ 6=j

a(ωµ+1(t))

=
n∑

j=1

[ 1
n

n∑

k=1

ε`−k
j+1

]
b(ωj+1(t))

n∏
µ=1
µ6=j

a(ωµ+1(t))

= b(t)
n∏

µ=1
µ6=n−1

a(ωµ+1(t)).

Similarly,
n∑

k=1

f∗k (t) = f(t)
n∏

µ=1
µ6=n−1

a(ωµ+1(t)).
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Therefore, (3.1.7) is equivalent to the following:

a∗(t)ϕ(t) + b(t)
n∏

µ=1
µ6=n−1

a(ωµ+1(t))
[
(SP`ϕ)(t) +

1
ε` − 1

(SP`ϕ)(
α

γ
)
]

= f(t)
n∏

µ=1
µ6=n−1

a(ωµ+1(t)).

This implies

a(t)ϕ(t) + b(t)(P`Sϕ)(t) = f(t).

Lemma 3.6. If (ϕ1, ϕ2, . . . , ϕn) is a solution of the system (3.1.2) then
(P1ϕ1, P2ϕ2, . . . , Pnϕn) is also its solution.

Proof. Suppose (ϕ1, ϕ2, . . . , ϕn) is a solution of the system (3.1.2). Applying the
projections Pk to both sides of the k-th equation of (3.1.2) we get

a∗(t)(Pkϕk)(t) + Pk

[
b∗k`(t)(Sϕ`)(t) +

b∗k`(t)
ε` − 1

(Sϕ`)(
α

γ
)
]

= Pk(f∗k (t)).(3.1.8)

Then

Pk(f∗k (t)) =
[ 1
n

n∑

m=1

εn−m−1
k Wm+1

][ 1
n

n∑

j=1

εn−j−1
k f(ωj+1(t))

n∏
µ=1
µ6=j

a(ωµ+1(t))
]

=
1
n

n∑

m=1

εn
k

[ 1
n

n∑

j=1

ε
n−(m+j+2)
k f(ωm+j+2(t))

n∏
µ=1
µ6=j

a(ωm+j+2(t))
]

=
1
n

n∑

m=1

f∗k (t) = f∗k (t).(3.1.9)

Moreover, by Lemma 3.2 we get

Pkb
∗
k`(t) = b∗k`(t)P`.(3.1.10)

Substituting (3.1.9), (3.1.10) into (3.1.8) we obtain

a∗(t)(Pkϕk)(t) + b∗k`(t)(P`Sϕ`)(t) +
b∗k`(t)
ε` − 1

P`

(
(Sϕ`)(

α

γ
)
)

= f∗k (t).(3.1.11)

On the other hand,

P`

(
(Sϕ`)(

α

γ
)
)

=
1
n

n∑

j=1

εn−j−1
` W j+1

(
(Sϕ`)(

α

γ
)
)

=
1
n

(Sϕ`)(
α

γ
)

n∑

j=1

εn−j−1
` = 0.
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Hence, (3.1.11) is equivalent to the following equation

a∗(t)(Pkϕk)(t) + b∗k`(t)(SP`ϕ`)(t) +
b∗k`(t)
ε` − 1

(SP`ϕ`)(
α

γ
) = f∗k (t), k = 1, 2, . . . , n.

Thus (P1ϕ1, P2ϕ2, . . . , Pnϕn) is a solution of (3.1.2).

3.2. The solvability of equation (3.0.1).

Theorem 3.1. If (ϕ1, ϕ2, . . . , ϕn) is a solution of (3.1.2), then

ϕ =
n∑

i=1

Piϕi,

is a solution of equation (3.1.1).

Proof. By Lemma 3.6, (P1ϕ1, P2ϕ2, . . . , Pnϕn) is also a solution of (3.1.2). Put

ϕ =
n∑

i=1

Piϕi.

It is clear that Pkϕ = Pkϕk. This means that (P1ϕ,P2ϕ, . . . , Pnϕ) is a solution
of (3.1.2). By Lemma 3.5, ϕ is a solution of (3.1.1).

We set

Ω =
{

ω−(µ+1)(αi), µ = 1, 2, . . . , n, i = 1, 2, . . . , m
}

,

{g(t)}(k,t0) =
dkg(t)
dtk

∣∣∣∣
t=t0

.

Theorem 3.2. The equation (3.1.1) has solutions in X if and only if the equation

a∗(t)ϕ(t) + b∗``(t)(Sϕ)(t) +
b∗``(t)
ε` − 1

(Sϕ)(
α

γ
) = f∗` (t),(3.2.1)

has a solution ϕ0(t) satisfying the following conditions
{

f∗k (t)− b∗k`(t)(Sϕ0)(t)− b∗k`(t)
ε` − 1

(Sϕ0)(
α

γ
)
}

(j,ti)
= 0, k = 1, 2, . . . , n,(3.2.2)

where ti ∈ Ω, j = 0, 1, . . . , ri, ri are the multiplicities of zero-points αi, i =
1, 2, . . . , m.

Proof. Since ϕ ∈ X is a solution of (3.1.1), it follows from Lemma 3.5 that the
system (3.1.2) has a solution (P1ϕ,P2ϕ, . . . , Pnϕ). This means that P`ϕ is the
solution of the `-th equation of (3.1.2), i.e. the equation (3.2.1). Moreover, for
any k = 1, 2, . . . , n, ϕk is a solution of the equation

a∗(t)(Pkϕ)(t) = f∗k (t)− b∗k`(t)(SP`ϕ)(t)− b∗k`(t)
ε` − 1

(SP`ϕ)(
α

γ
).(3.2.3)

The left side of (3.2.3) is the function having zero-point of order ri at ti =
ω−(µ+1)(αi) ∈ Ω. Hence condition (3.2.2) is necessary.
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Conversely, if ϕ0(t) is a solution of (3.2.1) satisfying (3.2.2), then it is easy to
see that (3.1.2) has a solution (ϕ1, ϕ2, . . . , ϕn) defined by the formulas

ϕ`(t) = ϕ0(t),

ϕk(t) =
f∗k (t)− b∗k`(t)(Sϕ`)(t)−

b∗k`(t)
ε` − 1

(Sϕ`)(
α

γ
)

a∗(t)
,(3.2.4)

k = 1, 2, . . . , n, k 6= `.

According to Theorem 3.1, ϕ =
n∑

i=1
Piϕj is the solution of (3.1.1).

We set

D+ = {z ∈ C : |z| < 1}, D− = {z ∈ C : |z| > 1}.
Denote by H+(D+), H−(D−) the sets of the analytic functions in D+ and D−,
respectively.

Corollary 3.1. Suppose that the function M(t) =
b∗``(t)

a∗(t) + b∗``(t)
is an analytic

continuation on D+. Then the equation (3.1.1) is solvable in a closed form.

Proof. Consider the `-th equation of (3.1.2):

a∗(t)ϕ(t) + b∗``(t)(Sϕ`)(t) +
b∗``(t)
ε` − 1

(Sϕ`)(
α

γ
) = f∗` (t).(3.2.5)

Put

Φ`(z) =
1

2πi

∫

Γ

ϕ`(τ)
τ − z

dτ, z ∈ C \ Γ.

According to the Sokhotski formula (see [1]), we have

ϕ`(t) = Φ+
` (t)− Φ−` (t),

(Sϕ`)(t) = Φ+
` (t) + Φ−` (t).

Moreover, Remark 2.7 implies that
α

γ
∈ D−. Therefore (Sϕ`)(

α

γ
) = Φ−` (

α

γ
).

Hence equation (3.2.5) is reduced to the following boundary value problem

Φ+
` (t) +

b∗``(t)
a∗(t) + b∗``(t)

Φ−` (α
γ )

ε` − 1
=

a∗(t)− b∗``(t)
a∗(t) + b∗``(t)

Φ−` (t) +
f∗` (t)

a∗(t) + b∗``(t)
·(3.2.6)

From the assumption on M(t) it follows that (3.2.6) is the Riemann boundary
value problem for analytic functions. Denote by

(
Ψ+

` (z), Ψ−
` (z)

)
the solution of

(3.2.6). We have

Φ−` (z) = Ψ−
` (z),

Φ+
` (z) +

b∗``(t)
a∗(t) + b∗``(t)

Φ−` (a
c )

ε` − 1
= Ψ+

` (z).
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Hence the solution of (3.2.5) is of the form

ϕ`(t) = Φ+
` (t)− Φ−` (t) = Ψ+

` (t)− b∗``(t)
a∗(t) + b∗``(t)

Ψ−
` (a

c )
ε` − 1

−Ψ−
` (t).(3.2.7)

From Theorem 3.1 and 3.2 we conclude that

(i) If neither equation (3.2.6) has solution nor solutions ϕ`(t) of the form (3.2.7)
do satisfy condition (3.2.2), then equation (3.1.1) has no solutions.

(ii) If there exists ϕ`(t) of the form (3.2.7) satisfying conditions (3.2.2), then
equation (3.1.1) is solvable in a closed form. Solutions of (3.1.1) are given by the
following formula

ϕ(t) =
n∑

k=1

(Pkϕk)(t),

where ϕ`(t) is defined by (3.2.7) and ϕk(t), 1 ≤ k 6= ` ≤ n are defined by (3.2.4).
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