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LOGARITHMIC INTEGRALS, SOBOLEV SPACES
AND RADON TRANSFORM IN THE PLANE

DANG VU GIANG

ABSTRACT. We prove that the set {¢o, 1, @4, ..., P3k+1,... } of Hermite func-
tions is an orthogonal system in the Sobolev space H'(R) = H(;)(R). Fur-
thermore, the logarithmic integral of a function f from the real Hardy space
H'(R) is exactly the primitive function of —f (the Hilbert transform of f).
And more interesting formulas are found for Radon transform of Hermite-like
functions.

1. HERMITE FUNCTIONS AND LOGARITHMIC INTEGRALS

Consider the following power series
(1) > Hu(w) 5 = exp(2t — %),
n=0

where H,, are the Hermite polynomials. Replace x by —z we have
H,(—z)=(-1)"Hy(x).
The Hermite function ¢, is defined by setting

on(z) = Hy(z) exp(—22/2).

We have
on(—r) = (=1)"pn(x)
and
(2) i © (x)ﬁ = exp <2ta: —t? - $2)
— M) 2/

It is very well-known that the system {(p,}°°, is orthogonal in L?(R). Next we
give a new method to prove this and get more results for Hermite functions. To
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this end we use the following formula from [4]:

3)

\/127/exp(—(14x2+3x+0))dx—\/;71ex

Therefore, taking the Fourier transforms of both sides of (2) we have

(4) ngn ——exp<—22t§+t2 fZ)

2 _
(B 44AC

S ) (R(A) > 0).

Here the Fourier transform <2> of a function ¢ is defined by

5 —LOO z)e ®E dy
¢(§>—m_4¢<> dz.

On the other hand, note that if in (2) we replace z by £ and t by —it then

n

i(—i)nﬁpn(f)n! = exp ( 2tE + 2 — 52)

n=0
Compare this series with (4) we get
Gn = (=1)"pn.
If in (2) we replace t by s and take the product of these power series, then we get

tnm

chpn Om( - —exp(2tx+28:c—t2—s2—a:2).
nlm!

n=0m=0

Integrate term by term according to z and apply (3) we obtain

tTL m o
Z Z ( / (w)d:c) n!;! = / exp(2ta + 25z — 12 — 5% — 2?)dx
n=0m=0 _° .
= /mexp(2st)
> 2n g
— \/;Z S
n=0
Therefore
(5) / on(2)pm(x)dz = /72"nld(n — m),

here § denotes the Kronecker-delta. This proves that the Hermite functions are
orthogonal in L*(R). Next, we prove that the system of Hermite functions can
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be separated into 3 parts which are orthogonal in the Sobolev space H, (1)(R). To
this end we define the Sobolev norm || - [[(1) by letting

i, = /ru (14 22)d = [Jul® + lu/|[%.

Here, u’ denotes the distributional derivative of u. The Sobolev space H!(R) =
H1y(R) is the set of all u € L*(R) such that ||u||) < oo. This is a Hilbert space
with the scalar product (-,-)(;) defined by setting

(U, U>(1) = <u7 U> + <’LL/, U,>'
Here (-, -) denotes the scalar product in L?(R.). We deduce from (5) that (¢, om) =
V/72™"nld(n — m). Now derivate (2) according to x we have

2

Zg@n t—x)exp(Zt:U—tQ—%).

Multiple this equation with itself after replacing ¢t by s we have

Z Z o (z)eh, (1) i (2t — 2)(2s — x) exp(2tx + 25z — t* — s* — 2?).

n=0 m=0

Integrating term by term according to x we have

o0
tn m
Z Z o, gpm / (2t — 2)(2s — x) exp(2tx + 25z — 2 — 5% — 332)dzn
n=0m=0 —00
= e**[0(3/2) — (t - 5)°I(1/2)]
o
2M"s™ 1
R SR (NPT
— nl
This implies that
T
ez = X

bl = 2" (n + 2)n!y/xm  for n >0,
<90n7 90n+2> <90n+27 @n) = _2n(n + 2)'#
(o ,ony=0 if |[n—m|=1 or |n—m|>2,
and we obtain the following theorem.

Theorem 1. The following systems of Hermite functions are orthogonal in the
Sobolev space H1)(R):
(1) {0, P15 s P3kt1s- - 15
(ii) {¢1, 92,95, ©3k12,--- };
(i) {wo,¢3,%6:- -1 P3ks--- }-
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Next we define the Hilbert transform and the real Hardy space HY(R). The
Hilbert transform H f := f of a function f € LP(R) (p € [1,00)) is defined by
the formula

o0

1) = f(2) /j_tdt

It is well-known that

Hf(€) = —isign(6)f(€),  H(HSf)=—F,
and

5 1 1
(1.9) = ~(f.9) for feI’(R) andgeL/(R), ~+_ =1 1<p<c.
Therefore, the Hilbert transform is a wunitary operator in both Hilbert spaces
L*(R) and H(;y(R). The Hilbert transform of the characteristic function x4 p)

of the interval (a, b) is

- 1 T —a
X(a,b)(x) = ;ln’

so we have

(6) ij}@ﬁ@i:ﬂ@:—/}@mz

The real Hardy space H'(R) is the set of all functions f € L'(R) such that
fe L'(R). Functions in the real Hardy space are called Hardy functions. From
[1] we have ¢, € H(R) for every odd n. It is a well-known fact that the dual
space of H1(R) is BMO(R) and the logarithmic function Inz is in BMO. So we
can define the logarithmic integral

/ o)t g

for all function f € H'(R). But by (6) we have

b
mm—m@:—/ﬂ@m

so the function F' is absolutely continuous on the real line and F’(b) = —f(b) for
almost all b € R. Take the Fourier transform of F” in the distributional sense we
have itF'(t) = i sign(t) f(t). This implies

sy 4 (0)

F(t) = T c L'Y(R) (by Hardy inequality).
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Hence
1 7 . gt
F(b) = v ZO f(t)e‘T‘dt
and
Fb) = — /2? 70 () ejt dt
Consequently, -

Thus we have the following result.

Theorem 2. The logarithmic integral F' of a Hardy function f is absolutely con-
tinuous and it can be rewritten in the form

b
Flb) = — / Fla)da.

In [3] it is proved (in a complicated manner) that the logarithmic integral F is
of bounded variation if the Hardy function f is of compact support. Our result
is much stronger. Note that if ¢ is a function in L?(R) then

H(¢? — &*) = 2¢;

so the function f := ¢? — $? is a Hardy function. This is the most important
example for Hardy functions. For example, if

1
z) = 22+ 1
then, according to [1],
. x
Plz) = 241
Thus
1— a2
is a Hardy function and we have
~ 2x
flz) = m = —¢'(z).

Apply Theorem 2 we obtain the following interesting formula
o0

1 1—2? 1 1

— 1 dr =)= 5—-

W/(az2+1)2n|xb|x #0) =

—00
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Next we compute the Hilbert transforms of the Hermite functions ¢,. To this
end, note that (2) implies

2
Z on(x)— =exp (2tz —t - %) = et2<p0(x — 2t).

Take the Hilbert transform of both sides according to the variable x we have
> 5 tm 2
Z gpn(x)ﬁ =e" @o(x — 2t).
n=0 )
Therefore
d’I’L

onl®) = G {e Polz —2t) }t:o'

So we should compute the Hilbert transform of ¢g first. Using the Inversion

Theorem we have
/ HQO lztdt
1

=— [ (—9) sign(t)e_t /2(cos xt + i sin xt)dt
V2T /

2 —t2/2 .
= e sin xtdt
\ 2T /

ﬁ\

8

[e=]

k p2k+1
—t2/2 tQkHdt
\/27r / Z 2/€ +1

-2y (<2112kf zlk;l / e
k: ’ O

9 o0 ( 1)kx2k+l ( )k
g liamatsyCe™ T (27)%dT
T Vo= (2k+ 1) / ’ 0

o 1)k$2k+1

2 <
rz (2k + 1)!

2T (k +1)

0 1)k$2k+1

2 (=
\ﬁkz_: 2k + 1)
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Next we construct the recurrence relationship for Hermite functions and their
Hilbert transforms. To this end, we derivate (2) according to ¢ to obtain

2

Z On+1(x)— = (22 — 2t) exp (2153: —t - :U2 )

or, equivalently,

pns1(¥) = 2000(2) — 2001 (2).

Let ®,, denote the logarithmic integral of the Hermite function ¢,. For even n
we have

_Z')n—l—l

() = 2o E (D),

This implies that

A

i1 (1) — 201 (1) = 2(=0)" pu(t) sign(t) = 2Hpn (1),
and consequently,
By — 20Ppy_1 = 25,
Derivate both sides term by term we have
Pnt1 — 2nPp_1 = —2¢;, for even n.

On the other hand, for odd n,

1,12 = /‘90" Fiw < oo,

—o
so we have

Theorem 3. For odd n the logarithmic integral ®, of the Hermite function
belongs to the Sobolev space H(1)(R) and

SDn
1,7 = /\ M +1lul 2.

—00
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2. RADON TRANSFORM IN THE PLANE

For a Schwart function f(x,y) we define the Radon transform Rf(r,0) =
R(f,r,0) of f as follows

Rf(r,0) = / f(y)de,

x cos 4y sin O=r

here d¢ is the Lebesgue measure in the line zcosf + ysinf = r. If u(z,y) =
¢(\/x? + y?) is a radial function, the Radon transform of f is the same, i.e.,

Rur,@—/ur, d—2/ur, d—2/ t)—-
(r,0) (r,y)dy O(y)y |¢()m
For example, if u(x,y) = exp(—(a:2 + yz)) then we have

Ru(r,0) = / e*(r2+y2)dy — \/;reﬂ«z‘

Now let f(z,y) = u(z —t,y—s) = exp{—[(z — t)? + (y — 5)?]}, where s and ¢ are
fixed. Then

Rf(r,0) = / u(z —t,y — s)dl

x cos 04y sin O=r

= u(zx,y)dl
x cos 04y sin 0=r—t cos 0—ssin 6

= ﬂexp(—(r —tcosf — ssin9)2>.

Put

Then from (1) we have

(1) S ¢n(x)g — exp[—(z - 1)?].
n=0
Replace t by t 4+ s we have
exp[—(:c - 8)2] _ an(l‘) (t —;'3>n
n=0
(8) = Z Z 7pn+m($) Z:f,:: ’

n=0m=0
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Replace z by y and ¢ by s in (7) then multiple it with itself we obtain

nm

ZZ@Dn U ( jn = exp{—| xft)2+(y75)2}} =: f(z,y).

n=0m=0

Now take the Radon transform in variables # and y in both sides term by term,
we have

Z—:o Z:()an ® P, 1, 9)% = /mexp{—(r —tcosf — ssin9)2}

n.m

= \/Ei i Unpm (1) cos™ O sin™ 9t >

Im)
=0 m=0 nm:

(by (8)).

Therefore
R(djn & wma T, 0) = ﬁ¢n+m (T) COSn 0 Sinm 6

The inversion formula (for a Schwart function f) from [2] reads as follows

2

1 T o dr
f(x7y)_W/d0 / ERf(T?g)xcose—FysinO—r.

0

Apply this formula for functions v, ® ¥, we have

U (2)m(y) =12 /wn+m x cos @ + ysin ) cos™ O sin™ 0df.
™

To compute the norm of 1, note that

© thgm
Z Z U () () n'jn' = exp[—(x — t)2 —(z — 5)2].
n=0m=0 e
Integrating side by side we have
3 [ @@t = [ expl~a -1 — @~ 52

nOmOOO o

= \/jpo(t - 5).
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Therefore

s T n—+m
[ inta@rimteris = 32— o) o
1 e i

=0 if n +m is odd,

= \/Z(—l)”m/z(n +m -1 if n4+m is even.

Thus

[l = \/§<2n— .

To compute the Hilbert transform of 1),, we observe that (7) implies

an . —exp[ (x—t)Q] = o(z —t).

Therefore
n dn

() = (~1)" T —do()
and

_ L dr -

dnl@) = (~1)"do(a)
Consequently,

¢n+1(l‘) = _sz)qlm(x)v QZ)nJrl(:E) = —1;;($),

and

1$nlltyy = 1nl® + [[nsall* = V2r (20 — Dli(n + 1).

On the other hand, we have ¥ (z) = @o(v/22), so

_ 1 > k2k+1 2k+1

Yo(@) = Po(xv2) = Trz (2k + D!

k:0
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Let ¥,, be the logarithmic integral of 1, (this function is a Hardy function for
odd n). Then
17 |
U (z) = ~ / o (#) In ——dt
™ t

|z — ]

— _jz;n(t)dt: /xiﬁizl(t)dt
0 °

= @Z}nfl (517

)
:%(P V-)/%Z)n—l(t) a

m—t'

Therefore we have

Theorem 4. For odd n the logarithmic integral V,, of the function
VY (x) = Hy(z) exp(—2?)
belongs to the Sobolev space H)(R) with the norm

1Wall2) = [atlZ) = [atll? + [0l = vV2rn(2n — 3)1.
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