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LOGARITHMIC INTEGRALS, SOBOLEV SPACES
AND RADON TRANSFORM IN THE PLANE

DANG VU GIANG

Abstract. We prove that the set {ϕ0, ϕ1, ϕ4, . . . , ϕ3k+1, . . . } of Hermite func-
tions is an orthogonal system in the Sobolev space H1(R) = H(1)(R). Fur-
thermore, the logarithmic integral of a function f from the real Hardy space
H1(R) is exactly the primitive function of −f̃ (the Hilbert transform of f).
And more interesting formulas are found for Radon transform of Hermite-like
functions.

1. Hermite functions and logarithmic integrals

Consider the following power series
∞∑

n=0

Hn(x)
tn

n!
= exp(2tx− t2),(1)

where Hn are the Hermite polynomials. Replace x by −x we have

Hn(−x) = (−1)nHn(x).

The Hermite function ϕn is defined by setting

ϕn(x) = Hn(x) exp(−x2/2).

We have

ϕn(−x) = (−1)nϕn(x)

and
∞∑

n=0

ϕn(x)
tn

n!
= exp

(
2tx− t2 − x2

2

)
.(2)

It is very well-known that the system {ϕn}∞n=0 is orthogonal in L2(R). Next we
give a new method to prove this and get more results for Hermite functions. To
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this end we use the following formula from [4]:

1√
2π

∞∫

−∞
exp

(−(Ax2 + Bx + C)
)
dx =

1√
2A

exp
(B2 − 4AC

4A

)
(<(A) > 0).

(3)

Therefore, taking the Fourier transforms of both sides of (2) we have
∞∑

n=0

ϕ̂n(ξ)
tn

n!
= exp

(
− 2itξ + t2 − ξ2

2

)
.(4)

Here the Fourier transform φ̂ of a function φ is defined by

φ̂(ξ) =
1√
2π

∞∫

−∞
φ(x)e−ixξdx.

On the other hand, note that if in (2) we replace x by ξ and t by −it then
∞∑

n=0

(−i)nϕn(ξ)
tn

n!
= exp

(
− 2itξ + t2 − ξ2

2

)
.

Compare this series with (4) we get

ϕ̂n = (−i)nϕn.

If in (2) we replace t by s and take the product of these power series, then we get
∞∑

n=0

∞∑

m=0

ϕn(x)ϕm(x)
tnsm

n!m!
= exp

(
2tx + 2sx− t2 − s2 − x2

)
.

Integrate term by term according to x and apply (3) we obtain

∞∑

n=0

∞∑

m=0

( ∞∫

−∞
ϕn(x)ϕm(x)dx

) tnsm

n!m!
=

∞∫

−∞
exp

(
2tx + 2sx− t2 − s2 − x2

)
dx

=
√

π exp(2st)

=
√

π

∞∑

n=0

2nsntn

n!
·

Therefore
∞∫

−∞
ϕn(x)ϕm(x)dx =

√
π2nn!δ(n−m),(5)

here δ denotes the Kronecker-delta. This proves that the Hermite functions are
orthogonal in L2(R). Next, we prove that the system of Hermite functions can
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be separated into 3 parts which are orthogonal in the Sobolev space H(1)(R). To
this end we define the Sobolev norm || · ||(1) by letting

||u||2(1) =

∞∫

−∞
|û(x)|2(1 + x2)dx = ||u||2 + ||u′||2.

Here, u′ denotes the distributional derivative of u. The Sobolev space H1(R) =
H(1)(R) is the set of all u ∈ L2(R) such that ||u||(1) < ∞. This is a Hilbert space
with the scalar product 〈·, ·〉(1) defined by setting

〈u, v〉(1) = 〈u, v〉+ 〈u′, v′〉.
Here 〈·, ·〉 denotes the scalar product in L2(R). We deduce from (5) that 〈ϕn, ϕm〉 =√

π2nn!δ(n−m). Now derivate (2) according to x we have
∞∑

n=0

ϕ′n(x)
tn

n!
= (2t− x) exp

(
2tx− t2 − x2

2

)
.

Multiple this equation with itself after replacing t by s we have
∞∑

n=0

∞∑

m=0

ϕ′n(x)ϕ′m(x)
tnsm

n!m!
= (2t− x)(2s− x) exp

(
2tx + 2sx− t2 − s2 − x2

)
.

Integrating term by term according to x we have

∞∑

n=0

∞∑

m=0

〈ϕ′n, ϕ′m〉
tnsm

n!m!
=

∞∫

−∞
(2t− x)(2s− x) exp

(
2tx + 2sx− t2 − s2 − x2

)
dx

= e2ts[Γ(3/2)− (t− s)2Γ(1/2)]

=
√

π
∞∑

n=0

2ntnsn

n!

(1
2
− t2 − s2 + 2ts

)
.

This implies that

||ϕ′0||2 =
√

π

2
||ϕ′n||2 = 2n−1(n + 2)n!

√
π for n > 0,

〈ϕ′n, ϕ′n+2〉 = 〈ϕ′n+2, ϕ
′
n〉 = −2n(n + 2)!

√
π

〈ϕ′n, ϕ′m〉 = 0 if |n−m| = 1 or |n−m| > 2,

and we obtain the following theorem.

Theorem 1. The following systems of Hermite functions are orthogonal in the
Sobolev space H(1)(R):

(i) {ϕ0, ϕ1, ϕ4, . . . , ϕ3k+1, . . . };
(ii) {ϕ1, ϕ2, ϕ5, . . . , ϕ3k+2, . . . };

(iii) {ϕ0, ϕ3, ϕ6, . . . , ϕ3k, . . . }.
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Next we define the Hilbert transform and the real Hardy space H1(R). The
Hilbert transform Hf := f̃ of a function f ∈ Lp(R) (p ∈ [1,∞)) is defined by
the formula

Hf(x) = f̃(x) =
1
π

(p.v.)

∞∫

−∞

f(t)
x− t

dt.

It is well-known that

Ĥf(ξ) = −i sign(ξ)f̂(ξ), H(Hf) = −f,

and

〈f, g̃〉 = −〈f̃ , g〉 for f ∈ Lp(R) and g ∈ Lq(R),
1
p

+
1
q

= 1, 1 < p < ∞.

Therefore, the Hilbert transform is a unitary operator in both Hilbert spaces
L2(R) and H(1)(R). The Hilbert transform of the characteristic function χ(a,b)

of the interval (a, b) is

χ̃(a,b)(x) =
1
π

ln
∣∣∣x− a

x− b

∣∣∣,

so we have

1
π

∞∫

−∞
f(x) ln

∣∣∣x− a

x− b

∣∣∣dx = −
b∫

a

f̃(x)dx.(6)

The real Hardy space H1(R) is the set of all functions f ∈ L1(R) such that
f̃ ∈ L1(R). Functions in the real Hardy space are called Hardy functions. From
[1] we have ϕn ∈ H1(R) for every odd n. It is a well-known fact that the dual
space of H1(R) is BMO(R) and the logarithmic function lnx is in BMO. So we
can define the logarithmic integral

F (b) :=
1
π

∞∫

−∞
f(x) ln

1
|x− b|dx

for all function f ∈ H1(R). But by (6) we have

F (b)− F (a) = −
b∫

a

f̃(x)dx;

so the function F is absolutely continuous on the real line and F ′(b) = −f̃(b) for
almost all b ∈ R. Take the Fourier transform of F ′ in the distributional sense we
have itF̂ (t) = i sign(t)f̂(t). This implies

F̂ (t) =
f̂(t)
|t| ∈ L1(R) (by Hardy inequality).
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Hence

F (b) =
1√
2π

∞∫

−∞
f̂(t)

eibt

|t| dt

and

F̃ (b) = − i√
2π

∞∫

−∞
f̂(t)

eibt

t
dt.

Consequently,

lim
|a|→∞

F (a) = lim
|a|→∞

F̃ (a) = 0.

Thus we have the following result.

Theorem 2. The logarithmic integral F of a Hardy function f is absolutely con-
tinuous and it can be rewritten in the form

F (b) = −
b∫

−∞
f̃(x)dx.

In [3] it is proved (in a complicated manner) that the logarithmic integral F is
of bounded variation if the Hardy function f is of compact support. Our result
is much stronger. Note that if ϕ is a function in L2(R) then

H(ϕ2 − ϕ̃2) = 2ϕϕ̃;

so the function f := ϕ2 − ϕ̃2 is a Hardy function. This is the most important
example for Hardy functions. For example, if

ϕ(x) =
1

x2 + 1
then, according to [1],

ϕ̃(x) =
x

x2 + 1
·

Thus

f(x) =
1− x2

(x2 + 1)2

is a Hardy function and we have

f̃(x) =
2x

(x2 + 1)2
= −ϕ′(x).

Apply Theorem 2 we obtain the following interesting formula

1
π

∞∫

−∞

1− x2

(x2 + 1)2
ln

1
|x− b|dx = ϕ(b) =

1
b2 + 1

·
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Next we compute the Hilbert transforms of the Hermite functions ϕn. To this
end, note that (2) implies

∞∑

n=0

ϕn(x)
tn

n!
= exp

(
2tx− t2 − x2

2

)
= et2ϕ0(x− 2t).

Take the Hilbert transform of both sides according to the variable x we have

∞∑

n=0

ϕ̃n(x)
tn

n!
= et2ϕ̃0(x− 2t).

Therefore

ϕ̃n(x) =
dn

dtn

{
et2ϕ̃0(x− 2t)

}
t=0

.

So we should compute the Hilbert transform of ϕ0 first. Using the Inversion
Theorem we have

ϕ̃0(x) =
1√
2π

∞∫

−∞
Ĥϕ0(t)eixtdt

=
1√
2π

∞∫

−∞
(−i) sign(t)e−t2/2(cosxt + i sinxt)dt

=
2√
2π

∞∫

0

e−t2/2 sinxtdt

=
2√
2π

∞∫

0

e−t2/2
∞∑

k=0

(−1)kx2k+1

(2k + 1)!
t2k+1dt

=
2√
2π

∞∑

k=0

(−1)kx2k+1

(2k + 1)!

∞∫

0

e−t2/2t2k+1dt

=
2√
2π

∞∑

k=0

(−1)kx2k+1

(2k + 1)!

∫
l; imits∞0 e−τ (2τ)kdτ

=
2√
2π

∞∑

k=0

(−1)kx2k+1

(2k + 1)!
2kΓ(k + 1)

=
2√
2π

∞∑

k=0

(−1)kx2k+1

(2k + 1)!!
·



LOGARITHMIC INTEGRALS, SOBOLEV SPACES AND RADON TRANSFORM 303

Next we construct the recurrence relationship for Hermite functions and their
Hilbert transforms. To this end, we derivate (2) according to t to obtain

∞∑

n=0

ϕn+1(x)
tn

n!
= (2x− 2t) exp

(
2tx− t2 − x2

2

)

= (2x− 2t)
∞∑

n=0

ϕn(x)
tn

n!

=
∞∑

n=0

(
2xϕn(x)− 2nϕn−1(x)

) tn

n!

or, equivalently,

ϕn+1(x) = 2xϕn(x)− 2nϕn−1(x).

Let Φn denote the logarithmic integral of the Hermite function ϕn. For even n
we have

Φ̂n+1(t) =
ϕ̂n+1(t)
|t| =

(−i)n+1ϕn+1(t)
|t| ·

This implies that

Φ̂n+1(t)− 2nΦ̂n−1(t) = 2(−i)n+1ϕn(t) sign(t) = 2Ĥϕn(t),

and consequently,

Φn+1 − 2nΦn−1 = 2ϕ̃n.

Derivate both sides term by term we have

ϕ̃n+1 − 2nϕ̃n−1 = −2ϕ̃′n for even n.

On the other hand, for odd n,

||Φn||2 =

∞∫

−∞

∣∣∣ϕn(x)
x

∣∣∣
2
dx < ∞,

so we have

Theorem 3. For odd n the logarithmic integral Φn of the Hermite function ϕn

belongs to the Sobolev space H(1)(R) and

||Φn||2(1) =

∞∫

−∞

∣∣∣ϕn(x)
x

∣∣∣
2
dx + ||ϕn||2.
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2. Radon transform in the plane

For a Schwart function f(x, y) we define the Radon transform Rf(r, θ) =
R(f, r, θ) of f as follows

Rf(r, θ) =
∫

x cos θ+y sin θ=r

f(x, y)d`,

here d` is the Lebesgue measure in the line x cos θ + y sin θ = r. If u(x, y) =
φ
(√

x2 + y2
)

is a radial function, the Radon transform of f is the same, i.e.,

Ru(r, θ) =

∞∫

−∞
u(r, y)dy = 2

∞∫

0

u(r, y)dy = 2

∞∫

|r|

φ(t)
tdt√

t2 − r2
·

For example, if u(x, y) = exp
(−(x2 + y2)

)
then we have

Ru(r, θ) =

∞∫

−∞
e−(r2+y2)dy =

√
πe−r2

.

Now let f(x, y) = u(x− t, y− s) = exp
{−[(x− t)2 + (y− s)2]

}
, where s and t are

fixed. Then

Rf(r, θ) =
∫

x cos θ+y sin θ=r

u(x− t, y − s)d`

=
∫

x cos θ+y sin θ=r−t cos θ−s sin θ

u(x, y)d`

=
√

π exp
(
−(r − t cos θ − s sin θ)2

)
.

Put

ψn(x) = Hn(x)e−x2
.

Then from (1) we have
∞∑

n=0

ψn(x)
tn

n!
= exp

[−(x− t)2
]
.(7)

Replace t by t + s we have

exp
[−(x− t− s)2

]
=

∞∑

n=0

ψn(x)
(t + s)n

n!

=
∞∑

n=0

∞∑

m=0

ψn+m(x)
tnsm

n!m!
·(8)
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Replace x by y and t by s in (7) then multiple it with itself we obtain

∞∑

n=0

∞∑

m=0

ψn(x)ψm(y)
tnsm

n!m!
= exp

{−[(x− t)2 + (y − s)2]
}

=: f(x, y).

Now take the Radon transform in variables x and y in both sides term by term,
we have

∞∑

n=0

∞∑

m=0

R(ψn ⊗ ψm, r, θ)
tnsm

n!m!
=
√

π exp
{−(r − t cos θ − s sin θ)2

}

=
√

π
∞∑

n=0

∞∑

m=0

ψn+m(r) cosn θ sinm θ
tnsm

n!m!
(by (8)).

Therefore

R(ψn ⊗ ψm, r, θ) =
√

πψn+m(r) cosn θ sinm θ.

The inversion formula (for a Schwart function f) from [2] reads as follows

f(x, y) =
1

4π2

2π∫

0

dθ

∞∫

−∞

∂

∂r
Rf(r, θ)

dr

x cos θ + y sin θ − r
·

Apply this formula for functions ψn ⊗ ψm we have

ψn(x)ψm(y) =
√

π

4π2

2π∫

0

ψ̃′n+m(x cos θ + y sin θ) cosn θ sinm θdθ.

To compute the norm of ψn note that

∞∑

n=0

∞∑

m=0

ψn(x)ψm(x)
tnsm

n!m!
= exp

[−(x− t)2 − (x− s)2
]
.

Integrating side by side we have

∞∑

n=0

∞∑

m=0

∞∫

−∞
ψn(x)ψm(x)dx

tnsm

n!m!
=

∞∫

−∞
exp

[−(x− t)2 − (x− s)2
]
dx

=
√

π

2
ϕ0(t− s).
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Therefore

∞∫

−∞
ψn(x)ψm(x)dx =

√
π

2
∂n+m

∂tn∂sm
ϕ0(t− s)

∣∣
t=s=0

=
√

π

2
(−1)nϕ

(n+m)
0 (0)

= 0 if n + m is odd,

=
√

π

2
(−1)|n−m|/2(n + m− 1)!! if n + m is even.

Thus

||ψn||2 =
√

π

2
(2n− 1)!!.

To compute the Hilbert transform of ψn we observe that (7) implies

∞∑

n=0

ψn(x)
tn

n!
= exp

[−(x− t)2
]

= ψ0(x− t).

Therefore

ψn(x) = (−1)n dn

dxn
ψ0(x)

and

ψ̃n(x) = (−1)n dn

dxn
ψ̃0(x).

Consequently,

ψn+1(x) = −ψ′n(x), ψ̃n+1(x) = −ψ̃′n(x),

and

||ψn||2(1) = ||ψn||2 + ||ψn+1||2 =
√

2π(2n− 1)!!(n + 1).

On the other hand, we have ψ0(x) = ϕ0(
√

2x), so

ψ̃0(x) = ϕ̃0(x
√

2) =
1√
π

∞∑

k=0

(−1)k2k+1x2k+1

(2k + 1)!!
·
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Let Ψn be the logarithmic integral of ψn (this function is a Hardy function for
odd n). Then

Ψn(x) =
1
π

∞∫

−∞
ψn(t) ln

1
|x− t|dt

= −
x∫

0

ψ̃n(t)dt =

x∫

0

ψ̃′n−1(t)dt

= ψ̃n−1(x)

=
1
π

(p.v.)

∞∫

−∞
ψn−1(t)

dt

x− t
·

Therefore we have

Theorem 4. For odd n the logarithmic integral Ψn of the function

ψn(x) = Hn(x) exp(−x2)

belongs to the Sobolev space H(1)(R) with the norm

||Ψn||2(1) = ||ψn−1||2(1) = ||ψn−1||2 + ||ψn||2 =
√

2πn(2n− 3)!!.
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