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BIFURCATION OF SOLUTIONS FOR AN ELLIPTIC
DEGENERATE PROBLEM

S. AMRAOUI AND M. IGUERNANE

Abstract. We investigate the existence and bifurcation of solutions of a
model nonlinear degenerate elliptic differential equation: −xr∆u = λu +
|u|p−1 u in (0, 1); u (0) = u (1) = 0. This model is related to a simplified
version of the nonlinear Wheeler-De Witt equation as it appears in quantum
cosmological models, see [8, 9, 10].

1. Introduction

Bifurcation problems play a very important role in different areas of applied
mathematics and have been intensively studied in the literature.

In this work, we shall study the existence and bifurcation of solutions for the
elliptic degenerate equation

{
−xr∆u = λu + |u|p−1 u in (0, 1)
u (0) = u (1) = 0,

(1.1)

where r is a real positive number, p > 1, λ is a real parameter and u = u (x) is
defined as a continuous function on [0, 1].

The equation (1.1) is related to a simplified version of the Wheeler-De Witt
equation as it appears in quantum cosmological models. Here nonlinear version
looks like

1
x2

∂2ψ

∂y2
− ∂2ψ

∂x2
− p

x

∂ψ

∂x
+ x2ψ − k2x4ψ + gxq−2 |ψ|s ψ = 0,(1.2)

where y ∈ R is a scalar field, x ∈ (0, R), R > 0, a scale factor, p ∈ R, k2 > 0,
g ∈ R, s > 0, and q ≥ sp/2 are given constants (p reflects the factor-ordering
ambiguity and k2 is a cosmological constant). Finally ψ : (0, R) × R → C is the
so-called wave function of the universe for the minisuperspace model (see [8, 9, 10]
for more details).

In [6, 7], the above equation was studied as an evolution equation in which y
is treated as the evolving time. Stationary solutions of this equation are found in
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[2] by using variational methods. By looking for stationary solutions in the form

ψ (x, y) = eiµyu (x) , µ ∈ R, u 6= 0,(1.3)

and then performing the change of variables v (x) = xp/2u (x), we transform
equation (1.2) to the form

−x2 d2v

dx2
+

p

4
(p− 2) v + V v + gxq−sp/2v = λv,(1.4)

where λ = µ2 ≥ 0 and V (x) = x4 − k2x6. Then equation (1.1) is a simplified
version of (1.4).

The case r = 2 was studied in [1] by using O.D.E techniques. It was proved
that there exists an infinite number of connected branches of solutions which
bifurcate from the bottom of the essential spectrum of the corresponding linear
operator.

In this paper we shall study (1.1) when r > 0. More precisely, we prove that
there exists a sequence (λn) ⊂ R, λn > 2p+4, n ∈ N, such that, for any λ ∈ (λn),(
λ, 0

)
is a bifurcation point of the equation (1.1).

The paper is organized as follows. In Section 2, we study the eigenvalue prob-
lem. In Section 3, we reduce the problem to a finite dimensional one, using the
Lyapunov-Schmidt procedure and the Banach contraction principle. Finally, in
Section 4, using the topological degree theory we prove our main result on the
bifurcation of a real sequence of eigenvalues.

2. Eigenvalue problem

Consider X = H1
0 (0, 1) ∩ H2 (0, 1), Y = L2 (0, 1) as real Banach spaces and

define the mappings f : [0, 1] → R, T,H, K : X → Y , L : R×X → Y by

f (x) = − (xr + 1) ,

Tu = fu
′′
,

H (u) = |u|p−1 u,
L (λ, u) = λu,

K (u) = −u
′′
,

for any x ∈ [0, 1], λ ∈ R and u ∈ X. We can write (1.1) in the form

Tu = L (λ, u) + H (u) + K (u) , (λ, u) ∈ R×X.(2.1)

By definition, a characteristic value of the pair (T, L) is a number λ ∈ R such
that Tv = L

(
λ, v

)
for some v ∈ X, v 6= 0. The following proposition is the main

result of this section.

Proposition 2.1. The pair (T, L) has a sequence (λn)n∈N of real non null char-
acteristic values tending to +∞, and for any n ∈ N, we have

dimker (T − L (λn, .)) = 1.



BIFURCATION OF SOLUTIONS FOR AN ELLIPTIC DEGENERATE PROBLEM 281

For the proof of the above proposition, we need some preliminary information
about the linear operator T . Let us define the mappings

b : Y × Y → R

by

b (u, v) =

1∫

0

u (x) v (x)
(xr + 1)

dx(2.2)

for any (u, v) ∈ Y × Y , and

a : H1
0 (0, 1)×H1

0 (0, 1) → R

by

a (u, v) =

1∫

0

u′ (x) v′ (x) dx +

1∫

0

u (x) v (x)
(xr + 1)

dx(2.3)

for any (u, v) ∈ H1
0 (0, 1)×H1

0 (0, 1).

Lemma 2.1. (i) The mapping b is an inner product on Y .
(ii) The mapping a is a bilinear symmetric coercive continuous functional on

the product space H1
0 (0, 1)×H1

0 (0, 1).

Proof. (i) The bilinearity and the symmetry of a are clear. Let show that a is a
coercive continuous functional. For (u, v) ∈ H1

0 (0, 1)×H1
0 (0, 1), we have

|a (u, v)| =
∣∣∣∣∣∣

1∫

0

u′ (x) v′ (x) dx +

1∫

0

u (x) v (x)
(xr + 1)

dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1∫

0

u′ (x) v′ (x) dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

1∫

0

u (x) v (x) dx

∣∣∣∣∣∣
.

Hence, by Hölder’s inequality, we get

|a (u, v)| ≤ ∣∣u′∣∣
L2

∣∣v′∣∣
L2 + |u|L2 |v|L2 .

It follows that

|a (u, v)| ≤ (∣∣u′∣∣
L2 + |u|L2

) (∣∣v′∣∣
L2 + |v|L2

)
.

Noting that |.|10 is the norm in H1
0 (0, 1), we have

|a (u, v)| ≤ |u|10 |v|10 .(2.4)

Therefore a is continuous. On the other hand, we have

|a (u, u)| =
∣∣∣∣∣∣

1∫

0

(
u′ (x)

)2
dx +

1∫

0

(u (x))2

(xr + 1)
dx

∣∣∣∣∣∣
.
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It follows that

|a (u, u)| ≥
(∣∣u′∣∣2

L2 +
1
2
|u|2L2

)
.

Thus

|a (u, u)| ≥ 1
2

(
|u|10

)2
.(2.5)

Hence a is coercive.

In the sequel, 〈, 〉 denotes the inner product b and X1 is the space L2 (0, 1)
equipped with b. Let A be the unbounded operator on X with domain D(A)
defined by

(i) 〈Au, v〉 = a (u, v) for any u ∈ D (A) and v ∈ H1
0 (0, 1) ;(2.6)

(ii) D (A) = {u ∈ H1
0 (0, 1)

∣∣v 7−→ a (u, v)

is continuous on H1
0 (0, 1) for the X1 topology}.

Finally, let B be the operator defined by

Bu = fu” + u for any u ∈ D (B)
(2.7)

D (B) = H1
0 (0, 1) .

Lemma 2.2. The following assertions hold:
(i) The injection of H1

0 (0, 1) in X1 is compact.
(ii) H1

0 (0, 1) is dense in X1.
(iii) Au = Bu for any u ∈ D (A).
(iv) A is a self-adjoint operator.

Proof. We have

|u|2X1
=

1∫

0

u2 (x)
(xr + 1)

dx.

Hence

1
2

1∫

0

u2 (x) dx ≤ |u|2X1
≤

1∫

0

u2 (x) dx,

and then
√

2
2
|u|L2 ≤ |u|X1

≤ |u|L2 .(2.8)

It follows that the norms of X1 and L2 (0, 1) are equivalent. Since I=[0, 1] is
bounded, we know that H1

0 (0, 1) is dense in L2 (0, 1) and the injection of H1
0 (0, 1)
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in L2 (0, 1) is compact. Thus (i) and (ii) hold by (2.8). For any u ∈ D(A) and
v ∈ H1

0 (0, 1) we have

〈Au, v〉 = a (u, v) =

1∫

0

u′ (x) v′ (x) dx +

1∫

0

u (x) v (x)
(xr + 1)

dx(2.9)

On the other hand, we have

〈Bu, v〉 =
(
fu” + u, v

)

=

1∫

0

− (xr + 1)u” (x) + u (x)
xr + 1

v (x) dx

=

1∫

0

(
−u” (x) v (x) +

u (x) v (x)
xr + 1

)
dx.

Thus, using an integration by parts argument, we have

〈Bu, v〉 = − [
u′ (x) v (x)

]1

0
+

1∫

0

u′ (x) v′ (x) dx +

1∫

0

u (x) v (x)
xr + 1

dx.

Hence

〈Bu, v〉 =

1∫

0

u′ (x) v′ (x) dx +

1∫

0

u (x) v (x)
xr + 1

dx.(2.10)

Then by (2.9) and (2.10) we infer that

〈Bu, v〉 = 〈Au, v〉 for any v ∈ H1
0 (0, 1) .

Since H1
0 (0, 1) is dense in X1, it follows that

〈Bu, v〉 = 〈Au, v〉 for any v ∈ X1.

Therefore

Bu = Au for any u ∈ D (A) .

Finally, (iv) is immediate since a (., .) is symmetric. This ends the proof.

Lemma 2.3. [4] Let V ⊂ H be two Hilbert spaces, such that, the injection of
V in H is compact, V is dense in H and a (u, v) is a sesquilinear hermitian
continuous form on V × V satisfying

a (u, u) ≥ α |u|2V for any u ∈ V

for some α > 0. Let A be the operator defined by (2.6). Then, its spectrum σ (A)
is punctual,

σ (A) = σp (A) = {βn}n∈N
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and

0 < α ≤ βn → +∞ as n → +∞.

Proof of Proposition 2.1.

By (2.5), Lemmas 2.2 and 2.3, the operator A possesses a sequence (βn)n of
eigenvalues such that 




βn ≥ 1
2

lim
n→∞βn = +∞.

(2.11)

If we denote the eigenvectors of A in H1
0 (0, 1) by wn, then

Awn = βnwn.

Hence

fw′′n + wn = βnwn.

So

wn ∈ C∞ ([0, 1] ,R) .(2.12)

Therefore wn ∈ X. and

fw′′n = (βn − 1)wn.

Consequently,

Twn = (βn − 1)wn.

Put λn = βn − 1. Since L (λ, u) = λu, we have

[T − L (λ, .)]wn = 0.

Therefore the pair (T, L) possesses a sequence λn ≥ −1
2

of real characteristics
values tending to +∞.

Let us show that λn 6= 0 for any n ∈ N. Suppose that there exists n ∈ N such
that λn = 0. Then there exists a non zero v ∈ X such that

− (xr + 1) v” = 0.

Since by (2.12), v ∈ C∞ ([0, 1] ,R), there exists (a, b) ∈ R2 such that v (x) = ax+b
for any x ∈ [0, 1]. As v (0) = v (1) = 0, we have v = 0. Hence λn 6= 0.

Finally, let us show that dim ker (T − L (λn, .)) = 1. If u and v be two eigen-
functions associated to the characteristic value λ = λn, then

− (xr + 1) λvu′′ = − (xr + 1)λuv”,

but λ 6= 0, hence vu′′ = uv”. This implies that for any x ∈ [0, 1],
x∫

0

(
u′′v − v”u

)
(y)dy = 0.
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Thus
[
u′(y)v(y)

]x

0
− [

u(y)v′(y)
]x

0
= 0;

but u (0) = u (1) = 0, so u′ (x) v (x)− v′ (x) u (x) = 0.

Hence
u′ (x) v (x)− v′ (x) u (x)

v2 (x)
= 0, and then

(u

v

)′
(x) = 0. Therefore we can

find c ∈ R such that u = cv; so dimker (T − L (λn, .)) = 1.

3. Reduction of the problem to a finite dimensional one

In this section, using the Lyapunov-Schmidt procedure and the Banach con-
traction principle, we shall reduce the problem of solving (1.1) to that of solving
a system in a finite dimension.

The following lemmas play an important role in the sequel.

Lemma 3.1. There exists a constant ρ > 0 such that

|H(u)−H(v)|Y ≤ p |u− v|X for all u, v ∈ BX (0, ρ) .(3.1)

where BX (0, ρ) denotes the open ball with the center at the origin in X and the
radius ρ > 0.

Proof. There exists a constant c > 0 such that

|u|L∞(0,1) ≤ c |u|H1(0,1) for all u ∈ H1 (0, 1) .(3.2)

Let ρ be a constant in the interval
(
0,

1
c

)
. Then for any u ∈ BX (0, ρ) we have

|u|L∞(0,1) ≤ c |u|H1(0,1) ≤ c |u|X < 1.

Hence

|u(x)| < 1(3.3)

for any x ∈ [0, 1] and for any u ∈ BX (0, ρ). Now let u, v ∈ BX (0, ρ), x ∈ (0, 1).
Suppose for instance that u(x) ≤ v(x). Then by (3.3) and the fact that the
function x 7→ px− |x|p−1 x is increasing on the interval [−1, 1], we have

pu (x)− |u (x)|p−1 u (x) ≤ pv (x)− |v (x)|p−1 v (x) .

Hence

|v (x)|p−1 v (x)− |u (x)|p−1 u (x) ≤ p (v (x)− u (x)) .

As u(x) ≤ v(x), we obtain
∣∣∣|v (x)|p−1 v (x)− |u (x)|p−1 u (x)

∣∣∣ ≤ p |(v (x)− u (x))| .
We have the same formula if v(x) ≤ u(x). It follows that
∣∣∣|v (x)|p−1 v (x)− |u (x)|p−1 u (x)

∣∣∣
2
≤ p2 |(v (x)− u (x))|2 for any x ∈ (0, 1) ,
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and then
1∫

0

∣∣∣|v (x)|p−1 v (x)− |u (x)|p−1 u (x)
∣∣∣
2
dx ≤ p2

∫ 1

0
|(v (x)− u (x))|2 dx.

Therefore ∣∣∣|v|p−1 v − |u|p−1 u
∣∣∣
Y
≤ p |v − u|Y ≤ p |v − u|X ,

which proves (ii).

Let us regard λ = λn as a fixed characteristic value of the pair (T,L) and we
set

X0 = ker
(
T − L

(
λ, .

))
= [v]

X1 = {x ∈ X| 〈x, v〉 = 0}(3.4)

Y1 = {y ∈ Y | 〈y, v〉 = 0} .

It can be seen that X = X0
⊕

X1, Y = X0
⊕

Y1 and the restriction of the
mapping T − L

(
λ, .

)
is an one-to-one linear continuous mapping from X1 onto

Y1. In the sequel, N will denote the map T − L
(
λ, .

)
.

Lemma 3.2. The mapping N is Fredholm with nullity zero and index zero.

Proof. Since the injection of X in Y is compact, the operator L
(
λ, .

)
is compact

from X into Y . Then it suffices to prove the lemma for the operator T (see for
instance [3]). Let u ∈ kerT . Then − (xr + 1)u′′ (x) = 0 for any x ∈ (0, 1). Hence
u′′ = 0. Since u (0) = u (1) = 0, we have u = 0. Therefore kerT = {0}. Let
v ∈ Y and u ∈ X be such that Tu = v. Then fu′′ = v. Hence u′′ =

v

f
, and then

u′ (x)− u′ (0) =
x∫
0

v(y)
yr + 1

dy for any x in [0, 1]. It follows that

u (x)− u′ (0)x = −
x∫

0




τ∫

0

v(y)
yr + 1

dy


 dτ.

Then it suffices to take

u (x) = αx−
x∫

0




τ∫

0

v(y)
yr + 1

dy


 dτ,

where

α =

1∫

0




τ∫

0

v(y)
yr + 1

dy


 dτ.

Therefore T is an one-to-one on mapping from X onto Y and the lemma follows.
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We denote by S the inverse of the operator N and by ‖S‖ the norm of the
map S. Then we have

Lemma 3.3. If |λ| > 2, then

‖S‖ <
1

|λ| − 2
·

Proof. Let u ∈ X. Then

‖T‖Y =
∣∣− (xr + 1)u′′

∣∣
Y
≤ 2

∣∣u′′∣∣
Y
≤ 2 |u|X .

It follows that

‖T‖ ≤ 2.(3.5)

In the other hand, we have

S = (T − L (λ, .))−1

= − 1
λ

(
I − 1

λ
T

)−1

= − 1
λ

∞∑

n=0

1
λn

Tn.

It follows that

‖S‖ <
1

|λ| − 2
·(3.6)

Next, we put M (u) = H (u)+K (u) for any u ∈ X and we define the mappings
PX : X → X0, QX : X → X1, PY : Y → X0 and QY : Y → Y1 by

PX (x) = 〈x, v〉 v, QX (x) = x− PX (x) x ∈ X,

PY (y) = 〈y, v〉 v, QY (y) = y − PY (y) y ∈ Y.

Evidently, PX , PY , QX and QY are projectors of X to X0, X to X1, Y to X0, and
Y to Y1, respectively. Now, we observe that the totality of solutions of equation
(1.1) can be obtained by solving the two following equations

QY (N (λ, u)−M (u)) = 0,
(3.7)

〈N (λ, u)−M (u) , v〉 = 0.

Since any u ∈ X can be written as u = εv + ω for some ω ∈ X1 and ε ∈ R, we
conclude that the system of equation (3.7) is equivalent to the system

{
QY (T (εv + ω)− L (λ, εv + ω)−M (εv + ω)) = 0
〈T (εv + ω)− L (λ, εv + ω)−M (εv + ω) , v〉 = 0,

(3.8)

where λ ∈ Λ, ε ∈ R, ω ∈ X1 are the unknown.
Let I1 = [−1, 1], D = BX (0, ρ) where the radius ρ > 0 is given by (3.1).

Set D1 = QX (D). Choosing D smaller if necessary, we may assume that D1 =
D1 (0, r1) is the open ball with center at the origin in X1, and radius r1 > 0. Let
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U1 = ]−r, r[ be an open interval, where r ∈ R+, r <
r1

2
, such that εv ∈ PX (D)

for all ε ∈ U1. We define the mapping G± : I1 × U1 ×D1 → X1 by

G (α, ε, ω) = −SQY (± |α|T (εv + ω)− (1± |α|) M (εv + ω)) .(3.9)

In the sequel, we suppose that

λ = λn > 2p + 6.(3.10)

Proposition 3.1. Let I1, U1, D1 be as above. Then there exist neighborhoods
I2 of zero in R, I2 ⊂ I1, D2 of the origin in X1, D2 ⊂ D1, such that for any(
|α|p−1 , |α|x

)
∈ I2 × U1 one can find a point ω

(
|α|p−1 , |α|x

)
∈ D2 satisfying:

1) G
(
|α|p−1 , |α|x, ω

(
|α|p−1 , |α|x

))
= ω

(
|α|p−1 , |α|x

)
.

2) There exists a constant c > 0 such that for any |α|p−1 ∈ I2, |α|x, |α| y ∈ U2

we have ∣∣∣ω
(
|α|p−1 , |α|x

)
− ω

(
|α|p−1 , |α| y

)∣∣∣ ≤ c |α| |x− y| ,

(consequently, for any fixed α ∈ I2, ω
(
|α|p−1 , |α| .

)
is a continuous mapping with

respect to x ∈ U1).

3) ω
(
|α|p−1 , 0

)
= 0 for any fixed α ∈ I2.

Proof. 1) Set

c0 =
r1 (1− 2 ‖S‖)

(r1 + r) ‖S‖ (‖T‖+ 2p)
,

t0 =
[
inf

(
1,

1
2
c0

)]1/(p−1)

,

D2 = t0D1,

I2 = t0I1.

We claim that G
(
|α|p−1 , |α|x, .

)
is a contraction mapping, and it maps D2 into

itself. To prove this, let ω1, ω2 ∈ D2, α ∈ I2 and ω1 = t0ω
′1, ω2 = t0 ω′2,

α = t0α
′,

(
ω′1, ω′2, α′

) ∈ D1 ×D1 × I1. We have
∣∣∣G

(
|α|p−1 , |α|x, ω1

)
−G

(
|α|p−1 , |α|x, ω2

)∣∣∣
X

= | − SQY

(
± |α|p−1 T

(|α|xv + ω1
)−

(
1± |α|p−1

)
M

(|α|xv + ω1
))

X
+

SQY

(
± |α|p−1 T

(|α|xv + ω2
)−

(
1± |α|p−1

)
M

(|α|xv + ω2
))

X
|

≤ ‖S‖ |α|p−1 ‖T‖ ∣∣ω1 − ω2
∣∣
X

+

‖S‖
(
1 + |α|p−1

) ∣∣QY

[
H

(
t0

(∣∣α′∣∣xv + ω′1
))−H

(
t0

(∣∣α′∣∣ xv + ω′2
))]∣∣

Y
+

‖S‖
(
1 + |α|p−1

) ∣∣QY K
(
ω1 − ω2

)∣∣
Y

.
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Hence by Lemma 3.1 we have
∣∣∣G

(
|α|p−1 , |α|x, ω1

)
−G

(
|α|p−1 , |α|x, ω2

)∣∣∣
x

≤ ‖S‖ |α|p−1 ‖T‖ ∣∣ω1 − ω2
∣∣
X

+ ‖S‖
(
1 + |α|p−1

)
tp0p

∣∣∣∣ω′1 − ω′2
∣∣
X

∣∣

+ 2 ‖S‖ ∣∣ω1 − ω2
∣∣
X

≤
{

tp−1
0 ‖S‖ (‖T‖+ 2p) + 2 ‖S‖

} ∣∣ω1 − ω2
∣∣
X

.

If we set G1 (t0) = tp−1
0 ‖S‖ (‖T‖+ 2p) + 2 ‖S‖, then

G1 (t0) ≤ 1
2
c0 ‖S‖ (‖T‖+ 2p) + 2 ‖S‖

≤ r1 (1− 2 ‖S‖)
2 (r1 + r)

+ 2 ‖S‖
< 1.

Therefore
∣∣∣G

(
|α|p−1 , |α|x, ω1

)
−G

(
|α|p−1 , |α|x, ω2

)∣∣∣
X
≤ G1 (t0)

∣∣ω1 − ω2
∣∣
X

,(3.11)

with G1 (t0) < 1. On the other hand, we have
∣∣∣G

(
|α|p−1 , |α|x, ω1

)∣∣∣
X

= | − SQY

(
+ |α|p−1 T

(|α|xv + ω1
)−

(
1 + |α|p−1

)
H

(|α|xv + ω1
))

+

SQY

((
1 + |α|p−1

)
K

(|α|xv + ω2
)) |X

≤ tp0 (‖S‖ ‖T‖+ 2 ‖S‖ p) (r1 + r) + 2 ‖S‖ t0 (r1 + r)

≤ t0

(
1
2

+ 2 ‖S‖
)

r1.

Then, by Lemma 3.3 we have

∣∣∣G
(
|α|p−1 , |α|x, ω1

)∣∣∣
X
≤ t0

(
1
2

+
2

|λ| − 2

)
r1.

Therefore from the hypothesis (3.10) we deduce that
∣∣∣G

(
|α|p−1 , |α|x, ω1

)∣∣∣
X
≤ t0r1.(3.12)

Applying the Banach contraction principle, by (3.11) and (3.12) we conclude that
G

(
|α|p−1 , |α|x, .

)
possesses a fixed point ω

(
|α|p−1 , |α|x

)
in D2,
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2) We have∣∣∣ω
(
|α|p−1 , |α|x

)
− ω

(
|α|p−1 , |α| y

)∣∣∣
X

=
∣∣∣G

(
|α|p−1 , |α|x, ω

(
|α|p−1 , |α|x

))
−G

(
|α|p−1 , |α|x, ω

(
|α|p−1 , |α| y

))∣∣∣
X

≤ ‖S‖
{
‖T‖

(
|α|p |x− y|+ |α|p−1

∣∣∣ω
(
|α|p−1 , |α|x

)
− ω

(
|α|p−1 , |α| y

)∣∣∣
X

)
+

(
1 + |α|p−1

)
(p + 1)

(
|α| |x− y|+

∣∣∣ω
(
|α|p−1 , |α|x

)
− ω

(
|α|p−1 , |α| y

)∣∣∣
X

)}

≤ ‖S‖
{ (

|α|p ‖T‖+
(
1 + |α|p−1

)
(p + 1) |α|

)
|x− y|+

(
|α|p−1 ‖T‖+

(
1 + |α|p−1

)
(p + 1)

)(∣∣∣ω
(
|α|p−1 , |α|x

)
− ω

(
|α|p−1 , |α| y

)∣∣∣
X

)}
.

But by (3.6) we have

‖S‖ (p + 1) ≤ p + 1
|λ|
2
− 1

,

and by hypotheses we have 2p + 6 < λ. Then

‖S‖ (p + 1) < 1.(3.13)

Choosing I2 smaller if necessary, we may assume that

1− ‖S‖
(
|α|p−1 ‖T‖+

(
1 + |α|p−1

)
(p + 1)

)
> 0.

Then

c =
‖S‖

(
|α|p−1 ‖T‖+

(
1 + |α|p−1

)
(p + 1)

)

1− ‖S‖
(
|α|p−1 ‖T‖+

(
1 + |α|p−1

)
(p + 1)

) > 0(3.14)

and then, by (3.13) we obtain conclusion 2) of the proposition.
3) We have∣∣∣ω

(
|α|p−1 , 0

)∣∣∣
X

=
∣∣∣G

(
|α|p−1 , 0, ω

(
|α|p−1 , 0

))∣∣∣
X

=
∣∣∣−SQY

(
|α|p−1 T

(
ω

(
|α|p−1 , 0

))
− (1 + |α|) M

(
ω

(
|α|p−1 , 0

)))∣∣∣

≤ ‖S‖
(
2

∣∣∣ ω
(
|α|p−1 , 0

)∣∣∣
X

+ 2 (p + 1)
∣∣∣ω

(
|α|p−1 , 0

)∣∣∣
X

)

≤ 2(p + 2)
|λ| − 2

∣∣∣ω
(
|α|p−1 , 0

)∣∣∣
X

.

Then, by (3.10), ω
(
|α|p−1 , 0

)
= 0.

Remark 3.1. Equation (1.1) is equivalent to the system of equation (3.7), which
is equivalent to finding λ ∈ Λ, ε ∈ R, ω ∈ X1 satisfying (3.8). In the sequel, we
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can see that ω is given by the Proposition 3.1, and it remains to find λ ∈ Λ,
ε ∈ R. such that

〈T (εv + ω)− L (λ, εv + ω)−M (εv + ω) , v〉 = 0.

Therefore problem (1.1) is reduced to a finite dimensional one.

4. The main result

Let λ be a fixed characteristic value of the pair (T, L). By (2.7) and Lemma
2.2, T − L

(
λ, .

)
is a self-adjoint operator. Hence by (3.4) we have

ker
(
T − L

(
λ, .

))∗ = [v] ,(4.1)

where
(
T − L

(
λ, .

))∗ denotes the adjoint mapping of the map T − L
(
λ, .

)
.

The main result of this paper is stated as follows

Theorem 4.1. There exists a sequence (λn) ⊂ R, λn > 2p+6, n ∈ N, such that,
for any λ ∈ (λn),

(
λ, 0

)
is a bifurcation point of equation (1.1).

More precisely, there exists a sequence (λn) ⊂ R, λn > 2p + 6, n ∈ N, such
that, for any λ ∈ (λn), there exist a function v ∈ H1

0 ([0, 1])∩H2 ([0, 1]), an open
U∗ ⊂ R not containing the origin, such that, to any given δ > 0 there exists a
neighborhood J of zero in R satisfying:

For each α ∈ J , α 6= 0, we can find x (α) ∈ U∗, and a non trivial solution
(λ+ (α) , v (α)) of (1.1), such that





λ (α) =
λ(

1 + |α|p−1
)

∣∣λ (α)− λ
∣∣ < δ,

and v (α) is of the form
{

v (α) = |α|x (α) v + ω
(
|α|p−1 , |α|x (α)

)

0 < |v (α)| < δ,

where ω is defined in Proposition 3.1.

We define the mapping A : R→ R by

A (x) = 〈(T −H) (xv), v〉 , x ∈ R.(4.2)

To prove the theorem,we need the following lemma.

Lemma 4.1. If λ > 0, then there is a point x ∈ R and an open neighborhood U∗
of x not containing the origin in R, such that the topological degree deg (A, U∗, 0)
of the mapping A with respect to U∗ and the origin is defined and different from
zero.
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Proof. The main idea of the proof is to take

x =




λ
1∫
0

|v(y)|p+1

yr + 1
dy




1
p− 1

(4.3)

and

U∗ =
]
x

2
,
3x

2

[
.(4.4)

For any x ∈ U∗, we have

A (x) = 〈(T −H) (xv), v〉
= 〈xTv −H(xv), v〉
=

〈
xTv − |xv|p−1 xv, v

〉
.

Hence

A (x) = λx− xp

1∫

0

|v(y)|p+1

yr + 1
dy(4.5)

and

A′ (x) = λ− pxp−1

1∫

0

|v(y)|p+1

yr + 1
dy,(4.6)

where A′ denotes the derivative of the mapping A. Then

A (x) = 0(4.7)

and A′ (x) = (1− p)λ. But λ 6= 0 and p 6= 1, so

A′ (x) 6= 0.(4.8)

On the other hand, since

A
(

x

2

)
= λ

x

2
−

(
x

2

)p
1∫

0

|v(y)|p+1

yr + 1
dy

=
x

2


λ− λ

2p−1
1∫
0

|v(y)|p+1

yr + 1
dy

1∫

0

|v(y)|p+1

yr + 1
dy




=
1
2
λx

[
1− 1

2p−1

]
,
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A
(

x

2

)
6= 0. By the same manner, we have

A
(

3x

2

)
=

3
2
λx

[
1−

(
3
2

)p−1
]

,

and then A
(

3x

2

)
6= 0. Therefore

0 /∈ A (∂U∗) .(4.9)

From (4.7), (4.8) and (4.9) we deduce the proposition (see for instance [5]).

Proof of Theorem 4.1. Let (λn) be the sequence given by Proposition 2.1; I1, U1,
D1 be as above and let δ > 0 be given. Using Proposition 3.1, we conclude
that for any λ ∈ (λn), λ > 2p + 6, there is a neighborhood I2 of zero in R,
I2 ⊂ I1 such that for any α ∈ I2, α 6= 0, |α|x ∈ U1, we can find a fixed point
ω

(
|α|p−1 , |α|x (α)

)
of the mapping G

(
|α|p−1 , |α|x (α) , .

)
. It follows that

ω
(
|α|p−1 , |α|x (α)

)

=− SQY

(
+ |α|p−1 T

(
|α|xv + ω

(
|α|p−1 , |α|x (α)

)))

+ SQY

((
1 + |α|p−1

)
M

(
|α|xv + ω

(
|α|p−1 , |α|x (α)

)))
,

but

S−1 (ω) =
(
T − L

(
λ, .

))
(ω) ∈ Y1,

where

ω = ω
(
|α|p−1 , |α|x (α)

)
.

Therefore

QY

{
T (ω)− L

(
λ, ω

)
+ |α|p−1 T (|α|xv + ω)−

−
(
1 + |α|p−1

)
M (|α|xv + ω)

}
= 0.

Since T (|α|xv) = L
(
λ, |α|xv.

)
,

QY

{
T (|α|xv + ω)− L

(
λ

1 + |α|p−1 , |α|xv + ω

)
−M (|α|xv + ω)

}
= 0.

(4.10)

Furthermore, by choosing I ′2 ⊂ I2 if necessary we may assume that
∣∣∣∣

λ

1 + |α|p−1 − λ

∣∣∣∣ < δ
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and αU∗ ⊂ U1 for all α ∈ I2, where U∗ is from Lemma 4.1. For any (t, α, x) ∈
[0, 1]× I2 × U2, α 6= 0 we put

g1 (t, α, x) =

〈
T


xv +

ω
(
‖T‖p−1 , ‖T‖x

)

|α|


 , v

〉
,

g2 (t, α, x) = −
〈(

1 + t |α|p−1
)

H


xv +

ω
(
‖T‖p−1 , ‖T‖x

)

|α| , v




〉
,

g3 (t, α, x) = −
〈(

1 + t |α|p−1
)
|α|−p K

(
t |α|xv + ω

(
‖T‖p−1 , ‖T‖x

))
, v

〉
,

and define the function Aα for α ∈ I, α 6= 0 by

Aα : [0, 1]× U2 → R,

Aα (t, x) =
3∑

m=1

gm (t, α, x) ,

where A is given by (4.2). By Proposition 3.1, the mapping Aα is continuous
and there is a neighborhood J of zero, J ⊂ I2, such that Aα (t, x) 6= 0 for all
α ∈ J, α 6= 0, t ∈ (0, 1) , x ∈ ∂U∗). It follows that for any fixed α ∈ J, α 6= 0, the
mapping Aα (1, .) is homotopic to Aα (0, .) = A on U∗. Therefore, by the basic
theorem on the topological degree of continuous mappings in a finite dimensional
space, we deduce from Lemma 4.1 that

deg (Aα (1, .) , U∗, 0) = deg (A, U∗, 0) 6= 0.

Then we conclude that for each α ∈ I, α 6= 0, there is a point x (α) ∈ U∗ such
that Aα (1, x (α)) = 0. By the definition of Aα (1, .) we obtain〈

T

(
v (α)
|α|

)
−

(
1 + |α|p−1

)
|α|−p M (v (α)) , v

〉
= 0,(4.11)

where

v (α) = |α|x (α) v + ω
(
|α|p−1 , |α|x (α)

)
.(4.12)

Multiplying both sides of (4.11) by |α|p, we get〈
|α|p−1 T (v (α))−

(
1 + |α|p−1

)
M (v (α)) , v

〉
= 0.

But
〈
T (v (α))− L

(
λ, v (α)

)
, v

〉
=

〈
v (α) ,

(
T − L

(
λ,

))∗
v
〉

= 0,

then 〈(
1 + |α|p−1

)
T (v (α))− L

(
λ, v (α)

)−M (v (α)) , v
〉

= 0.

Therefore 〈
T (v (α))− L

(
λ

1 + |α|p−1 , v (α)
)
−M (v (α)) , v

〉
= 0.(4.13)
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Combining (4.10) and (4.13) gives

T (v (α))− L (λ (α) , v (α))−M (v (α)) = 0,

where v (α) is given by (4.12) and

λ (α) =
λ

1 + |α|p−1 ·

This ends the proof.
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