ON HAMILTON CYCLES IN CONNECTED TETRAVALENT METACIRCULANT GRAPHS WITH NON-EMPTY FIRST SYMBOL

NGO DAC TAN AND TRAN MINH TUOC

ABSTRACT. In this paper, we show that every connected tetravalent metacirculant graph $MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ with $S_0 \neq \emptyset$ possesses a Hamilton cycle if m = 1 or 2 or m > 2 and both m and n are odd.

1. INTRODUCTION

Thomassen (and others) conjectured that there are only finitely many connected vertex-transitive nonhamiltonian graphs (see [8]). At present, only four such graphs are known to exist: the Petersen graph, the Coxeter graph and the two graphs obtained from them by replacing each vertex by a triangle. The readers can see [7] for more information about the Petersen and Coxeter graphs.

Metacirculant graphs were introduced by Alspach and Parsons in [3] as an interesting class of vertex-transitive graphs, in which there might be some new connected nonhamiltonian graphs. A natural question raised here is to find hamiltonian metacirculant graphs.

Connectedness of cubic metacirculant graphs has been considered in [10]. The obtained results there were used successfully to prove the existence of a Hamilton cycle in many connected cubic metacirculant graphs [9, 11]. Motivated by this, we apply here the results obtained in [13] to prove the existence of a Hamilton cycle in some connected tetravalent metacirculant graphs. Namely, we will prove that every connected tetravalent metacirculant graph $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ with $S_0 \neq \emptyset$ are hamiltonian whenever m = 1 or m = 2 (Theorem 3.1) or m > 2 and both m and n are odd (Theorem 3.2).

2. Preliminaries

All graphs considered in this paper are finite undirected graphs without loops and multiple edges. Unless otherwise indicated, our graph-theoretic terminology will follow [6], and our group-theoretic terminology will follow [14]. For a graph G we denote by V(G), E(G) and Aut(G) the vertex-set, the edge-set and the automorphism group of G, respectively. For a positive integer n, we will denote

Received March 20, 2002; in revised form December 12, 2002.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 05C45; Secondary: 05C25, 05C38.

Key words and phrases. Generalized Petersen graph, metacirculant graph, Hamilton cycle.

the ring of integers modulo n by \mathbf{Z}_n and the multiplicative group of units in \mathbf{Z}_n by \mathbf{Z}_n^* .

A graph G is called *vertex-transitive* if for any two vertices $u, v \in V(G)$ there exists an automorphism $\varphi \in Aut(G)$ such that $\varphi(u) = v$. If a graph G is both vertex-transitive and connected, then it is called *connected vertex-transitive*. Vertex-transitive graphs possess a high symmetry. So it is probable that they have many pleasant properties.

Let S be a subset of a group Γ such that $1 \notin S = S^{-1}$, where $S^{-1} = \{s^{-1} | s \in S\}$. Then the *Cayley graph on* Γ *respect to* S, denoted by $Cay(\Gamma, S)$, is defined to be the graph with vertex-set $V(Cay(\Gamma, S)) = \Gamma$ and two elements $x, y \in \Gamma$ are adjacent in $Cay(\Gamma, S)$ if and only if $x^{-1}y \in S$.

Circulant graphs are Cayley graphs on cyclic groups. But for abelian groups one usually use additive notation. So we must reformulate the definition for circulant graphs as follows. Let n be a positive integer and S be a subset of \mathbb{Z}_n such that $0 \notin S = -S$. Then we define the *circulant graph* G = C(n, S) to be the graph with vertex-set $V(G) = \{v_y \mid y \in \mathbb{Z}_n\}$ and edge-set $E(G) = \{v_y v_h \mid y, h \in \mathbb{Z}_n; (h - y) \in S\}$, where subscripts are always reduced modulo n. The subset Sis called the *symbol* of C(n, S).

The following class of graphs called metacirculants was introduced by Alspach and Parsons in [3]. This class of graphs is of interest because it properly contains the class of circulant graphs. Therefore, many problems for vertex-transitive graphs can be verified nontrivially first in this class.

Let *m* and *n* be two positive integers, $\alpha \in \mathbb{Z}_n^*$, $\mu = \lfloor n/2 \rfloor$ and S_0, S_1, \ldots, S_μ be subsets of \mathbb{Z}_n , satisfying the following conditions:

1) $0 \notin S_0 = -S_0;$

2) $\alpha^m S_r = S_r$ for $0 \leq r \leq \mu$;

3) If m is even, then $\alpha^{\mu}S_{\mu} = -S_{\mu}$.

Then we define the *metacirculant graph* $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_\mu)$ to be the graph with vertex-set

$$V(G) = \{ v_i^i \mid i \in \mathbf{Z}_m; j \in \mathbf{Z}_n \}$$

and edge-set

$$E(G) = \{ v_i^i v_h^{i+r} \mid 0 \le r \le \mu; i \in \mathbf{Z}_m; j,h \in \mathbf{Z}_n \& (h-j) \in \alpha^i S_r \},\$$

where superscripts and subscripts are always reduced modulo m and modulo n, respectively. The subset S_i is called (i + 1)-th symbol of G.

Let ρ and τ be two permutations on V(G) defined by $\rho(v_j^i) = v_{j+1}^i$ and $\tau(v_j^i) = v_{\alpha j}^{i+1}$. Then ρ and τ are automorphisms of G and the subgroup $\langle \rho, \tau \rangle$ of Aut(G) generated by ρ and τ is a transitive subgroup of Aut(G). Thus, metacirculant graphs are vertex-transitive.

Denote the *degree* of a vertex v of a graph G by deg(v). It is easy to see that for any vertex $v \in V(G)$ of a metacirculant graph $G = MC(m, n, \alpha, S_0, S_1, \dots, S_{\mu})$

$$\deg(v) = \begin{cases} |S_0| + 2|S_1| + \dots + 2|S_{\mu}| & \text{if } m \text{ is odd,} \\ |S_0| + 2|S_1| + \dots + 2|S_{\mu-1}| + |S_{\mu}| & \text{if } m \text{ is even.} \end{cases}$$

A graph G is called *cubic* (resp. *tetravalent*) if for any vertex $v \in V(G)$, deg(v) = 3 (resp. deg(v) = 4).

The following results have been proved in [12] and [13], respectively.

Lemma 2.1. [12] A metacirculant graph $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ with $S_0 \neq \emptyset$ is tetravalent if and only if one of the following cases holds:

- (1) $|S_0| = 4$ and $S_1 = \ldots = S_\mu = \emptyset$;
- (2) $m \text{ and } n \text{ are even, } |S_0| = 3, S_j = \emptyset \text{ for any } j \in \{1, 2, \dots, \mu 1\} \text{ and } |S_\mu| = 1;$
- (3) *m* is even, $|S_0| = 2$, $S_i = \emptyset$ for any $i \in \{1, 2, ..., \mu 1\}$ and $|S_{\mu}| = 2$;
- (4) m > 2 is odd, $|S_0| = 2$, $|S_i| = 1$ for some $i \in \{1, 2, ..., \mu\}$ and $S_j = \emptyset$ for any $i \neq j \in \{1, 2, ..., \mu\}$;
- (5) m > 2 is even, $|S_0| = 2$, $|S_i| = 1$ for some $i \in \{1, 2, ..., \mu 1\}$ and $S_j = \emptyset$ for any $i \neq j \in \{1, 2, ..., \mu\}$;
- (6) *m* and *n* are even, $|S_0| = 1$, $S_i = \emptyset$ for any $i \in \{1, 2, ..., \mu 1\}$ and $|S_{\mu}| = 3$;
- (7) $m > 2, m \text{ and } n \text{ are even, } |S_0| = 1, |S_i| = 1 \text{ for some } i \in \{1, 2, \dots, \mu 1\}, S_j = \emptyset \text{ for any } i \neq j \in \{1, 2, \dots, \mu 1\} \text{ and } |S_\mu| = 1.$

Theorem 2.1. [13] Let $G = MC(m, n, \alpha, S_0, S_1, \dots, S_{\mu})$ be a tetravalent metacirculant graph with $S_0 \neq \emptyset$. Then G is connected if and only if one of the following conditions holds:

- (1) $m = 1, S_0 = \{\pm s, \pm r\}$ and gcd(s, r, n) = 1;
- (2) m = 2, *n* is even, $S_0 = \left\{ \pm s, \frac{n}{2} \right\}$, $S_1 = \{k\}$ and $gcd\left(s, \frac{n}{2}\right) = 1$;
- (3) $m = 2, S_0 = \{\pm s\}, S_1 = \{k, l\}$ and gcd(s, k l, n) = 1;
- (4) m > 2 is odd, $S_0 = \{\pm s\}, S_i = \{k\}$ for some $i \in \{1, 2, ..., \mu\}$ such that $gcd(i, m) = 1, S_j = \emptyset$ for any $i \neq j \in \{1, 2, ..., \mu\}$ and gcd(s, r, n) = 1 where $r = k(1 + \alpha^i + \dots + \alpha^{(m-1)i});$
- (5) m > 2 is even, $S_0 = \{\pm s\}$, $S_i = \{k\}$ for some $i \in \{1, 2, ..., \mu 1\}$ such that gcd(i,m) = 1, $S_j = \emptyset$ for any $i \neq j \in \{1, 2, ..., \mu\}$ and gcd(s,r,n) = 1 where $r = k(1 + \alpha^i + \dots + \alpha^{(m-1)i});$

(6)
$$m = 2, n \text{ is even, } S_0 = \left\{\frac{n}{2}\right\}, S_1 = \{h, k, l\} \text{ and } gcd\left(h - k, k - l, \frac{n}{2}\right) = 1;$$

(7) $m \geq 2$ is some a is some $S_0 = \left\{\frac{n}{2}\right\}, S_1 = \{h, k, l\}$ and $gcd\left(h - k, k - l, \frac{n}{2}\right) = 1;$

(7)
$$m > 2$$
 is even, n is even, $S_0 = \left\{\frac{1}{2}\right\}$, $S_i = \{s\}$ where i is odd and $gcd(i, m) = 1$, $S_j = \emptyset$ for any $i \neq j \in \{1, 2, \dots, \mu - 1\}$, $S_\mu = \{r\}$ and $gcd\left(p, \frac{n}{2}\right) = 1$, where p is $\left[r - s(1 + \alpha^i + \alpha^{2i} + \dots + \alpha^{(\mu - 1)i})\right]$ reduced modulo n ;

(8) m > 2 is even but $\mu = \frac{m}{2}$ is odd, n is even, $S_0 = \left\{\frac{n}{2}\right\}$, $S_i = \{s\}$ where i is even and gcd(i,m) = 2, $S_j = \emptyset$ for any $i \neq j \in \{1, 2, \dots, \mu - 1\}$, $S_\mu = \{r\}$ and $gcd\left(q, \frac{n}{2}\right) = 1$, where $i = 2^t i'$ with $t \ge 1$ and i' odd and q is

$$\left[r(1+\alpha^{i'}+\alpha^{2i'}+\dots+\alpha^{(2^{t}-1)i'})-s(1+\alpha^{i'}+\alpha^{2i'}+\dots+\alpha^{(\mu-1)i'})\right] reduced modulo n.$$

Let n > 1 be an integer. The *dihedral group* D_n is the group generated by two elements α and β satisfying the relations $\alpha^n = \beta^2 = 1$ and $\beta \alpha \beta = \alpha^{-1}$.

The following theorem has been proved in [5].

Theorem 2.2. [5] Every connected cubic Cayley graph on a dihedral group has a Hamilton cycle.

Let n > 1 be an integer. Then the generalized Petersen graph GP(n,k), $1 \le k \le n-1$, is defined to be the graph with vertex-set

$$V(GP(n,k)) = \{u_0, u_1, \dots, u_{n-1}, v_0, v_1, \dots, v_{n-1}\}\$$

and edge-set

$$E(GP(n,k)) = \{u_i u_{i+1}, u_i v_i, v_i v_{i+k} \mid 0 \le i \le n-1\},\$$

where subscripts are always reduced modulo n.

The following result was proved by Alspach [1] for generalized Petersen graphs.

Theorem 2.3. [1] The generalized Petersen graph GP(n,k) is hamiltonian if and only if it is not one of the following:

- (1) $GP(n,2) \cong GP(n,n-2) \cong GP\left(n,\frac{(n-1)}{2}\right) \cong GP\left(n,\frac{(n+1)}{2}\right)$, where $n \equiv 5 \pmod{6}$,
- (2) $GP(4m, 2m), m \ge 2.$

A permutation α is said to be *semiregular* if all cycles in the disjoint cycle decomposition of α have the same length. If Aut(G) of a graph G contains a semiregular element α , then the *quotient graph* G/α can be defined as follows: the vertices of G/α are orbits of $\langle \alpha \rangle$ and two such vertices are adjacent in G/α if and only if there is an edge in G joining a vertex in one corresponding orbit to a vertex in the other orbit.

The following result will be useful for this work.

Theorem 2.4. [2] Let G be a graph that admits a semiregular automorphism α of order $t \geq 3$ and let G_1, G_2, \ldots, G_k be the subgraphs induced by G on the orbits of $\langle \alpha \rangle$. Let each G_i be connected and have degree 2. Then the graph G has a Hamilton cycle if either of the following statements is true:

- (1) G_r and G_s have the same symbol and there is a Hamilton path of G/α joining them;
- (2) There is a Hamilton cycle in G/α and k is odd.

3. Results

First we prove the following lemmas.

Lemma 3.1. Let $G = MC(m, n, \alpha, S_0, S_1)$ be a metacirculant graph with m = 1, $S_0 = \{\pm s, \pm r\}$ and gcd(s, r, n) = 1. Then G possesses a Hamilton cycle.

270

Proof. It is clear that G is a connected circulant graph. So G has a Hamilton cycle [4]. \Box

Lemma 3.2. Let G = GP(n, k) be the generalized Petersen graph with gcd(n, k) = 1. Then there is a Hamilton path in G joining v_i to v_{i+1} .

Proof. Let $V = \{v_i \mid i \in \mathbb{Z}_n\}$ and $U = \{u_i \mid i \in \mathbb{Z}_n\}$. Then G[V] and G[U] are isomorphic to the circulant graphs $C(n, \{\pm k\})$ and $C(n, \{\pm 1\})$, respectively. So G[V] is the cycle $C_0 = v_i v_{i+k} v_{i+2k} \dots v_{i+(n-1)k} v_i$ and G[U] is the cycle $C_1 = u_i u_{i+1} u_{i+2} \dots u_{i+(n-1)} u_i$. Denote

$$P_{10} = v_i v_{i+k} v_{i+2k} \dots v_{(i+1)-k},$$

$$P_{11} = v_{i+1} v_{(i+1)+k} v_{(i+1)+2k} \dots v_{i-k},$$

$$P_0 = v_{(i+1)-k} u_{(i+1)-k} u_{(i+2)-k} u_{(i+3)-k} \dots u_{i-k} v_{i-k}.$$

If $k \neq 1$, then $v_{i+k} \neq v_{i+1}$, $v_{(i+1)-k} \neq v_i$ and $P = P_{10} \cup P_0 \cup P_{11}$ is a Hamilton path in G with the endvertices v_i and v_{i+1} . If k = 1, then $P = v_i v_{i-1} v_{i-2} \dots v_{i+2} u_{i+2} u_{i+3} \dots u_i u_{i+1} v_{i+1}$ is a Hamilton path in G with the endvertices v_i and v_{i+1} .

Lemma 3.3. Let $G = MC(2, n, \alpha, S_0, S_1)$ be a metacirculant graph with n even, $S_0 = \left\{ \pm s, \frac{n}{2} \right\}$, $S_1 = \{k\}$ and $gcd\left(s, \frac{n}{2}\right) = 1$. Then G possesses a Hamilton cycle.

Proof. By Lemma 2.1 and Theorem 2.1, it is clear that G is a connected tetravalent metacirculant graph.

Let $V(G) = \{v_j^i \mid i \in \mathbb{Z}_2, j \in \mathbb{Z}_n\}$ and $G' = MC(2, n, \alpha, S'_0, S'_1)$ be a metacirculant graph with vertex-set

$$V(G') = \{ w_i^i \mid i \in \boldsymbol{Z}_2, \ j \in \boldsymbol{Z}_n \}$$

and $S'_0 = S_0, S'_1 = \{0\}$. It is easy to see that the mapping $\varphi : V(G) \to V(G')$, defined by $\varphi(v_j^0) = w_j^0; \varphi(v_j^1) = w_{j-k}^1$, is an isomorphism between the graphs G and G'. Therefore, without loss of generality we may assume that the graph G has the second symbol $S_1 = \{0\}$. Let H be a spanning subgraph of G with the edge-set

$$E(H) = E(G) \setminus \{v_j^0 v_{j+\frac{n}{2}}^0, v_j^1 v_{j+\frac{n}{2}}^1 \mid j \in \mathbf{Z}_n\}.$$

We consider separately two cases.

Case 1: $gcd\left(s, \frac{n}{2}\right) = 1$ and gcd(s, n) = 1. Since gcd(s, n) = 1 and $\alpha \in \mathbb{Z}_n^*$, we can see that $\{0, s, 2s, \dots, (n-1)s\} = \{0, \alpha s, 2\alpha s, \dots, (n-1)\alpha s\}$

$$\{0, s, 2s, \dots, (n-1)s\} = \{0, \alpha s, 2\alpha s, \dots, (n-1)\alpha s\}$$
$$= \{0, 1, 2, \dots, n-1\} = \mathbf{Z}_n.$$

Therefore,

$$E(H) = \{ v_j^0 v_{j+s}^0, v_j^1 v_{j+\alpha s}^1, v_j^0 v_j^1 \mid j \in \mathbf{Z}_n \}.$$

Now we define the map $\psi : V(H) \to V(GP(n,\alpha))$ by $\psi(v_{is}^0) = u_i$; $\psi(v_{\alpha is}^1) = v_{\alpha i}$, $i \in \{0, 1, 2, \ldots, n-1\}$. Then ψ is a bijection from V(H) onto $V(GP(n,\alpha))$. Furthermore, it is not difficult to see that ψ is an isomorphism between H and $GP(n,\alpha)$.

Since *n* is even and $\alpha \in \mathbb{Z}_n^*$, the generalized Petersen graph $GP(n, \alpha)$ is neither exclusion (1) nor exclusion (2) in Theorem 2.3. Therefore $GP(n, \alpha)$ has a Hamilton cycle. But *H* is isomorphic to $GP(n, \alpha)$ and is a spanning subgraph of *G*. So *G* also has a Hamilton cycle.

Case 2: $gcd\left(s, \frac{n}{2}\right) = 1$ but gcd(s, n) = 2.

It is clear that n and s are even, α and $\frac{n}{2}$ are odd. Then

$$\left\{ 0, s, 2s, \dots, \left(\frac{n}{2} - 1\right)s \right\} = \{0, \alpha s, 2\alpha s, \dots, \left(\frac{n}{2} - 1\right)\alpha s \right\}$$
$$= \{0, 2, \dots, n - 2\},$$
$$\left\{ \frac{n}{2}, \frac{n}{2} + s, \frac{n}{2} + 2s, \dots, \frac{n}{2} + \left(\frac{n}{2} - 1\right)s \right\}$$
$$= \left\{ \frac{n}{2}, \frac{n}{2} + \alpha s, \frac{n}{2} + 2\alpha s, \dots, \frac{n}{2} + \left(\frac{n}{2} - 1\right)\alpha s \right\}$$
$$= \{1, 3, \dots, n - 1\}.$$

Let

$$\begin{aligned} V_{even} &= \left\{ v_0^0, v_s^0, \dots, v_{(\frac{n}{2}-1)s}^0, v_0^1, v_{\alpha s}^1, \dots, v_{(\frac{n}{2}-1)\alpha s}^1 \right\}, \\ H_e &= H \left[V_{even} \right] \\ V_{odd} &= \left\{ v_{\frac{n}{2}}^0, v_{\frac{n}{2}+s}^0, \dots, v_{\frac{n}{2}+(\frac{n}{2}-1)s}^0, v_{\frac{n}{2}}^1, v_{\frac{n}{2}+\alpha s}^1, \dots, v_{\frac{n}{2}+(\frac{n}{2}-1)\alpha s}^1 \right\}, \\ H_0 &= H \left[V_{odd} \right]. \end{aligned}$$

Then both H_e and H_0 are isomorphic to the generalized Petersen graph $GP\left(\frac{n}{2}, \alpha'\right)$, where α' is the integer satisfying $1 \leq \alpha' \leq \frac{n}{2}$ and $\alpha' \equiv \alpha \pmod{\frac{n}{2}}$. So we may identify them with the graph $GP\left(\frac{n}{2}, \alpha'\right)$.

Since $gcd(n, \alpha) = 1$, we have $gcd\left(\frac{n}{2}, \alpha'\right) = 1$. By Lemma 3.2, there exist a Hamilton path P_e in H_e joining v_0^1 to v_s^1 and a Hamilton path P_0 in H_0 joining $v_{\frac{n}{2}}^1$ to $v_{\frac{n}{2}+s}^1$. Since α is odd and $\alpha \frac{n}{2} \equiv \frac{n}{2} \pmod{n}$, the vertex v_0^1 is adjacent to $v_{\frac{n}{2}+s}^1$ and v_s^1 is adjacent to $v_{\frac{n}{2}+s}^1$. Therefore, we can construct a Hamilton cycle C in G as follows: Starting C at v_0^1 , we go along the Hamilton path P_e in H_e to the vertex v_s^1 . Further, by $v_s^1 v_{s+\frac{n}{2}}^1$ we go to the vertex $v_{s+\frac{n}{2}}^1$. Then from $v_{s+\frac{n}{2}}^1$ we go along the Hamilton path P_0 in H_0 to the vertex $v_{\frac{n}{2}}^1$. Finally, we return to v_0^1 from $v_{\frac{n}{2}}^1$ by the edge $v_0^1 v_{\frac{n}{2}}^1$. Lemma 3.3 is proved.

Lemma 3.4. Let $G = MC(2, n, \alpha, S_0, S_1)$ be a metacirculant graph with $S_0 = \{\pm s\}$, $S_1 = \{h, k\}$ and gcd(s, h - k, n) = 1. Then G possesses a Hamilton cycle.

Proof. By Lemma 2.1 and Theorem 2.1, it is clear that G is a connected tetravalent metacirculant graph. Consider the automorphism ρ of G defined by $\rho(v_j^i) = v_{j+1}^i$. We can see that ρ is semiregular. Let gcd(s,n) = d. Then the automorphism $\beta = \rho^d$ of G is also semiregular. The orbit of $\langle \beta \rangle$ containing the vertex v_j^i is $V_j^i = \{v_j^i, v_{j+d}^i, \ldots, v_{j+(\frac{n}{d}-1)d}^i\}$ for i = 0, 1 and $j = 0, 1, \ldots, (d-1)$.

On the other hand, the subsets $\{0, d, \dots, (\frac{n}{d}-1)d\}$, $\{0, s, \dots, (\frac{n}{d}-1)s\}$ and $\{0, \alpha s, \dots, (\frac{n}{d}-1)\alpha s\}$ of \mathbb{Z}_n coincide with each other. So $G[V_j^i]$ is the cycle

$$v_j^i v_{j+\alpha^i s}^i v_{j+2\alpha^i s}^j \dots v_{j+(\frac{n}{d}-1)\alpha^i s}^j v_j^i$$

for any $i \in \mathbf{Z}_2$ and $j \in \mathbf{Z}_d$.

Consider the quotient graph G/β . It has the vertex-set

$$V(G/\beta) = \left\{ V_j^i \mid i \in \mathbf{Z}_2; \ j \in \mathbf{Z}_d \right\}$$

and two vertices of G/β are adjacent in G/β if and only if there is an edge in G joining a vertex in one corresponding orbit of $\langle \beta \rangle$ to a vertex in the other orbit. Since G is a connected tetravalent graph $MC(2, n, \alpha, S_0, S_1)$ with $S_0 = \{\pm s\}$, it is not difficult to see that G/β is the cycle

$$V_0^0 V_h^1 V_{h-k}^0 V_{(h-k)+h}^1 V_{2(h-k)}^0 \dots V_{(d-1)(h-k)}^0 V_{(d-1)(h-k)+h}^1 V_0^0$$

In G, each vertex $v_{x_i}^0 \in V_x^0$ is adjacent to $v_{x_i+h}^1 \in V_{x+h}^1$ and each vertex $v_{y_i}^1 \in V_y^1$ is adjacent to $v_{y_i-k}^0 \in V_{y-k}^0$.

Let
$$H_j = G[V_{j(h-k)}^0 \cup V_{j(h-k)+h}^1], j \in \mathbb{Z}_d$$
. Then

$$V(H_j) = \left\{ v_{j+ts}^0, v_{j+h+t\alpha s}^1 \mid t = 0, 1, \dots, \frac{n}{d} - 1 \right\},$$

$$E(H_j) = \left\{ v_{j+ts}^0 v_{j+(t+1)s}^0, v_{j+h+t\alpha s}^1 v_{j+h+(t+1)\alpha s}^1, v_{j+ts}^0 v_{j+h+ts}^1 \mid t = 0, 1, \dots, \frac{n}{d} - 1 \right\}.$$

Let α' be the integer satisfying $1 \leq \alpha' \leq \frac{n}{d}$ and $\alpha' \equiv \alpha \pmod{\frac{n}{d}}$. Then the bijection

$$\varphi : V(H_j) \to V\left(GP(\frac{n}{d}, \alpha')\right) :$$
$$v_{j+ts}^0 \mapsto u_t, \ v_{j+h+t\alpha s}^1 \mapsto v_{t\alpha'}, \ t \in \{0, 1, \dots, (\frac{n}{d} - 1)\}$$

is an isomorphism between H_j and $GP\left(\frac{n}{d}, \alpha'\right)$.

We rename the vertices of H_j , j = 0, 1, ..., d-1, as follows: v_{j+ts}^0 is renamed with $u_{j,t}$; $v_{j+h+t\alpha s}^1$ is renamed with $v_{j,t\alpha'}$ for $t = 0, 1, ..., \frac{n}{d} - 1$. We can see that $GP\left(\frac{n}{d}, \alpha'\right)$ is neither exclusion (1) nor exclusion (2) in Theorem 2.3. Therefore H_{d-1} has a Hamilton cycle C_1 , containing the edge $u_{d-1,0}u_{d-1,1}$. Let $v_{d-2,i}$ be adjacent in G to $u_{d-1,0}$. Then it is not difficult to see that $v_{d-2,i+1}$ is adjacent to $u_{d-1,1}$. On the other hand, since $gcd(\frac{n}{d}, \alpha') = 1$, by Lemma 3.2 there exists a Hamilton path P_{d-2} in H_{d-2} joining $v_{d-2,i}$ and $v_{d-2,i+1}$. Now replacing the edge $u_{d-1,0}u_{d-1,1}$ in C_1 by the path

$$\{u_{d-1,0}v_{d-2,i}\} \cup P_{d-2} \cup \{v_{d-2,i+1}u_{d-1,1}\}$$

we can obtain a Hamilton cycle in $G[V(H_{d-2}) \cup V(H_{d-1})]$. This procedure can be continued to obtain a Hamilton cycle in

$$G = G[V(H_0) \cup V(H_1) \cup \ldots \cup V(H_{d-1})].$$

Lemma 3.5. Let $G = MC(2, n, \alpha, S_0, S_1)$ be a metacirculant graph with n even, $S_0 = \left\{\frac{n}{2}\right\}, S_1 = \{h, k, l\}$ and $gcd(h - k, k - l, \frac{n}{2}) = 1$. Then G possesses a Hamilton cycle.

Proof. Let $G' = MC(2, n, -1, S_0, S_1)$ where $S_0 = \left\{\frac{n}{2}\right\}$, $S_1 = \{h, k, l\}$ and the vertex-set $V(G') = \left\{u_j^i \mid i \in \mathbb{Z}_2, j \in \mathbb{Z}_n\right\}$. Let φ be a bijection from V(G) onto V(G'), defined by $\varphi(v_j^i) = u_j^i$. Then it is not difficult to verify that φ is an isomorphism between G and G'. Therefore, without loss of generality, we may assume that the graph G is $MC(2, n, -1, S_0, S_1)$ where n is even, $S_0 = \left\{\frac{n}{2}\right\}$, $S_1 = \{h, k, l\}$ and $\gcd(h - k, k - l, \frac{n}{2}) = 1$. There are two cases to consider.

Case 1: gcd(h - k, k - l, n) = 1.

Let G' be a spanning subgraph of G isomorphic to $H = MC(2, n, -1, S'_0, S'_1)$ with $S'_0 = \emptyset$ and $S'_1 = S_1 = \{h, k, l\}$. It is clear that H is a cubic metacirculant graph. Since gcd(h-k, k-l, n) = 1, by [10, Theorem 2], the graph H is connected. By [3, Theorem 9], H is a Cayley graph on the group $\langle \rho, \tau \rangle$, where ρ and τ are the automorphisms of H with $\rho(v_j^i) = v_{j+1}^i$ and $\tau(v_j^i) = v_{\alpha j}^{i+1}$. It is not difficult to see that ρ and τ satisfy the relations $\tau \rho \tau^{-1} = \rho^{-1}$ and $\rho^n = \tau^2 = 1$. Therefore $\langle \rho, \tau \rangle$ is a dihedral group. Thus H is a connected cubic Cayley graph on the dihedral group $\langle \rho, \tau \rangle$. By Theorem 2.2, we conclude H has a Hamilton cycle. Since H is isomorphic to the spanning subgraph G' of G, G possesses a Hamilton cycle.

Case 2: gcd(h - k, k - l, n) = 2.

Let G be a tetravalent metacirculant graph $MC(2, n, -1, S_0, S_1)$ with n even, $S_0 = \{\frac{n}{2}\}, S_1 = \{h, k, l\}$ and $gcd(h-k, k-l, \frac{n}{2}) = 1$ but gcd(h-k, k-l, n) = 2. It is clear that gcd(h-k, k-l) = d is even. It follows that h-k, k-l are even. So either all h, k, l are even or all of them are odd. Since $gcd(h-k, k-l, \frac{n}{2}) = 1$, the number $\frac{n}{2}$ must be odd. Consider two subsets $A_1 = \{0, 2, \dots, n-2\}$ and $A_2 = \{1, 3, \dots, n-1\}$ of \mathbb{Z}_n . Since $\frac{n}{2}$ is odd, $A_2 = A_1 + \frac{n}{2}$. Let

$$V_{11} = \{v_i^0, v_i^1 \mid i \in A_1\};$$

$$V_{22} = \{v_j^0, v_j^1 \mid j \in A_2\};$$

$$V_{12} = \{v_i^0, v_j^1 \mid i \in A_1, j \in A_2\};$$

$$V_{21} = \{v_j^0, v_i^1 \mid i \in A_1, j \in A_2\}.$$

It is clear that $V_{11} \cap V_{22} = \emptyset$ and $V_{11} \cup V_{22} = V(G)$; $V_{12} \cap V_{21} = \emptyset$ and $V(G) = V_{12} \cup V_{21}$.

First assume that all h, k, l are even. Let $G_{11} = G[V_{11}]$ and $G_{22} = G[V_{22}]$. Then it is not difficult to verify that ψ : $V_{11} \to V_{22}, v_j^i \mapsto v_{j+\frac{n}{2}}^i$ is an isomorphism between G_{11} and G_{22} . Furthermore, G_{11} and G_{22} are isomorphic to the cubic metacirculant graph $H = MC(2, \frac{n}{2}, -1, S'_0, S'_1)$ with $S'_0 = \emptyset$, $S'_1 = \{h', k', l'\}$, where $h' = \frac{h}{2}, k' = \frac{k}{2}, l' = \frac{l}{2}$. Since $gcd(h - k, k - l, \frac{n}{2}) = 1$, we have $gcd(h' - k', k' - l', \frac{n}{2}) = 1$. Therefore the graph H is connected. As in Case 1, we can show that H is a Cayley graph on a dihedral group of order $\frac{n}{2}$. By Theorem 2.2, H has a Hamilton cycle. This implies that G_{11} has a Hamilton path P with the endvertices v_i^0 and v_j^1 , where $j - i \in S_1$. Then $\psi(P)$ is a Hamilton path of G_{22} with the endvertices $\psi(v_i^0) = v_{i+\frac{n}{2}}^0$ and $\psi(v_j^1) = v_{j+\frac{n}{2}}^1$. Since in $G v_i^0$ is adjacent to $v_{i+\frac{n}{2}}^0$ and v_j^1 is adjacent to $v_{j+\frac{n}{2}}^1$, it is not difficult to construct a Hamilton cycle of G from P, $\psi(P)$ and the edges $v_i^0 v_{i+\frac{n}{2}}^0, v_j^1 v_{j+\frac{n}{2}}^1$.

Now assume that all h, k, l are odd. Let $G_{12} = G[V_{12}]$ and $G_{21} = G[V_{21}]$. By considering G_{12} and G_{21} with arguments similar to those above, we can show that the graph G has a Hamilton cycle. Lemma 3.5 has been proved completely. \Box

Next we consider which connected tetravalent metacirculant graph $G = MC(m, n, \alpha, S_0, \ldots, S_{\mu})$ with $S_0 \neq \emptyset$ and m = 1 or 2 has a Hamilton cycle.

Theorem 3.1. Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_\mu)$ be a connected tetravalent metacirculant graph with $S_0 \neq \emptyset$ and m = 1 or 2. Then G possesses a Hamilton cycle.

Proof. Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_\mu)$ be a connected tetravalent metacirculant graph with $S_0 \neq \emptyset$ and m = 1 or 2. By Theorem 2.1, only one of the following cases may happen:

- (1) m = 1, $S_0 = \{\pm s, \pm r\}$ and gcd(s, r, n) = 1;
- (2) m = 2, n is even, $S_0 = \{\pm s, \frac{n}{2}\}, S_1 = \{k\} \text{ and } \gcd\left(s, \frac{n}{2}\right) = 1;$
- (3) $m = 2, S_0 = \{\pm s\}, S_1 = \{k, l\}$ and gcd(s, k l, n) = 1;

(4)
$$m = 2$$
, n is even, $S_0 = \left\{\frac{n}{2}\right\}$, $S_1 = \{h, k, l\}$ and $gcd(h - k, k - l, \frac{n}{2}) = 1$.
Now Theorem 3.1 is implied from Lemmas 3.1, 3.3, 3.4, 3.5.

Finally we consider which connected tetravalent metacirculant graph $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_\mu)$ with $S_0 \neq \emptyset$ and m > 2 has a Hamilton cycle. For this case, we obtain the following result.

Theorem 3.2. Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_\mu)$ be a connected tetravalent metacirculant graph with $S_0 \neq \emptyset$, m > 2 and both m and n are odd. Then G possesses a Hamilton cycle.

Proof. Let $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_\mu)$ be a graph satisfying the hypothesis. Then $m \geq 3$. By Theorem 2.1, we must have $S_0 = \{\pm s\}, S_i = \{k\}$ for some $i \in \{1, 2, \ldots, \mu\}$ such that $gcd(i, m) = 1, S_j = \emptyset$ for any $i \neq j \in \{1, 2, \ldots, \mu\}$ and gcd(s, r, n) = 1 where

$$r = k(1 + \alpha^i + \alpha^{2i} + \dots + \alpha^{(m-1)i}).$$

Let $G' = MC(m, n, \alpha', S'_0, S'_1, \dots, S'_{\mu})$ be a metacirculant graph with

 $V(G') = \left\{ u_y^x \mid x \in \boldsymbol{Z}_m, \ y \in \boldsymbol{Z}_n \right\}$

and $\alpha' = \alpha^i$, $S'_0 = S_0$, $S'_1 = S_i$, $S'_2 = S'_3 = \cdots = S'_{\mu} = \emptyset$. We will prove that the graph G is isomorphic to the graph G'.

Consider the mapping $\varphi : V(G) \to V(G'), v_y^{xi} \mapsto u_y^x$. Since gcd(i, m) = 1, we can see that φ is a bijection. Further, let $v_y^{xi}v_h^{xi+r} \in E(G)$. Then we must have either r = i and $(h - y) \in \alpha^{xi}S_i$ or r = 0 and $(h - y) \in \alpha^{xi}S_0$.

If r = i and $(h-y) \in \alpha^{xi}S_i$, then $\varphi(v_y^{xi})\varphi(v_h^{xi+i}) = u_y^x u_h^{x+1}$ with $(h-y) \in \alpha^{xi}S_i$. This means $(h-y) \in (\alpha^i)^x S_i$. So $(h-y) \in (\alpha')^x S'_1$. Thus $u_y^x u_h^{x+1}$ is an edge of G'. If r = 0 and $(h-y) \in \alpha^{xi}S_0$, then we have

$$\varphi(v_y^{xi})\varphi(v_h^{xi+0}) = u_y^x u_h^x$$

with $(h-y) \in \alpha^{xi}S_0 = (\alpha')^x S'_0$. Thus $u_y^x u_h^x$ is also an edge of G'. Similarly, we can verify that if $u_y^x u_h^{x+r}$ is an edge of G' then $\varphi^{-1}(u_y^x)\varphi^{-1}(u_y^{x+r})$ is also an edge of G. Thus, φ is an isomorphism from G onto G'. So, without loss of generality, we may assume that the graph G is the graph $MC(m, n, \alpha, S_0, S_1, \ldots, S_\mu)$ with m > 2odd, n odd, $S_0 = \{\pm s\}, S_1 = \{k\}, S_2 = S_3 = \ldots = S_\mu = \emptyset$ and $\gcd(s, r, n) = 1$, where r is $k(1 + \alpha + \alpha^2 + \ldots + \alpha^{(m-1)})$.

Let ρ be the automorphism of G defined by $\rho(v_j^i) = v_{j+1}^i$. Then ρ is semiregular. If gcd(s, n) = d then the automorphism $\beta = \rho^d$ is also semiregular. The orbit of $\langle \beta \rangle$ containing the vertex v_j^i is

$$V_j^i = \{v_j^i, v_{j+d}^i, v_{j+2d}^i, \dots, v_{j+(\frac{n}{d}-1)d}^i\}.$$

On the other hand, the subsets

$$\left\{0, d, 2d, \dots, \left(\frac{n}{d}-1\right)d\right\}$$
 and $\left\{0, \alpha^{i}s, 2\alpha^{i}s, \dots, \left(\frac{n}{d}-1\right)\alpha^{i}s\right\}$

276

of \boldsymbol{Z}_n coincide with each other. So $G[V_j^i]$ is the cycle

$$v_j^i v_{j+\alpha^i s}^i v_{j+2\alpha^i s}^j \dots v_{j+(\frac{n}{d}-1)\alpha^i s}^i v_j^i$$

for any $i = 0, 1, \dots, (m-1)$ and $j = 0, 1, \dots, (d-1)$.

If the automorphism β has order 2, then $\rho^{2d}(v_j^i) = v_j^i$. This means $v_{j+2d}^i = v_j^i \Leftrightarrow 2d \equiv 0 \pmod{n}$. This is impossible because n is odd and d is a proper divisor of n.

Consider the quotient graph G/β . We have $V(G/\beta) = \{V_j^i \mid i \in \mathbb{Z}_m, j \in \mathbb{Z}_d\}$ and two vertices of G/β are adjacent in G/β if and only if there is an edge in Gjoining a vertex of one corresponding orbit to a vertex of the other orbit of $\langle \beta \rangle$. Since G is connected, the graph G/β is also connected. Moreover, since $G[V_j^i]$ is a cycle and G is tetravalent, G/β is a regular graph of degree 2. It follows that G/β is a cycle. We have $|V(G/\beta)| = md$ with m odd and d a divisor of n. So $|V(G/\beta)|$ is odd. By Theorem 2.4 we conclude that G has a Hamilton cycle. The proof of Theorem 3.2 is complete.

Acknowledgement

We would like to express our sincere thanks to the referees for many valuable comments and useful suggestions which help us to improve the paper.

References

- B. Alspach, The classification of hamiltonian generalized Petersen graphs, J. Combin. Theory Ser. B 34 (1983), 293-312.
- [2] B. Alspach, Lifting Hamilton cycles of quotient graphs, Discrete Mathematics 78 (1989), 25-36.
- [3] B. Alspach and T. D. Parsons, A construction for vertex-transitive graphs, Canad. J. Math. 34 (1982), 307-318.
- [4] B. Alspach and T. D. Parsons, On Hamilton cycles in metacirculant graphs, Ann. of Discrete Math. 15 (1982), 1-7.
- [5] B. Alspach and C. -Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combinatoria 28 (1989), 101-108.
- [6] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Boston 1971.
- [7] C.D. Godsil and G.F. Royle, Algebraic Graph Theory, Springer, New York 2001.
- [8] R. J. Gould, Updating the hamiltonian problem, a survey, J. Graph Theory 15 (1991), 121-157.
- [9] Ngo Dac Tan, Hamilton cycles in cubic (4, n)-metacirculant graphs, Acta Math. Vietnam. 17 (1992), 83-93.
- [10] Ngo Dac Tan, Connectedness of cubic metacirculant graphs, Acta Math. Vietnam. 18 (1993), 3-17.
- [11] Ngo Dac Tan, Hamilton cycles in cubic (m, n)-metacirculant graphs with m divisible by 4, Graphs and Combin. 10 (1994), 67-73.
- [12] Ngo Dac Tan, Non-Cayley tetravalent metacirculant graphs and their hamiltonicity, Journal of Graph Theory 23 (1996), 273-287.

- [13] Ngo Dac Tan and Tran Minh Tuoc, Connectedness of tetravalent metacirculant graphs with non-empty first symbol, in: Proceedings of the Conference "The Mathematical Foundation of Informatics" (October 25-28, 1999, Hanoi, Vietnam), World Scientific, Singapore (accepted).
- [14] H. Wielandt, Finite Permutation Groups, Academic Press, New York 1964.

INSTITUTE OF MATHEMATICS 18 HOANG QUOC VIET ROAD 10307 HANOI, VIETNAM *E-mail address*: ndtan@math.ac.vn

PEDAGOGIC UNIVERSITY HANOI 2 XUANHOA, MELINH, VINHPHUC, VIETNAM *E-mail address*: minhtuoc@hn.vnn.vn

278