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ON HAMILTON CYCLES IN CONNECTED
TETRAVALENT METACIRCULANT GRAPHS

WITH NON-EMPTY FIRST SYMBOL

NGO DAC TAN AND TRAN MINH TUOC

Abstract. In this paper, we show that every connected tetravalent metacir-
culant graph MC(m, n, α, S0, S1, . . . , Sµ) with S0 6= ∅ possesses a Hamilton
cycle if m = 1 or 2 or m > 2 and both m and n are odd.

1. Introduction

Thomassen (and others) conjectured that there are only finitely many con-
nected vertex-transitive nonhamiltonian graphs (see [8]). At present, only four
such graphs are known to exist: the Petersen graph, the Coxeter graph and the
two graphs obtained from them by replacing each vertex by a triangle. The
readers can see [7] for more information about the Petersen and Coxeter graphs.

Metacirculant graphs were introduced by Alspach and Parsons in [3] as an
interesting class of vertex-transitive graphs, in which there might be some new
connected nonhamiltonian graphs. A natural question raised here is to find hamil-
tonian metacirculant graphs.

Connectedness of cubic metacirculant graphs has been considered in [10]. The
obtained results there were used successfully to prove the existence of a Hamilton
cycle in many connected cubic metacirculant graphs [9, 11]. Motivated by this, we
apply here the results obtained in [13] to prove the existence of a Hamilton cycle
in some connected tetravalent metacirculant graphs. Namely, we will prove that
every connected tetravalent metacirculant graph G = MC(m,n, α, S0, S1, . . . , Sµ)
with S0 6= ∅ are hamiltonian whenever m = 1 or m = 2 (Theorem 3.1) or m > 2
and both m and n are odd (Theorem 3.2).

2. Preliminaries

All graphs considered in this paper are finite undirected graphs without loops
and multiple edges. Unless otherwise indicated, our graph-theoretic terminology
will follow [6], and our group-theoretic terminology will follow [14]. For a graph
G we denote by V (G), E(G) and Aut(G) the vertex-set, the edge-set and the
automorphism group of G, respectively. For a positive integer n, we will denote

Received March 20, 2002; in revised form December 12, 2002.
1991 Mathematics Subject Classification. Primary: 05C45; Secondary: 05C25, 05C38.
Key words and phrases. Generalized Petersen graph, metacirculant graph, Hamilton cycle.



268 NGO DAC TAN AND TRAN MINH TUOC

the ring of integers modulo n by ZZZn and the multiplicative group of units in ZZZn

by ZZZ∗n.
A graph G is called vertex-transitive if for any two vertices u, v ∈ V (G) there

exists an automorphism ϕ ∈ Aut(G) such that ϕ(u) = v. If a graph G is
both vertex-transitive and connected, then it is called connected vertex-transitive.
Vertex-transitive graphs possess a high symmetry. So it is probable that they have
many pleasant properties.

Let S be a subset of a group Γ such that 1 /∈ S = S−1, where S−1 = {s−1|s ∈
S}. Then the Cayley graph on Γ respect to S, denoted by Cay(Γ, S), is defined
to be the graph with vertex-set V (Cay(Γ, S)) = Γ and two elements x, y ∈ Γ are
adjacent in Cay(Γ, S) if and only if x−1y ∈ S.

Circulant graphs are Cayley graphs on cyclic groups. But for abelian groups
one usually use additive notation. So we must reformulate the definition for
circulant graphs as follows. Let n be a positive integer and S be a subset of ZZZn

such that 0 /∈ S = −S. Then we define the circulant graph G = C(n, S) to be the
graph with vertex-set V (G) = {vy | y ∈ ZZZn} and edge-set E(G) = {vyvh | y, h ∈
ZZZn; (h − y) ∈ S}, where subscripts are always reduced modulo n. The subset S
is called the symbol of C(n, S).

The following class of graphs called metacirculants was introduced by Alspach
and Parsons in [3]. This class of graphs is of interest because it properly contains
the class of circulant graphs. Therefore, many problems for vertex-transitive
graphs can be verified nontrivially first in this class.

Let m and n be two positive integers, α ∈ ZZZ∗n, µ = bn/2c and S0, S1, . . . , Sµ

be subsets of ZZZn, satisfying the following conditions:
1) 0 6∈ S0 = −S0;
2) αmSr = Sr for 0 ≤ r ≤ µ;
3) If m is even, then αµSµ = −Sµ.

Then we define the metacirculant graph G = MC(m,n, α, S0, S1, . . . , Sµ) to be
the graph with vertex-set

V (G) = {vi
j | i ∈ ZZZm; j ∈ ZZZn}

and edge-set

E(G) = {vi
jv

i+r
h | 0 ≤ r ≤ µ; i ∈ ZZZm; j, h ∈ ZZZn & (h− j) ∈ αiSr},

where superscripts and subscripts are always reduced modulo m and modulo n,
respectively. The subset Si is called (i + 1)-th symbol of G.

Let ρ and τ be two permutations on V (G) defined by ρ(vi
j) = vi

j+1 and τ(vi
j) =

vi+1
αj . Then ρ and τ are automorphisms of G and the subgroup 〈ρ, τ〉 of Aut(G)

generated by ρ and τ is a transitive subgroup of Aut(G). Thus, metacirculant
graphs are vertex-transitive.

Denote the degree of a vertex v of a graph G by deg(v). It is easy to see that for
any vertex v ∈ V (G) of a metacirculant graph G = MC(m,n, α, S0, S1, . . . , Sµ)
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deg(v) =

{
|S0|+ 2|S1|+ · · ·+ 2|Sµ| if m is odd,

|S0|+ 2|S1|+ · · ·+ 2|Sµ−1|+ |Sµ| if m is even.

A graph G is called cubic (resp. tetravalent) if for any vertex v ∈ V (G), deg(v) = 3
(resp. deg(v) = 4).

The following results have been proved in [12] and [13], respectively.

Lemma 2.1. [12] A metacirculant graph G = MC(m,n, α, S0, S1, . . . , Sµ) with
S0 6= ∅ is tetravalent if and only if one of the following cases holds:

(1) |S0| = 4 and S1 = . . . = Sµ = ∅;
(2) m and n are even, |S0| = 3, Sj = ∅ for any j ∈ {1, 2, . . . , µ − 1} and

|Sµ| = 1;
(3) m is even, |S0| = 2, Si = ∅ for any i ∈ {1, 2, . . . , µ− 1} and |Sµ| = 2;
(4) m > 2 is odd, |S0| = 2, |Si| = 1 for some i ∈ {1, 2, . . . , µ} and Sj = ∅ for

any i 6= j ∈ {1, 2, . . . , µ};
(5) m > 2 is even, |S0| = 2, |Si| = 1 for some i ∈ {1, 2, . . . , µ− 1} and Sj = ∅

for any i 6= j ∈ {1, 2, . . . , µ};
(6) m and n are even, |S0| = 1, Si = ∅ for any i ∈ {1, 2, . . . , µ−1} and |Sµ| = 3;
(7) m > 2, m and n are even, |S0| = 1, |Si| = 1 for some i ∈ {1, 2, . . . , µ− 1},

Sj = ∅ for any i 6= j ∈ {1, 2, . . . , µ− 1} and |Sµ| = 1.

Theorem 2.1. [13] Let G = MC(m, n, α, S0, S1, . . . , Sµ) be a tetravalent metacir-
culant graph with S0 6= ∅. Then G is connected if and only if one of the following
conditions holds:

(1) m = 1, S0 = {±s,±r} and gcd(s, r, n) = 1;
(2) m = 2, n is even, S0 =

{
± s,

n

2

}
, S1 = {k} and gcd

(
s,

n

2

)
= 1;

(3) m = 2, S0 = {±s}, S1 = {k, l} and gcd(s, k − l, n) = 1;
(4) m > 2 is odd, S0 = {±s}, Si = {k} for some i ∈ {1, 2, . . . , µ} such that

gcd(i,m) = 1, Sj = ∅ for any i 6= j ∈ {1, 2, . . . , µ} and gcd(s, r, n) = 1
where r = k(1 + αi + · · ·+ α(m−1)i);

(5) m > 2 is even, S0 = {±s}, Si = {k} for some i ∈ {1, 2, . . . , µ − 1} such
that gcd(i,m) = 1, Sj = ∅ for any i 6= j ∈ {1, 2, . . . , µ} and gcd(s, r, n) = 1
where r = k(1 + αi + · · ·+ α(m−1)i);

(6) m = 2, n is even, S0 =
{n

2

}
, S1 = {h, k, l} and gcd

(
h− k, k − l,

n

2
)

= 1;

(7) m > 2 is even, n is even, S0 =
{n

2

}
, Si = {s} where i is odd and gcd(i,m) =

1, Sj = ∅ for any i 6= j ∈ {1, 2, . . . , µ − 1}, Sµ = {r} and gcd
(
p,

n

2

)
= 1,

where p is
[
r − s(1 + αi + α2i + · · ·+ α(µ−1)i)

]
reduced modulo n;

(8) m > 2 is even but µ =
m

2
is odd, n is even, S0 =

{n

2

}
, Si = {s} where

i is even and gcd(i,m) = 2, Sj = ∅ for any i 6= j ∈ {1, 2, . . . , µ − 1},
Sµ = {r} and gcd

(
q,

n

2

)
= 1, where i = 2ti′ with t ≥ 1 and i′ odd and q is
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[
r(1 + αi′ + α2i′ + · · ·+ α(2t−1)i′)− s(1 + αi′ + α2i′ + · · ·+ α(µ−1)i′)

]
reduced

modulo n.

Let n > 1 be an integer. The dihedral group Dn is the group generated by two
elements α and β satisfying the relations αn = β2 = 1 and βαβ = α−1.

The following theorem has been proved in [5].

Theorem 2.2. [5] Every connected cubic Cayley graph on a dihedral group has
a Hamilton cycle.

Let n > 1 be an integer. Then the generalized Petersen graph GP (n, k),
1 ≤ k ≤ n− 1, is defined to be the graph with vertex-set

V (GP (n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}
and edge-set

E(GP (n, k)) = {uiui+1, uivi, vivi+k | 0 ≤ i ≤ n− 1},
where subscripts are always reduced modulo n.

The following result was proved by Alspach [1] for generalized Petersen graphs.

Theorem 2.3. [1] The generalized Petersen graph GP (n, k) is hamiltonian if
and only if it is not one of the following:

(1) GP (n, 2) ∼= GP (n, n − 2) ∼= GP
(
n,

(n− 1)
2

) ∼= GP
(
n,

(n + 1)
2

)
, where

n ≡ 5 (mod 6),
(2) GP (4m, 2m), m ≥ 2.

A permutation α is said to be semiregular if all cycles in the disjoint cycle
decomposition of α have the same length. If Aut(G) of a graph G contains a
semiregular element α, then the quotient graph G/α can be defined as follows:
the vertices of G/α are orbits of 〈α〉 and two such vertices are adjacent in G/α
if and only if there is an edge in G joining a vertex in one corresponding orbit to
a vertex in the other orbit.

The following result will be useful for this work.

Theorem 2.4. [2] Let G be a graph that admits a semiregular automorphism α
of order t ≥ 3 and let G1, G2, . . . , Gk be the subgraphs induced by G on the orbits
of 〈α〉. Let each Gi be connected and have degree 2. Then the graph G has a
Hamilton cycle if either of the following statements is true:

(1) Gr and Gs have the same symbol and there is a Hamilton path of G/α
joining them;

(2) There is a Hamilton cycle in G/α and k is odd.

3. Results

First we prove the following lemmas.

Lemma 3.1. Let G = MC(m, n, α, S0, S1) be a metacirculant graph with m = 1,
S0 = {±s,±r} and gcd(s, r, n) = 1. Then G possesses a Hamilton cycle.
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Proof. It is clear that G is a connected circulant graph. So G has a Hamilton
cycle [4].

Lemma 3.2. Let G = GP (n, k) be the generalized Petersen graph with gcd(n, k) =
1. Then there is a Hamilton path in G joining vi to vi+1.

Proof. Let V = {vi | i ∈ ZZZn} and U = {ui | i ∈ ZZZn}. Then G[V ] and G[U ]
are isomorphic to the circulant graphs C(n, {±k}) and C(n, {±1}), respectively.
So G[V ] is the cycle C0 = vivi+kvi+2k . . . vi+(n−1)kvi and G[U ] is the cycle C1 =
uiui+1ui+2 . . . ui+(n−1)ui. Denote

P10 = vivi+kvi+2k . . . v(i+1)−k,
P11 = vi+1v(i+1)+kv(i+1)+2k . . . vi−k,
P0 = v(i+1)−ku(i+1)−ku(i+2)−ku(i+3)−k . . . ui−kvi−k.
If k 6= 1, then vi+k 6= vi+1, v(i+1)−k 6= vi and P = P10 ∪ P0 ∪ P11 is a

Hamilton path in G with the endvertices vi and vi+1. If k = 1, then P =
vivi−1vi−2 . . . vi+2ui+2ui+3 . . . ui ui+1vi+1 is a Hamilton path in G with the end-
vertices vi and vi+1.

Lemma 3.3. Let G = MC(2, n, α, S0, S1) be a metacirculant graph with n even,
S0 =

{
± s,

n

2

}
, S1 = {k} and gcd

(
s,

n

2

)
= 1. Then G possesses a Hamilton

cycle.

Proof. By Lemma 2.1 and Theorem 2.1, it is clear that G is a connected tetrava-
lent metacirculant graph.

Let V (G) = {vi
j | i ∈ ZZZ2, j ∈ ZZZn} and G′ = MC(2, n, α, S′0, S

′
1) be a

metacirculant graph with vertex-set

V (G′) = {wi
j | i ∈ ZZZ2, j ∈ ZZZn}

and S′0 = S0, S′1 = {0}. It is easy to see that the mapping ϕ : V (G) → V (G′),
defined by ϕ(v0

j ) = w0
j ; ϕ(v1

j ) = w1
j−k, is an isomorphism between the graphs G

and G′. Therefore, without loss of generality we may assume that the graph G
has the second symbol S1 = {0}. Let H be a spanning subgraph of G with the
edge-set

E(H) = E(G) \ {v0
j v

0
j+n

2
, v1

j v
1
j+n

2
| j ∈ ZZZn}.

We consider separately two cases.

Case 1: gcd
(
s,

n

2
) = 1 and gcd(s, n) = 1.

Since gcd(s, n) = 1 and α ∈ ZZZ∗n, we can see that

{0, s, 2s, . . . , (n− 1)s} = {0, αs, 2αs, . . . , (n− 1)αs}
= {0, 1, 2, . . . , n− 1} = ZZZn.

Therefore,

E(H) = {v0
j v

0
j+s, v

1
j v

1
j+αs, v0

j v
1
j | j ∈ ZZZn}.
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Now we define the map ψ : V (H) → V (GP (n, α)) by ψ(v0
is) = ui; ψ(v1

αis) =
vαi, i ∈ {0, 1, 2, . . . , n− 1}. Then ψ is a bijection from V (H) onto V (GP (n, α)).
Furthermore, it is not difficult to see that ψ is an isomorphism between H and
GP (n, α).

Since n is even and α ∈ ZZZ∗n, the generalized Petersen graph GP (n, α) is
neither exclusion (1) nor exclusion (2) in Theorem 2.3. Therefore GP (n, α) has
a Hamilton cycle. But H is isomorphic to GP (n, α) and is a spanning subgraph
of G. So G also has a Hamilton cycle.

Case 2: gcd
(
s,

n

2

)
= 1 but gcd(s, n) = 2.

It is clear that n and s are even, α and
n

2
are odd. Then

{
0, s, 2s, . . . , (

n

2
− 1)s} = {0, αs, 2αs, . . . ,

(n

2
− 1

)
αs

}

= {0, 2, . . . , n− 2},
{n

2
,
n

2
+ s,

n

2
+ 2s, . . . ,

n

2
+

(n

2
− 1

)
s
}

=
{n

2
,
n

2
+ αs,

n

2
+ 2αs, . . . ,

n

2
+

(n

2
− 1

)
αs

}

= {1, 3, . . . , n− 1}.
Let

Veven =
{

v0
0, v

0
s , . . . , v0

(n
2
−1)s, v

1
0, v

1
αs, . . . , v1

(n
2
−1)αs

}
,

He = H
[
Veven

]

Vodd =
{

v0
n
2
, v0

n
2
+s, . . . , v0

n
2
+(n

2
−1)s, v

1
n
2
, v1

n
2
+αs, . . . , v1

n
2
+(n

2
−1)αs

}
,

H0 = H
[
Vodd

]
.

Then both He and H0 are isomorphic to the generalized Petersen graph GP
(n

2
, α′

)
,

where α′ is the integer satisfying 1 ≤ α′ ≤ n

2
and α′ ≡ α (mod

n

2
). So we may

identify them with the graph GP
(n

2
, α′

)
.

Since gcd(n, α) = 1, we have gcd
(n

2
, α′

)
= 1. By Lemma 3.2, there exist a

Hamilton path Pe in He joining v1
0 to v1

s and a Hamilton path P0 in H0 joining
v1

n
2

to v1
n
2
+s. Since α is odd and α

n

2
≡ n

2
(mod n), the vertex v1

0 is adjacent to

v1
n
2

and v1
s is adjacent to v1

n
2
+s. Therefore, we can construct a Hamilton cycle C

in G as follows: Starting C at v1
0, we go along the Hamilton path Pe in He to

the vertex v1
s . Further, by v1

sv
1
s+n

2
we go to the vertex v1

s+n
2
. Then from v1

s+n
2

we

go along the Hamilton path P0 in H0 to the vertex v1
n
2
. Finally, we return to v1

0

from v1
n
2

by the edge v1
0v

1
n
2
. Lemma 3.3 is proved.
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Lemma 3.4. Let G = MC(2, n, α, S0, S1) be a metacirculant graph with S0 =
{±s}, S1 = {h, k} and gcd(s, h− k, n) = 1. Then G possesses a Hamilton cycle.

Proof. By Lemma 2.1 and Theorem 2.1, it is clear that G is a connected tetrava-
lent metacirculant graph. Consider the automorphism ρ of G defined by ρ(vi

j) =
vi
j+1. We can see that ρ is semiregular. Let gcd(s, n) = d. Then the automor-

phism β = ρd of G is also semiregular. The orbit of 〈β〉 containing the vertex vi
j

is V i
j =

{
vi
j , v

i
j+d, . . . , vi

j+
(

n
d
−1

)
d

}
for i = 0, 1 and j = 0, 1, . . . , (d− 1).

On the other hand, the subsets
{
0, d, . . . ,

(n

d
− 1

)
d
}
,
{
0, s, . . . ,

(n

d
− 1

)
s
}

and
{
0, αs, . . . ,

(n

d
− 1

)
αs

}
of ZZZn coincide with each other. So G[V i

j ] is the cycle

vi
jv

i
j+αisv

i
j+2αis . . . vi

j+(n
d
−1)αisv

i
j

for any i ∈ ZZZ2 and j ∈ ZZZd.
Consider the quotient graph G/β. It has the vertex-set

V (G/β) =
{
V i

j | i ∈ ZZZ2; j ∈ ZZZd

}

and two vertices of G/β are adjacent in G/β if and only if there is an edge in G
joining a vertex in one corresponding orbit of < β > to a vertex in the other orbit.
Since G is a connected tetravalent graph MC(2, n, α, S0, S1) with S0 = {±s}, it
is not difficult to see that G/β is the cycle

V 0
0 V 1

h V 0
h−kV

1
(h−k)+hV 0

2(h−k) . . . V 0
(d−1)(h−k)V

1
(d−1)(h−k)+hV 0

0 .

In G, each vertex v0
xi
∈ V 0

x is adjacent to v1
xi+h ∈ V 1

x+h and each vertex v1
yi
∈ V 1

y

is adjacent to v0
yi−k ∈ V 0

y−k.

Let Hj = G[V 0
j(h−k) ∪ V 1

j(h−k)+h], j ∈ ZZZd. Then

V (Hj) =
{
v0
j+ts, v

1
j+h+tαs | t = 0, 1, . . .

n

d
− 1

}
,

E(Hj) =
{
v0
j+tsv

0
j+(t+1)s, v

1
j+h+tαsv

1
j+h+(t+1)αs, v

0
j+tsv

1
j+h+ts | t = 0, 1, . . .

n

d
− 1

}
.

Let α′ be the integer satisfying 1 ≤ α′ ≤ n

d
and α′ ≡ α (mod

n

d
). Then the

bijection

ϕ : V (Hj) → V
(
GP (

n

d
, α′)

)
:

v0
j+ts 7→ ut, v1

j+h+tαs 7→ vtα′ , t ∈ {0, 1, . . . , (
n

d
− 1)}

is an isomorphism between Hj and GP
(n

d
, α′

)
.

We rename the vertices of Hj , j = 0, 1, . . . , d− 1, as follows: v0
j+ts is renamed

with uj,t; v1
j+h+tαs is renamed with vj,tα′ for t = 0, 1, . . . ,

n

d
− 1. We can see that

GP
(n

d
, α′

)
is neither exclusion (1) nor exclusion (2) in Theorem 2.3. Therefore
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Hd−1 has a Hamilton cycle C1, containing the edge ud−1,0ud−1,1. Let vd−2,i be
adjacent in G to ud−1,0. Then it is not difficult to see that vd−2,i+1 is adjacent
to ud−1,1. On the other hand, since gcd

(n

d
, α′

)
= 1, by Lemma 3.2 there exists a

Hamilton path Pd−2 in Hd−2 joining vd−2,i and vd−2,i+1. Now replacing the edge
ud−1,0ud−1,1 in C1 by the path

{ud−1,0vd−2,i} ∪ Pd−2 ∪ {vd−2,i+1ud−1,1}

we can obtain a Hamilton cycle in G
[
V (Hd−2) ∪ V (Hd−1)

]
. This procedure can

be continued to obtain a Hamilton cycle in

G = G
[
V (H0) ∪ V (H1) ∪ . . . ∪ V (Hd−1)

]
.

Lemma 3.5. Let G = MC(2, n, α, S0, S1) be a metacirculant graph with n even,
S0 =

{n

2
}
, S1 = {h, k, l} and gcd

(
h − k, k − l,

n

2
)

= 1. Then G possesses a
Hamilton cycle.

Proof. Let G′ = MC(2, n,−1, S0, S1) where S0 =
{n

2
}
, S1 = {h, k, l} and the

vertex-set V (G′) =
{
ui

j | i ∈ ZZZ2, j ∈ ZZZn

}
. Let ϕ be a bijection from V (G)

onto V (G′), defined by ϕ(vi
j) = ui

j . Then it is not difficult to verify that ϕ is an
isomorphism between G and G′. Therefore, without loss of generality , we may
assume that the graph G is MC(2, n,−1, S0, S1) where n is even, S0 =

{n

2
}
,

S1 = {h, k, l} and gcd
(
h− k, k − l,

n

2
)

= 1. There are two cases to consider.

Case 1: gcd(h− k, k − l, n) = 1.
Let G′ be a spanning subgraph of G isomorphic to H = MC(2, n,−1, S′0, S

′
1)

with S′0 = ∅ and S′1 = S1 = {h, k, l}. It is clear that H is a cubic metacirculant
graph. Since gcd(h−k, k−l, n) = 1, by [10, Theorem 2], the graph H is connected.
By [3, Theorem 9], H is a Cayley graph on the group 〈ρ, τ〉, where ρ and τ are the
automorphisms of H with ρ(vi

j) = vi
j+1 and τ(vi

j) = vi+1
αj . It is not difficult to see

that ρ and τ satisfy the relations τρτ−1 = ρ−1 and ρn = τ2 = 1. Therefore 〈ρ, τ〉
is a dihedral group. Thus H is a connected cubic Cayley graph on the dihedral
group 〈ρ, τ〉. By Theorem 2.2, we conclude H has a Hamilton cycle. Since H is
isomorphic to the spanning subgraph G′ of G, G possesses a Hamilton cycle.

Case 2: gcd(h− k, k − l, n) = 2.
Let G be a tetravalent metacirculant graph MC(2, n,−1, S0, S1) with n even,

S0 =
{n

2
}
, S1 = {h, k, l} and gcd

(
h−k, k− l,

n

2
)

= 1 but gcd(h−k, k− l, n) = 2.

It is clear that gcd(h− k, k − l) = d is even. It follows that h− k, k − l are even.
So either all h, k, l are even or all of them are odd. Since gcd

(
h−k, k− l,

n

2
)

= 1,

the number
n

2
must be odd.
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Consider two subsets A1 = {0, 2, . . . , n− 2} and A2 = {1, 3, . . . , n− 1} of ZZZn.
Since

n

2
is odd, A2 = A1 +

n

2
. Let

V11 =
{
v0
i , v

1
i | i ∈ A1

}
;

V22 =
{
v0
j , v

1
j | j ∈ A2

}
;

V12 =
{
v0
i , v

1
j | i ∈ A1, j ∈ A2

}
;

V21 =
{
v0
j , v

1
i | i ∈ A1, j ∈ A2

}
.

It is clear that V11 ∩ V22 = ∅ and V11 ∪ V22 = V (G); V12 ∩ V21 = ∅ and V (G) =
V12 ∪ V21.

First assume that all h, k, l are even. Let G11 = G[V11] and G22 = G[V22]. Then
it is not difficult to verify that ψ : V11 → V22, vi

j 7→ vi
j+n

2
is an isomorphism

between G11 and G22. Furthermore, G11 and G22 are isomorphic to the cubic
metacirculant graph H = MC

(
2,

n

2
,−1, S′0, S

′
1

)
with S′0 = ∅, S′1 = {h′, k′, l′},

where h′ =
h

2
, k′ =

k

2
, l′ =

l

2
. Since gcd

(
h − k, k − l,

n

2
)

= 1, we have gcd
(
h′ −

k′, k′ − l′,
n

2
)

= 1. Therefore the graph H is connected. As in Case 1, we can

show that H is a Cayley graph on a dihedral group of order
n

2
. By Theorem 2.2,

H has a Hamilton cycle. This implies that G11 has a Hamilton path P with the
endvertices v0

i and v1
j , where j − i ∈ S1. Then ψ(P ) is a Hamilton path of G22

with the endvertices ψ(v0
i ) = v0

i+n
2

and ψ(v1
j ) = v1

j+n
2
. Since in G v0

i is adjacent

to v0
i+n

2
and v1

j is adjacent to v1
j+n

2
, it is not difficult to construct a Hamilton

cycle of G from P , ψ(P ) and the edges v0
i v

0
i+n

2
, v1

j v
1
j+n

2
.

Now assume that all h, k, l are odd. Let G12 = G[V12] and G21 = G[V21]. By
considering G12 and G21 with arguments similar to those above, we can show that
the graph G has a Hamilton cycle. Lemma 3.5 has been proved completely.

Next we consider which connected tetravalent metacirculant graph
G = MC(m,n, α, S0, . . . , Sµ) with S0 6= ∅ and m = 1 or 2 has a Hamilton
cycle.

Theorem 3.1. Let G = MC(m,n, α, S0, S1, . . . , Sµ) be a connected tetravalent
metacirculant graph with S0 6= ∅ and m = 1 or 2. Then G possesses a Hamilton
cycle.

Proof. Let G = MC(m,n, α, S0, S1, . . . , Sµ) be a connected tetravalent metacir-
culant graph with S0 6= ∅ and m = 1 or 2. By Theorem 2.1, only one of the
following cases may happen:

(1) m = 1, S0 = {±s,±r} and gcd(s, r, n) = 1;

(2) m = 2, n is even, S0 =
{± s,

n

2
}
, S1 = {k} and gcd

(
s,

n

2
)

= 1;

(3) m = 2, S0 = {±s}, S1 = {k, l} and gcd(s, k − l, n) = 1;
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(4) m = 2, n is even, S0 =
{n

2
}
, S1 = {h, k, l} and gcd

(
h− k, k − l,

n

2
)

= 1.

Now Theorem 3.1 is implied from Lemmas 3.1, 3.3, 3.4, 3.5.

Finally we consider which connected tetravalent metacirculant graph G =
MC(m, n, α, S0, S1, . . . , Sµ) with S0 6= ∅ and m > 2 has a Hamilton cycle.
For this case, we obtain the following result.

Theorem 3.2. Let G = MC(m,n, α, S0, S1, . . . , Sµ) be a connected tetravalent
metacirculant graph with S0 6= ∅, m > 2 and both m and n are odd. Then G
possesses a Hamilton cycle.

Proof. Let G = MC(m,n, α, S0, S1, . . . , Sµ) be a graph satisfying the hypothesis.
Then m ≥ 3. By Theorem 2.1, we must have S0 = {±s}, Si = {k} for some
i ∈ {1, 2, . . . , µ} such that gcd(i,m) = 1, Sj = ∅ for any i 6= j ∈ {1, 2, . . . , µ}
and gcd(s, r, n) = 1 where

r = k(1 + αi + α2i + · · ·+ α(m−1)i).

Let G′ = MC(m,n, α′, S′0, S
′
1, . . . , S′µ) be a metacirculant graph with

V (G′) =
{
ux

y | x ∈ ZZZm, y ∈ ZZZn

}

and α′ = αi, S′0 = S0, S′1 = Si, S′2 = S′3 = · · · = S′µ = ∅. We will prove that the
graph G is isomorphic to the graph G′.

Consider the mapping ϕ : V (G) → V (G′), vxi
y 7→ ux

y . Since gcd(i,m) = 1, we
can see that ϕ is a bijection. Further, let vxi

y vxi+r
h ∈ E(G). Then we must have

either r = i and (h− y) ∈ αxiSi or r = 0 and (h− y) ∈ αxiS0.
If r = i and (h−y) ∈ αxiSi, then ϕ(vxi

y )ϕ(vxi+i
h ) = ux

yux+1
h with (h−y) ∈ αxiSi.

This means (h − y) ∈ (αi)xSi. So (h − y) ∈ (α′)xS′1. Thus ux
yux+1

h is an edge of
G′. If r = 0 and (h− y) ∈ αxiS0, then we have

ϕ(vxi
y )ϕ(vxi+0

h ) = ux
yux

h

with (h−y) ∈ αxiS0 = (α′)xS′0. Thus ux
yux

h is also an edge of G′. Similarly, we can
verify that if ux

yux+r
h is an edge of G′ then ϕ−1(ux

y)ϕ−1(ux+r
y ) is also an edge of G.

Thus, ϕ is an isomorphism from G onto G′. So, without loss of generality, we may
assume that the graph G is the graph MC(m, n, α, S0, S1, . . . , Sµ) with m > 2
odd, n odd, S0 = {±s}, S1 = {k}, S2 = S3 = . . . = Sµ = ∅ and gcd(s, r, n) = 1,
where r is k(1 + α + α2 + . . . + α(m−1)).

Let ρ be the automorphism of G defined by ρ(vi
j) = vi

j+1. Then ρ is semiregular.
If gcd(s, n) = d then the automorphism β = ρd is also semiregular. The orbit of
〈β〉 containing the vertex vi

j is

V i
j =

{
vi
j , v

i
j+d, v

i
j+2d, . . . , vi

j+(n
d
−1)d

}
.

On the other hand, the subsets{
0, d, 2d, . . . , (

n

d
− 1)d

}
and

{
0, αis, 2αis, . . . , (

n

d
− 1) αis

}
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of ZZZn coincide with each other. So G[V i
j ] is the cycle

vi
jv

i
j+αisv

i
j+2αis . . . vi

j+(n
d
−1)αisv

i
j

for any i = 0, 1, . . . , (m− 1) and j = 0, 1, . . . , (d− 1).
If the automorphism β has order 2, then ρ2d(vi

j) = vi
j . This means vi

j+2d =
vi
j ⇔ 2d ≡ 0 (mod n). This is impossible because n is odd and d is a proper

divisor of n.
Consider the quotient graph G/β. We have V (G/β) =

{
V i

j | i ∈ ZZZm, j ∈ ZZZd

}
and two vertices of G/β are adjacent in G/β if and only if there is an edge in G
joining a vertex of one corresponding orbit to a vertex of the other orbit of 〈β〉.
Since G is connected, the graph G/β is also connected. Moreover, since G[V i

j ] is
a cycle and G is tetravalent, G/β is a regular graph of degree 2. It follows that
G/β is a cycle. We have |V (G/β)| = md with m odd and d a divisor of n. So
|V (G/β)| is odd. By Theorem 2.4 we conclude that G has a Hamilton cycle. The
proof of Theorem 3.2 is complete.
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