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GENERAL FORM OF LINEAR FUNCTIONALS
ON HARDY SPACES

BUI KHOI DAM

Dedicated to Prof. Nguyen Duy Tien on the oscasion of his 60th birthday

Abstract. In this note, we give a general form of linear functionals on mar-
tingale Hardy spaces HΦ, where the Young function Φ has finite power and
its conjugate function Ψ is of the form Ψ(x) = Ψ1(x

2) with Ψ1 being also a
Young function. Moreover, we discuss the relationship between the martingale
Hardy space HΦ and the spaces KΨ .

1. Introduction

Fefferman [4] has proved that the dual space of the Hardy space H1 is the
BMO-space (the space of functions of bounded mean oscillation, which in turn,
has been treated by John and Nirenberg [7]). The generalizations of the above
result were obtained by Garsia [5], who investigated the Hardy spaces Hp with
1 ≤ p < +∞. He has shown that the dual of Hp is the so called Kq space, where
1 ≤ p ≤ 2 and p−1 + q−1 = 1. Later on, Mogyorodi [9] and Bui K. D. [1], [2] have
generalized these results to the martingale Hardy space HΦ. In [1], it was showed
that the dual space of the martingale Hardy space HΦ is the space HΨ , where
Φ and Ψ are conjugate Young functions and both have finite power. However,
the condition saying that the function Ψ has finite power can be omitted if we
suppose that Φ(x) = Φ1(x2) with Φ1 is also Young function having finite power
(see [2]). For a martingale Hardy space with the continuous time, it was treated
by Dellacherie and Meyer [3], and Weise [12].

In this paper, we give a general form of a bounded, linear functional on the
Hardy space HΦ under the condition that Φ has finite power and the conjugate
function Ψ has the form Ψ(x) = Ψ1(x2) with Ψ1 being a Young function (need
not to have finite power). Moreover, we investigate the relationship between HΦ

and KΨ in some special cases.
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2. Preliminaries and notations

Let φ(t) be a nondecreasing and left-continuous function defined on the interval
[0,∞) such that φ(0) = 0 and lim

t→+∞φ(t) = +∞. For x ≥ 0 define

Φ(x) =
∫ x

0
φ(t)dt.

Then Φ is a continuous convex increasing function on R+. It is called a Young
function. The power p of Φ will be defined as follows:

p = sup
x>0

xφ(x)
Φ(x)

·

We say that Φ has finite power if p < ∞.
Now we define the generalized inverse function ψ of the function φ as follows:

ψ(u) = sup(s > 0 : φ(s) < u) if u > 0
and

ψ(0) = 0.
It is easy to see that ψ is also nondecreasing, left-continuous function and

lim
t→+∞ψ(t) = +∞. The indefinite integral of this function

Ψ(x) =

x∫

0

ψ(u)du,

is also a continuous convex increasing function on R+ (it is called the conjugate
Young function of the function Φ). A pair of such functions (Φ, Ψ) is called a
pair of Young’s functions and the function Ψ (resp. Φ) is said to be conjugate to
Φ (resp. Ψ). The following lemma shows that the function Φ has finite power if
and only if it satisfies the condition ∆2 (see [11]).

Lemma 2.1. For every Young function Φ, the following conditions are equiva-
lent:

(a) sup
t>0

(Φ(a.t)/Φ(t)) < ∞ for some a > 1,

(b) sup
t>0

(φ(a.t)/φ(t)) < ∞ for some a > 1,

(c) sup
t>0

(t.φ(t)/Φ(t)) < ∞.

We give two examples concerning Young’s functions.

Example 2.1. a) If we put Φα(t) = (1 + α)−1.t1+α for t ∈ R+ and for every
α ∈ [0,∞), then the functions Φα and Φ1/α form a pair of Young functions (note
that φα(t) = tα).

b) The pair

Φ1(t) = et − 1− t, Ψ1(v) = (1 + v) ln(1 + v)− v; t, v ∈ R+
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are conjugate Young functions.
Note that Φ has finite power, but the exponential function Φ1 does not.

Let (Ω, F, P ) be a probability space and let F0 ⊂ F1 ⊂ . . . be a sequence of

sub-σ-fields of F such that F∞ = σ
( ∞⋃

n=0
Fn

)
= F. Consider a random variable

X ∈ L1 = L1(Ω,F, P ) and the martingale Xn = E(X|Fn), n = 0, 1, . . . . For
the sake of commodity we suppose that X0 = 0 a.s.. Denote by d0 = 0, di =
Xi −Xi−1, i = 1, 2, . . . , the corresponding martingale differences.

Definition 2.1. The random variable X belongs to the family LΦ(Ω, F, P ) if
there exists a positive constant a such that

E[Φ(a−1|X|)] ≤ 1.

In this case we define

‖X‖Φ = inf{a > 0 : E[Φ(a−1|X|)] ≤ 1}.
Note that ‖.‖Φ is a norm on LΦ(Ω, F, P ) and the normed vector space LΦ(Ω, F, P )
is called an Orlicz space.

Definition 2.2. We say that the random variable X ∈ L1 belongs to the Hardy
space HΦ generated by the Young function Φ if the random variable

S = S(X) =

( ∞∑

i=1

d2
i

)1/2

belongs to LΦ, where LΦ is the Orlicz space generated by the Young function Φ.

It is easy to show that HΦ with the norm

‖X‖HΦ
= ‖S(X)‖Φ

is a Banach space.

Definition 2.3. For X ∈ L1 define the families ΓΦ
X and Γ̃Φ

X of the random
variables by setting

ΓΦ
X = {γ : γ ∈ LΦ, E(|X −Xn−1||Fn) ≤ E(γ|Fn) a.s. ∀n ≥ 1},

Γ̃Φ
X = {γ : γ ∈ LΦ, E(|X −Xn−1|2|Fn) ≤ E(γ2|Fn) a.s. ∀n ≥ 1}.

Let

‖X‖KΦ
= inf

γ∈ΓΦ
X

‖γ‖Φ

if ΓΦ
X is not empty and ‖X‖KΦ

= +∞ if ΓΦ
X = ∅.

Similarly, let

‖X‖K̃Φ
= inf

γ∈Γ̃Φ
X

‖γ‖Φ

if Γ̃Φ
X is not empty and ‖X‖K̃Φ

= +∞ if Γ̃Φ
X = ∅.
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We say that X ∈ KΦ (resp. X ∈ K̃Φ) with the norm ‖X‖KΦ
(resp. ‖X‖K̃Φ

) if

ΓΦ
X (resp. Γ̃Φ

X) is nonempty.

Remark 2.1. In the case Φ(x) = xp with 2 ≤ p ≤ +∞ the definition of the
spaces KΦ is equivalent to the definition of K̃Φ space.

The problem of finding a general form of lineal functional on Hardy space was
solved for such a cases, as both functions Φ and Ψ have finite power or Φ has
finite power and Φ(x) = Φ1(x2) with Φ1(x) being also Young function but Ψ does
not. These results can be found in [1], [2], [9].

Theorem 2.1. (See [1, p. 291]) Let Φ, Ψ be a pair of conjugate Young functions
and suppose that both of them have finite power. Then the dual space of the Hardy
space HΦ is the space KΨ.

Theorem 2.2. (See [2, Theorem 3.2., p. 59]) Let Φ, Ψ be a pair of conjugate
Young functions.

i) For every X ∈ HΦ and Y ∈ HΨ we have

|E(XnYn)| ≤ 2‖Xn‖HΦ
‖Yn‖HΨ

∀n ≥ 1.

Further, lim
n→+∞E(XnYn) exists, it is finite and

| lim
n→+∞E(XnYn)| ≤ 2‖X‖HΦ

‖Y ‖HΨ
.

ii) Suppose that Φ is of the form Φ(x) = Φ1(x2), where Φ1(x) itself is a Young
function having finite power p. If F is a bounded, linear functional on HΦ, i.e.,

|F (X)| ≤ B‖X‖HΦ

for some constant B > 0. Then there existx Y ∈ HΨ such that

‖Y ‖HΨ
≤
√

2(2
√

p + 1)B

and

lim
n→+∞E(XnYn) = F (X), ∀X ∈ HΦ.

Theorem 2.3. (See [9]) Suppose that Φ, Ψ is a pair of conjugate Young functions
such that Φ has finite power and Ψ is of the form Ψ(x) = Ψ2(x2) where Ψ2(x)
itself is also a Young function. Then the dual space of the Hardy space HΦ is the
space K̃Ψ .

3. Results

Now we present the main results.

Theorem 3.1. Let Φ, Ψ be a pair of conjugate Young functions such that
(i) Φ has finite power,
(ii) Ψ is of the form Ψ(x) = Ψ2(x2) where Ψ2 itself is also Young function and

Ψ has a continuous derivative.
Then the dual space of the Hardy space HΦ is the space KΨ.
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Proof. First of all, we show that the function Φ2, which is conjugate function of
the function Ψ2, has finite power. Note that Ψ2 has also continuous derivative
since Ψ has. Furthermore,

ψ2(t) =
ψ(
√

t)
2
√

t
, t > 0.

By Theorem 4.3 of [7, p. 27] this implies

tψ2(t)
Ψ2(t)

=
1
2
·
√

tψ(
√

t)
Ψ(
√

t)
> a, a > 0,

since Φ has finite power. Again, by the above equality and Theorem 4.3 of [7] we
deduce that Φ2 has finite power.

Let us denote the power of Φ (resp. of Φ2) by p (resp. p2). Suppose X ∈ HΦ,
Y ∈ KΨ. Denote Xn = E(X|Fn) and Yn = E(Y |Fn). Then there exists a
positive constant CΦ depending only on Φ such that the following Feffermann-
type inequality is true (see [8]):

|E(XnYn)| ≤ CΦ.‖Xn‖HΦ
‖Yn‖KΨ

.

Moreover, the limit lim
n→+∞E(XnYn) exists and satisfies the condition

| lim
n→+∞E(XnYn) | ≤ CΦ.‖X‖HΦ

‖Y ‖KΨ
.

So if Y ∈ KΨ is fixed and X runs on HΦ, then F (X) = lim
n→+∞E(XnYn) is a

continuous linear functional on HΦ with a norm not exceeding ‖Y ‖KΨ
.

Conversely, let F be a bounded linear functional on HΦ, i.e.,

|F (X)| ≤ B.‖X‖HΦ
, X ∈ HΦ, 0 < B < +∞.

By Theorem 2 of [9], there exists Y ∈ K̃Ψ with ‖Y ‖K̃Ψ
≤ 2.p.B such that

F (X) = lim
n→+∞E(XnYn)

for all X ∈ HΦ.
Now we show that Y also belongs to the KΨ-space. Let γ ∈ Γ̃Ψ

Y . Since
γ ∈ LΨ(R), there exists a real number a > 0 such that EΨ(a−1|γ|) ≤ 1. But
Ψ(x) = Ψ2(x2), thus EΨ2(a−2γ2) ≤ 1. So γ2 ∈ LΨ2(R) and ‖γ2‖Ψ2 ≤ ‖γ‖2

Ψ.
Consider the martingale {E(γ2|Fn)}n≥0 and denote

γ? = sup
n≥0

E(γ2|Fn).

Using the maximal inequality for martingales on the Orlicz space LΨ2 with
the note that the function Φ2, the conjugate function of the function Ψ2, has the
power p2 (see [10]), we have

‖γ?‖Ψ2 ≤ p2.‖γ2‖Ψ2 ≤ p2.‖γ‖2
Ψ.
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It is easy to see that

E(|Y − Yn−1||Fn) ≤ (E(|Y − Yn−1|2|Fn))1/2 ≤
≤ (E(γ2|Fn))1/2 ≤ (γ?)1/2 a.s., n ≥ 1.

Taking conditional expectation of both sides of the above inequality, we get

E(|Y − Yn−1||Fn) ≤ E(
√

γ?|Fn) a.s. n ≥ 1,

On the other hand, γ? ∈ LΨ2 ; thus
√

γ? ∈ LΨ(R) and

‖
√

γ?‖Ψ ≤
√
‖γ?‖Ψ2

≤ √
p2‖γ‖Ψ.

Consequently, Y ∈ KΨ and

‖Y ‖KΨ
≤

√
‖γ?‖Ψ ≤

√
p2‖γ‖Ψ.

Since this inequality holds for all γ ∈ Γ̃Ψ
Y , we have

‖Y ‖KΨ
≤ √

p2.‖Y ‖K̃Ψ
≤ 2p

√
p2B.

The proof of Theorem 3.1 is completed.

Theorem 3.2. Let Φ, Ψ be a pair of conjugate Young functions such that Φ has
finite power.

(i) If Φ is of the form Φ(x) = Φ1(x2), where Φ1 is also Young function, then
KΨ is a subspace of the space HΨ and

‖Y ‖HΨ
≤ AΨ.‖Y ‖KΨ

for all Y ∈ KΨ

where AΨ is a constant depending only on Ψ
(ii) If Ψ is of the form Ψ(x) = Ψ2(x2), where Ψ2 is also Young function and

Ψ has continuous derivative, then HΨ is a subspace of the space KΨ and

‖Y ‖KΨ
≤ BΨ.‖Y ‖HΨ

for all Y ∈ HΨ,

with BΨ being a constant depending only on Ψ.

Proof. (i) Let Y ∈ KΨ. The formula

FY (X) = lim
n→+∞E(XnYn), (X ∈ HΦ)

defines a bounded linear functional on HΦ and |FY (X)| ≤ CΦ.‖Y ‖KΨ
‖X‖HΦ

for
all X ∈ HΦ, where CΦ is a constant depending only on Φ. By Theorem 2.1, there
exists Z ∈ HΨ such that

FY (X) = lim
n→+∞E(XnZn)

for all X ∈ HΦ with Zn = E(Z|Fn) ∀n ≥ 1 and ‖Z‖HΨ
≤ √

2(2
√

2p + 1)‖FY ‖.
The above inequalities imply that Y = Z a.s.. So KΨ ⊂ HΨ and

‖Y ‖HΨ
≤
√

2CΦ(2
√

2p + 1)‖Y ‖KΨ
.

(ii) Let Y ∈ HΨ be fixed and let X ∈ HΦ. Denote

∆Xi = Xi −Xi−1, i = 1, 2, ... : ∆Yj = Xj −Xj−1, j = 1, 2, ...
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Using the Cauchy-Schwartz inequality, we have
( n∑

i=1

∆Xi∆Yi

)2
≤

[ n∑

i=1

(∆Xi)2
] [ n∑

i=1

(∆Yi)2
]
.

Combining the above inequality with Hölder’s inequality for conjugate Young
functions, we get

|E(XnYn)| =
∣∣∣

n∑

i=1

E(∆Xi∆Yi)
∣∣∣ =

∣∣∣E
( n∑

i=1

∆Xi∆Yi

)∣∣∣

≤ E
([ n∑

i=1

(∆Xi)2
]1/2[ n∑

j=1

(∆Yj)2
]1/2)

≤ 2
∥∥∥
[ n∑

i=1

(∆Xi)2
]1/2∥∥∥

Φ

∥∥∥
[ n∑

j=1

(∆Yj)2
]1/2∥∥∥

Ψ
.

Note that {E(XnYn)}n≥1 is a Cauchy sequence since for m ≥ n we have

|E(XmYm)− E(XnYn)| =
∣∣∣E

( m∑

i=n+1

∆Xi∆Yi

)∣∣∣ ≤

≤
∥∥∥
[ m∑

i=n+1

(∆Xi)2
]1/2∥∥∥

Φ

∥∥∥
[ m∑

j=n+1

(∆Yj)2
]1/2∥∥∥

Ψ
→ 0

as n → +∞. Therefore lim
n→+∞E(XnYn) exists and

∣∣ lim
n→+∞E(XnYn)

∣∣ ≤ 2‖X‖HΦ
‖Y ‖KΨ

.

Define the functional

FY (X) = lim
n→+∞E(XnYn), X ∈ HΦ.

It is easy to see that FY (.) is a linear and bounded functional on HΦ and ‖FY ‖ ≤
2‖Y ‖HΨ

.
Using Theorem 3.1 we deduce that there exists Z ∈ KΨ such that

FY (X) = lim
n→+∞E(XnZn), X ∈ HΦ.

Combining the above equalities, we get

lim
n→+∞E(XnYn) = lim

n→+∞E(XnZn) ∀X ∈ HΦ.

This implies Y = Z a.s.. So HΨ ⊂ KΨ.
Our proof is completed.

Remark 3.1. From the part (i) we have

‖Y ‖HΨ
= ‖S(Y )‖Ψ ≤ 2.AΨ‖Y ?‖Ψ

for all Y ∈ KΨ.
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