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LOCALLY BOUNDED HOLOMORPHIC FUNCTIONS
AND THE MIXED HARTOGS THEOREM

NGUYEN VAN KHUE AND NGUYEN DINH LAN

ABSTRACT. This paper deals with the conditions which allow the local bound-
edness of every holomorphic function taking value in Frechet space. These re-
sults are also applied to get different versions of the Hartogs theorem of mixed
type.

0. INTRODUCTION

Let E, F be Frechet spaces and D be an open subset of E. By H(D, F) we
denote the vector space of holomorphic functions defined on D and taking values
in F. As in [6], a function f € H(E, F) is called of uniformly bounded type if
there exists a neighbourhood U of 0 € E such that f(rU) is bounded for all r > 0.
The uniform boundedness of scalar holomorphic functions on a nuclear Frechet
space was investigated by several authors, in particular by Meise and Vogt [6].
Later L. M. Hai [2] has extended some results of Meise and Vogt to holomorphic
functions taking value in a Frechet space. Recently, the second named author of
this paper also proved that every f € H(E, F') is of uniformly bounded type if E

is a nuclear Frechet space with (Q2) and F a Frechet space having the property
(DN) [5]. Unlike the previous studies, in the present paper we consider the local
boundedness of Frechet-valued holomorphic functions defined on open subsets of
a Frechet space.

Let E, F and D be as above, we call a holomorphic function f: D — F
locally bounded if for every z € D there exists a neighbourhood U of z in D such
that f(U) is bounded. We set

Hip(D,F)={f € H(D,F) : f is locally bounded on D}.

We now describe briefly the content or our paper. In Section 2 we give sufficient
conditions for E and F' such that the relation

(Lb) : Hyy(D, F) = H(D, F)

holds for every open set D of E.

These results are then applied in Section 3 to study holomorphicity of sep-
arately holomorphic functions in the mixed case. Finally, in Section 4, some

Received March 11, 2002; in revised form August 15, 2003.



242 NGUYEN VAN KHUE AND NGUYEN DINH LAN

examples on the existence of non locally bounded holomorphic function with
values in Frechet spaces are given.

1. PRELIMINARIES

In the sequel, we shall use standard notations from the theory of locally convex
spaces as presented in the book of Pietsch [9] or of Schaefer [10]. All convex spaces
are assumed to be complex and Hausdorff.

1.1. Linear Topological Invariants. Let F be a Frechet space with funda-
mental system of semi-norms {||.||x}. For a subset B of E, we define the gen-
eralized semi-norm ||.||5; : £’ — [0,+o0c], where E’ is the dual space of E, by
|ull; = sup{|u(x)| : € B}. Write |.||; for B=U, ={x € E: ||z|, <1}
We say that E has the property
(Q) <= VpIqdVkIC>0: ;D <L,
(DN) 4= 3p¥ q.d> 03 5,C > 0: L5 < LI
(DN) <= 3p¥ 3 k,d,C >0 |l < Ol
(LBxo) <= Vpr >0,p 1 I3pVqIky>q,C>0Vz e E,q < k<kq,:
lzllg 7 < Cllallxllllp:.

The above properties were introduced and investigated by Vogt ([11], [12]).

1.2. Holomorphic functions. Let F, F' be locally convex space and D an open
set in E. A function f : D — F is called holomorphic if f is continuous and uo f
is Gateaux holomorphic for all u € F’. For more details concerning holomorphic
functions on locally convex spaces we refer the readers to the book of Dineen [1]
or of Noverraz [8].

2. LOCALLY BOUNDED HOLOMORPHIC FUNCTIONS

First we prove the following theorem.

Theorem 2.1. Let E and F be Frechet space with E € (Q) and F € (DN).
Assume that E is nuclear. Then (Lb) holds for every open subset D of E.

Proof. Let {||.||}o and {||.||}x be increasing sequences of semi-norms defining the
topology of E' and F respectively.

Given f € H(D, F) and 29 € D, we may assume that D is balanced and zp = 0.
(i) Let @ > 1 be such that

Upo={z2€E:|zlla<1}CD
and
M{(e,p) = sup{[|f(2)lp : [|2[la <1} < o0,
where p > 1 is chosen such that (DN) holds.



LOCALLY BOUNDED HOLOMORPHIC FUNCTIONS 243

Consider E/Ker||.||o equipped with the quotient topology and the canonical
map R : E — E/Ker|.||o. By [1, Proposition 2.23], w,f can be written in
the form w,f = g¢gR, where g : R(U,) — F' is a holomorphic function and
wp: F' — F), the canonical map from F' into the Banach space F,, associated

to the semi-norm ||.||,. Since w, is injective, g = w,f, where f is a function on
R(Uy) with values in F'. From the openness of R, it follows that f is holomorphic.
On the orther hand, since E € (), we have E/Ker||.|o € (22).

Thus replacing f by f' , without loss of generality we may assume that ||.||, is
a norm on FE.

Choose a balanced convex compact set K in E,(3 > « and C,d > 0 such that

A * d * *
(1) Q) T < Ol

(see [11] for the existence of this set).
By scaling K we may assume further that C' = 1.

Let w, : E — E, be the canonical map from F into the Banach space E,
associated to [|.|la and A = wq, ., where E(K) is the Banach space spanned

by K. Since E is nuclear, we may assume that F(K) and E, are Hilbert spaces.
Thus A can be written in the form

Ax = Z i@ y5) 24,
j=1

where A = ()j)jen € s, s is the space of rapidly decreasing sequences, A; > 0
Vj > 1, {yj}jen is a complete orthonormal system in E(K) and {z;}jen an
othonormal system in FE,.

Since A(y—]) = 2j € wa(Uy) V j > 1 we have Yi € U, V j > 1. It follows that

Aj Aj

m 7 0
> (%)yj €U,V m > 1, where fij = — and 6 > 0 are chosen such that
j=1 “Aj J

o0
PO
j=1
and the set {u € Ey: u= Z &zj with |§] < i YV j > 1} is contained in
wa(Uy). Take 0 < € < 1 such that if 1 = €fi, then
Ajij < i Vg 2> 1

We let xi € E. be the functional on E!, defined by z +— (z,zk)q, the scalar
product in F,.

Then
(2) Ixel=1 VE>1
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and
A"kl = sup [xxA(z)] = sup [Ae(z,ye)| < Ak
llzll<1 llzll<1
Next we put
(3) Pk = Wa(Xk)-
From (1), (2), (3) we deduce
*(1+d *(1+d) X X
||90k||ﬁ ) = |lw an'Hg < A e e 5T, vk > 1.

It follows that
lerls < ()T ¥ k> 1.

(ii) Let g = w, f. We put
M= {m=(m;) e NY: mj # 0 only for finitely many j}.

For each m = (ml,mg, .oymp,0,0,...) € M we define
. / / / p1z1+pzzz+---+pnzn)d
i 27r2 pmtl P
lptl=f1 |p2|=ii2  |pnl=fin

where

pm-i- _ p§n1+1pgn2+1 pmn—i-l

n )

dp :=dpidps . ..dpn.

Then

M(a,p) _ M(a,p)

||am||p S /’lm — Mm

)

where " = " iy .. g and ™ = pyt - pl Ym € M.
Since
m
5= (%) :
I yy€elUas CD VYm>1,
j=1 "7
we obtain

o(X0ie) :gA(f: 2y;) =wnf (D 2us)-
i>1 j=1"" i

On the other hand, by applying the Cauchy integral formula we get

1 \n / / wof (Fry1 + 292+ + 52 yn)
i = (5-) i
271 Am-}—l()\)m—f—l
|P1|_)‘1/J'1 |on |[=An pin,
B f(01y1 + Oaya + ... Onyn)
o wp( 2m / pm+1 d9>

01]=p1  |On|=pn

bm
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where 0; = i—J for all j > 1.
J
From the definition of b,, we have

N(q)
)\mﬂm

”bmHQS 9 Vm€M7VQZP7

where
N(a) = sup{|lf@)llg - &= &y and |g] < i}
j=1

Note that N(q) < oo since

{a:: x = iﬁjyi Hg] < le}
j=1

is compact in F(K).

- d
Since F' € (DN), for ¢ > p and d = 5 there exists k£ > g and C' > 0 such that

d d
g™ < ClL k1115,

1—7 1
here 0 < § < 1 is ch that e = v— — L >0 withy = ———.
winere 1S cnosen so at € Y 1—|—d W1 Y 2(1—|—d)

Again, by choosing k sufficiently large, without loss of generality we may as-
sume that C = 1.

‘We have
m - *1M0 5 m = g
> r™bmllg [T lesl5™ < D7 r™ibmllg [T (M) T
meM j=1 meM j=1
= N bmllg = D A [bmllg)” (A bl
meM meM
1y (1-)d AO—153)
< N(@)'N (k)5 M(a,p) 0 Y 1™ ||
m(y+izy4 d=0dy
meM m 1+d T 1td
- a-nd X2 2 rAS\m,
— N N®) T M LS (22)™
j=imy=0 ~ Hi

(see [6], p.155).

The convergence of the right hand side for r > 0 small enough follows from

the following observation. If A = (A;) € l1, A; > 0, Vj > 1 and sup A; < 1, then
jz1
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> A™ is convergent. To check this statement, we write
M

)\m = hm A" = lim mj

Jj= 1mJ—O
= lim H(l -3 =TI =2,
j=1 j=1

where M,, = {(m1,...,mpn,0,...,0,...): (my,...,my) € N} C M.

The convergent of the last product follows from the following estimate

—-1) = < - A < 00,
D Sh s D

where
c= ugfl(l — ;) > 0.

67

A€ o \@
Since A = (A;) is in s, we have (—J) is in I', and hence, for R = Y —. we obtain

Hj j=1 Hj
A€
R> - forj > 1.
Hj
s 1
This implies 0 < sup{ 5> 1} < —. Now we have
QR/L]‘ 2
1y a-yd =2 rASN -1
Zrmr\bm\|qH Il < V@ N T Mn ST (1 - )
j=1 J

Hence
=2 bn [Tteste)™
7=1
1
defines a locally bounded holomorphic function on ﬁUﬂ The function h is equal
1 m
to f on ——Ug, because h(z) = f(z) for x = ) &y; € UB N E(K) and E(K)
3R = 3R

is dense in F. O

Theorem 2.2. Let E, F be Frechet spaces, E € (Q) and F € (LBy,). Assume
that B is a Banach space and E a nuclear space. Then, (Lb) holds for every open
set D in B x FE.

Proof. Let D be an open set in B x E, f € H(D, F) and (xo,y0) € D. It suffices
to consider the case where D is balanced and (zg,y0) = 0. Without loss of
generality we may assume that B has an absolute basis (e;);e1 (not-necessarily
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countable), ||e;|| =1, V i € I, since B is a quotient of such a space. Choose two
sequences 1 > € \, 0 and a; " oo such that

My, = sup{ 1@, )l : 1ol < e ylly, <1} < o0 fork>1.

1
Put dj = —. Since lim €} =1,

€L k—oo
§% 5\
(4) lim 2" = lim (Tk)kzo for 0< 3 < 1.
k—oo €f k—oo \ €

By applying the hypothesis F' € (LBy) to the sequence {dy} T co we have

dpVqg>p Ik, Cy>0VweFIdg<k<kg:
(5) lwllg"® < Cyllwllellwllpe-

By letting § = il

in (4) we get
€p

(6) T ko ¥V k> kot el < e,

We split the rest of the proof into two steps.

Step 1. We will prove that (Lb) holds in the case of E = {0}. For this, it is
enough to check that f is bounded on {z : ||z|| < rep41}, where r > 0 chosen so
small that

reyt’

(7) ZTT:'L < oQ.

n>0

For ||z|| < €p+1 we write

flrz) = Zr” Z e; (x)...ef (x)Pfler,...,en).

n>0 11,82,00n €1

For each k € [q, k;] we put
F = {w €F : |wl|it < CquHkHwHS’“}-

Without loss of generality we may assume that Fj are disjoint. This implies that
the sets J;' given by

T =iz, in)  Puf(er,en,. . en) € Fi .
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are also disjoint. Then, from (5), (6) and (7) it follows that

Dot Y e @l @)IPafer,- s en)llg =

n>0  i1d,..in€l

_Z Z Z\e“ coled (@) Pufer,- - en)llq

n>0q<k<kq JJ
_n —ndy
<3SN Sen @)l e ()|cl+dke,;+dke;+dk x
n>0q<k<kq J}
1 dj
X 1P f (ekeins - eneinlly ™ X [ Paf(Epeins - epein)llp ™
1

_ n" . n
<Y Y e () (S ko))
el

n>0 q<k<kq

1 1 dg rnn
1+d 1+d 1+d
< E Cq ™ M, " M, ™ g <0 for ||z|| < €pt1-
q<k<k, n>0 ’

Step 2. We will prove the theorem for the case where E' is an arbitrary nuclear
Frechet space having (£2). We keep the notations of Theorem 2.1. Choose a = v,
and ¢ > 0 such that

M(a,p) = sup{||f (@, 2)llp : lo]] < &, | 2lla < 1} < +o0.

For a = ay, choose 3,d,C > 0, and a compact set K in F for which

1+d) * *
(8) LI < ClL gl
By scaling K we may assume that C' = 1 and hence
*(1+
(9) 15 < LI vs > d.

Choose an arbitrary sequence {s;} T oo and 0 < § < 1 such that
dk:%kzd, Vi > 1,

and
— Yk
1+ dk

€ = Vi — >0, Vk>1,

_
2(1 + Sk)

By applying the result proved in Case 1 to f|pn(BxE(x)) We can find € > 0
such that f is bounded on

{@.y) € BxB(EK): ol < & |yl < e}

As in the proof of Theorem 2.1, for each

where v, =

meM = {m = (m;) € NN . mj # 0 only for finitely many j}
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we set
(1 9(x, p1z1 + p2za + - + puzn)
am(z) = (%) / s dp
lp1|=i1 |p2|=f2  |pnl=iin
:w[i<i>n / f(mvelyl+92y2+“'+9nyn)d9
A\ 27 gm—+1 :

|61]=p1 |O2]=p2  [On]=pn

bm ()

It follows that

sup{ [lom (@)1l : 12l < ¢} < N(q)

N YmeMYq>np,

where

N(a) = sup{ |z )y ol < sy =Y &y and ] < 155}
j=1

Since F' € (LBs), there exists p > 1 such that

Vg3kq > q,Cq > 0,Vw € F,3q <k < ky:

lwllg ™ < Cyllwllx lwllg:-
Put
Frp={we F:||w|li*® < Cyllwllsllwlli}, ¢ <k <k

As in Case 1, without loss of generality we may assume that F}, are disjoint. This
implies that the sets Jﬁ%n given by

J,’%’n = {(’il,ig, e ,in;m) el"xM: Pn(bm)(eil,eiQ, . .,ein) S Fk}

where P, (by,) is defined by the Taylor expansion of b, at 0 € B

bm(l') = Z Pn(bm)(x)’
n=0

are also disjoint.

Then we have the estimates
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A= 7" b IIqHII%H*mJ

meM

<ZT Yo D IPabm)(ers - sen)llq X le (@) !HH%II*mJ

n>0141,i2,...,in €1

<Z7“ >0 > W 2"”’“><IIPn(bm)(el,---,en)queil(w)l---Iei‘n(fv)!

n>0q<k<kq J¥ .

S ZT SN (WP e enllg) X
g<k<kqs M n>0gk
X X Py (b )(617---€n)||1_7’“|€* (@)] .. ei, ()]

1—7g

Z Z Z Z ( ) <n' )%6*”% X /\mvkcqudk

g<k<kq M n>0jk

IN

1=k (1—p)dy,
1+d T+d * %
X | Pa(bm) (1, - -, en)l ’“HP (bm) (e, - ven)llp % lef (@)] .. lef, (2))]
n"\ vk
<2 2y ( o)™ ()
q<k<ky M n>0gk :
1 1—
X € Mk % )\m’kaH;: an(l—'yk) > ( N(k) ) 1+Z:
q Am,um

(I—vg)dy n. A=7g)dg

(YT (Mln)y TR (Y TS e ) o)

n! um
113’; 17 (1—yg)dy
= > N(q)*C; ™™ N(k)™% M(a,p) %
q<k<kq Dy
1\ % 1\ ik
m - my K
T ()
(I—vg)d 1 1) dg
1 T+dy, “n n"\ % /n" T+dy, n" T+dy,
< () S o R GO LR Eo) (Xww)
i17i27 7‘ I
_ -n n m m(%c—ﬂ) 1
= D> D) e ( )Hl‘H > A e ot o O
q<k<k,  n>0 M L 1+d T+dj,
j—
n" )\'Yk T+dy, \ m
_ —n n m
= > ey e (el S ()
q<k<kq n>0 M

€k

On the other hand, since A = ();) € s we have (i> € I! for k > 1. Hence
Ky 73
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Since ( J ) € 1, it follows that

2Ruj
1 M 1
g Ak P — — | | o < 00
M P A
=11
2Rpu;

1
fOI‘O<7"<§R.

Hence

A< > DkZe_”(s:)t”ﬁl)\% < oo

g<k<k,  n>0 j=1p_
2Rpj
for all ||z|| < t sufficiently small and all 0 < r < 3R
1
Thus f is bounded on {(x,y) el <t lyllg <r < ﬁ}’ a neighbourhood of
0eBxE. O

3. THE MIXED HARTOGS THEOREM

The well-known Hartogs theorem on the holomorphicity of separately holomor-
phic functions was extended to the infinite dimensional case by several authors.
In particular this theorem is true for classes of Frechet spaces and dual Frechet-
Schwartz spaces. However, the problem is more complicated in the mixed case.
In this section, first by using Theorem 2.1 we will prove the following result.

Theorem 3.1. Let E and F be Freschet-Schwarts spasces having () and (DN)
respectively. Assume that E is nuclear. Then every separately holomorphic func-
tion on D x F', an open set in E x F', is holomorphic.

Proof. Let f: D x F’" — C be a separately holomorphic function and wg € D x F’.
Without loss of generality we can assume that wy = 0. Consider the function
fp: D — H(F') defined by fp(z) = f(=,.).

From the Frechet-Schwartz property of F', we have the continuity of fp and
hence it is holomorphic. Since H(F') € (DN) [4] and E € (Q), by using Theorem
2.1 we see that fp is locally bounded on D. Thus without loss of generality we

may assume that fp is bounded on D.

Similarly, we can consider the function

fF/: F/_)HOO(D)a fF’(u) = f('au)a
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where H*°(D) is the Banach space of bounded holomorphic functions on D. It
is easy to see that fg is holomorphic. Indeed, noting that fg : F' — H*(D) is
Gateaux holomorphic we can write the Taylor expansion of fr at 0 € F’ as

frer(u) = Pufe(u

n>0

Let k > 1. Since fp is bounded on D and {u € F, : [Ju||} < r}, 7 > 0 is relatively
compact in Fj, 41, We have

Cr = sup{\f(x,u)] cx €D, [u]; < 7’} < 00.
It follows that
p{|Pufr (u)(@)] : @ € D, ||u|ri;§s}

fF’ *
_ { = IO g5 .o e D, ull < s
=
f(z, )\u .
_ { o [ Tl e e, Jul <
=

IN

YVn>0 Vr,s>0.

,r.n—i-l

Hence the series > P, f(u) is convergent in H°°(D) uniformly on every compact
n>0
subset of F}. Therefore fz| R F{ — H>(D) is holomorphic. Since F is Frechet-

Schwartz, fg is holomorphic [1, p.61]. This yields the local boundedness of f
on D x F'. On the other hand, since f is Gateaux holomorphic, by [1, Corollary
2.9] f is holomorphic. O

Theorem 3.2. Let E and F be Frechet-Schwartz spaces having (ﬁ) and (DN),
respectively. Assume that E is nuclear. Then every separately holomorphic func-
tion on an open set E x D in E x F', is holomorphic.

Here we recall that E € (ﬁ) if
Vp 3q VEVAIC>0: |2 < Ikl

Proof. Let f : E x D — C be a seperately holomorphic function and wg be a
point of £ x D. Without loss of generality we may assume that wg = 0.

Since separately holomorphic functions defined on open subsets of a product of
dual Frechet-Schwartz spaces (DFS-spaces) are holomorphic [1, Example 2.14],
we deduce that f|yr«xp is holomorphic for all finite domensional subspaces M of
E. This in particular implies that the function f : E — H(D) associated to f:

f(z)(u) = f(z,u), z€ E,u€D,

is Gateaux holomorphic. On the other hand, we observe the following facts:
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(i) flExpn r; is holomorphic for every k > 1, where D N F} is considered as an
open subset of F}.

(ii) Every compact subset of D is contained and compact in D N F}, for some
k > 1, since F is a DFS-space.

Combining these facts and noting that E is nuclear, we see that f is bounded
on every bounded subset of E. Therefore f is holomorphic.

According to a result of Vogt ([12]), there exists a Banach space B such that
F is a subspace of B®rs, where s is the space of rapidly decreasing sequences.

Consider the restriction map R : B'®,s' — F'. Since F is a Frechet-Schwartz
space, the map R is open.

We choose an open polydics
D, = {5 = (&) € s 1sup|¢jla; < 1} C s,

where a = (aj) € s, a; > 0 for all j > 1 such that conv(V ® D,) C R™Y(D),
where V' denotes the unit ball of B.

> 1
Take k > 1 sufficiently large such that ) =
i=1

< 2. Put ¢ = (25%a;) € s.
J

It is then easy to check that
D(‘Z/ = {ij ®fj€;f cz=(x;) CV,E=(§) € Dc}
j=1

is a neighbourhood of 0 € B'®,s" and contained in conv(V ® D,).

Consider the Frechet space Hy(DY') of holomorphic functions h on DY satisfy-
ing
IRl = sup{‘h(ij @@-e}f)‘ 2= (1) CV.E=(§) € K} < oo,
Jj=1

for all compact sets K in D., where

K= {ij ®&je;: (xj) C V(&) € K}
j>1
Observe that R(K) is bounded and contained in R(conv(V ® D.)) C D. Since
every bounded set in F’ is relatively compact, R(f( ) is relatively compact in D.
It follows that R induces a continuous linear map R : H(D) — Hy(DY). Consider
the fnction g = fo(idg x R) on DY . It is easy to see that § = Rf : E — Hy(DY)
and thus ¢ is holomorphic.

As in the proof of Theorem 3.1, it suffices to prove the following assertions.
Assertion 1.
Hy(DY) has (DN).

Assertion 2. § is of uniformly bounded type.
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Proof of Assertion 1.
a) According to the proof of Proposition 3.6 in [6] we can find a matrix Q =
g k) ¢k > 0, satisfying
(i)VnIdke>0 qjl-;E <gjkg5 VJj=>1
(ii)) Vn dk > n:

oo
supq]—’n<1 and Z%—’n<oo.

45,k =1 Dk
(iii) The map 6 : H(Dy) — A(M,QY) given by 6(f) = (am(f0),, ,, With
f( > Aje}‘)
(am(f)=<i)n / Ld}\) 0<r<<le>1
2mi Am+1 ’ 77 -

[Al=r1 [Anl=ra

is an isomorphism of H(D,) and A(M, QM), where

AL QM) = {€ = (€nhmert ¢ IIgll = sup{lémlai’ : m € M} < ooV k> 1}

and " = q¢'% ... ¢, 7 for m = (mq,...,mp,...,0,...) € M.
From (i) and (iii) we deduce that Hy(D.) € (DN).

It follows from the isomorphicity of § that for each k there exist Cy, > 0, I, > k,
such that

el = SUP{‘am(sof) ¢": ZCB,me M}

oo
<sw oS 06| 7 BEe M = lells, = el
j=1
where
N = {(ﬁj) ISR A e 1}~
and
o0
pr(8) = @(Zwi ®Ej6§>-
j=1
Hence |||.|||x is a continuous semi-norm on Hy (DY) for k > 1.

On the other hand, since for every n > 1 there exists k£ > n such that

o0
Zm<m and 0< suqu—’n<1,
= Gk =1 Gk
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for every ¢ € Hy(DY) we have

||soun§sup{21am R fcv,sezvn}

q m
<ol x > (22)

meM
q
= sl % HZ( )
j=1j>1 Dk

—wsowkxn( qﬂ")

where the last equality follows from (ii).

Since {Nj} is an exhaustion sequence of compact sets in D., {|||.||[x} is a
fundamental system of semi-norms on Hy (DY) and hence H (DY) is isomorphic
to a subspace of Ay (M, QM), where

Ay (M, QM) = {(Emz)memzcv C C:
sup{|&€mzlqp :m e M,z C V} < o0,Vk > 1}.
Morever, from (i) of (a) it follows that Ay (M, QM) € (DN); hence Hy(DY) €
(DN).
Proof of Assertion 2.

Since F € (ﬁ) we can find a compact balanced convex subset B of E for which
(QpVp3q¥d>03C>0: |} < OlLI5 15

On the other hand, since Hy(DY) € (DN), by [5] we see that § is of uniformly
bounded type. O

4. SOME EXAMPLES

We will establish in this section some examples on the existence of a Frechet
valued holomorphic function which is not locally bounded.

Example 4.1. Let X be a complex space having a non-bounded holomorphic
function o on X and B a Banach space of infinite dimension. Then there exists
a holomorphic function f: B — H(X) which is not locally bounded.

Proof. Without loss of generality we may assume that sup Reo(z) = +oo, z € C.
By [4] there exists a sequence {u,} C B* such that u,(x) — 0 for x € B but
0<d<|up||<1 Vn>1.

Then the formula

Zemzun "forxe B, ze€ X,
n>0
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defines a H(X)-valued holomorphic function on B. Note that is not locally
bounded at 0 € B. Otherwise, there exists ¢ > 0 such that

M, = sup{|f(x)(z) x| <€z € Kr} < 00

for all » > 0, where {K,} is an exhausion sequence of compact sets in X.
This yields

Chr = sup €™ [u, ()] : 2] < e, 2 € Kr}

= sup

= sup{

forallr>0,n>0.

Choose a sequence (z,) C B with ||z,| < € such that |u,(z,)| > de V n > 1.
Then for r > 0 sufficiently large we arrive at a contradiction:

— =

Puf(@)(2)] s all < €,z € K, |
L[ SO0
o / dz

An+1

:||x||§e,zEKT}§MT

[Al=1

00 = sup{]e”(z)un(mn)\” n>1z¢€ Kr}
< sup{]e”(z)un(x)]" x| <6z € KT} =Chyr <M, < 0.

O]

Example 4.2. Let o = (o) be an exponent sequence and B a Banach space of
infinite dimention. Then there exists a non-locally bounded holomorphic function
from B into A ().

Proof. Choose a sequence ji, /oo such that [, ] < [aj,,,] for £ > 1 and let
{un} be chosen as in Example 4.1. It is easy to see that the map

Aso(ajy) 2 (nz,) = (&) € Aso(@),

where
Ny, £ 7= Jk
;= Vk>1,
o {0 if j # i -
defines A (e, ) as a subspace of Ay ().
Note that

Aool(arj,) 22 W(z[ajk]>zl C H(C).

and the sequence {u,} converges weakly to 0 € B. Then it converges uniformly
on every compact set of B. Hence the series

> lun(@)]" Y

.
n>1 k>1 [ajk]'

n[ajk} Z[ajk]
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converges uniformly on compact sets in B x C. It implies that the formula

[y, =[]

F@)(2) = Y lun@)]" Y

-1
n>1 E>1 [ajk]

defines a holomorphic function f : B — A (a ). If f is locally bounded on B,
then there exists € > 0 such that for every r > 0 and n > 0

Z nloie] 2loy]
[ajk]'

E>1 ’

Cry = sup{yun<x>|“ Nzl < e,]2] < }

= sup{[P.f(2)(2)] s o]l < & || < 7} < M,
where

My = sup{ |f(@)(2)] : lJe]| < e, |2] < r}.
. 2 .
By taking r = e and putting for each m > 1
€

[ajm] [ajm] [aJm} T[ajm]

A, =
[aj,,]!

oy, (Tlaj,.])

we have
] [aj,.] [0 ]9l ]

[aj,.] 15lm] elsm

sup{Am tm > 1} > sup{é[ajm]e[ajm pim > 1} = 0.

n[ajk]z[ajk}
On the other hand, for g,(z) = Y}, ————— we have

|
1 . gn(A2)
omi / Al=1 A[ajmmﬁ'

=1 [ag]!
< sup{\gn(u)\ ul < 7“}, Y|z <.

2| < r}.

nlim] 5]

), ]!

= |Pa0m(2)| =

In particular, we obtain

[a]m] [ajm} fr[ajm}
oyt

Z [Oéjm][ajk]z[ajk}

k>1 [O‘jk]!

Thus we have

oo:sup{Am:mZ 1}

Z [a]m] [a]'k]z[ajk]

1 [ajk]!

;2] <T}

We arrive at a contradiction and the proof is complete. ]

< sup{w[%](xn[w

<supCly, 1» < M, < oc.

O‘]"m]
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