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LOCALLY BOUNDED HOLOMORPHIC FUNCTIONS
AND THE MIXED HARTOGS THEOREM

NGUYEN VAN KHUE AND NGUYEN DINH LAN

Abstract. This paper deals with the conditions which allow the local bound-
edness of every holomorphic function taking value in Frechet space. These re-
sults are also applied to get different versions of the Hartogs theorem of mixed
type.

0. Introduction

Let E, F be Frechet spaces and D be an open subset of E. By H(D, F ) we
denote the vector space of holomorphic functions defined on D and taking values
in F . As in [6], a function f ∈ H(E, F ) is called of uniformly bounded type if
there exists a neighbourhood U of 0 ∈ E such that f(rU) is bounded for all r > 0.
The uniform boundedness of scalar holomorphic functions on a nuclear Frechet
space was investigated by several authors, in particular by Meise and Vogt [6].
Later L. M. Hai [2] has extended some results of Meise and Vogt to holomorphic
functions taking value in a Frechet space. Recently, the second named author of
this paper also proved that every f ∈ H(E, F ) is of uniformly bounded type if E

is a nuclear Frechet space with (Ω) and F a Frechet space having the property
(DN) [5]. Unlike the previous studies, in the present paper we consider the local
boundedness of Frechet-valued holomorphic functions defined on open subsets of
a Frechet space.

Let E, F and D be as above, we call a holomorphic function f : D −→ F
locally bounded if for every z ∈ D there exists a neighbourhood U of z in D such
that f(U) is bounded. We set

HLb(D, F ) = {f ∈ H(D, F ) : f is locally bounded on D}.
We now describe briefly the content or our paper. In Section 2 we give sufficient
conditions for E and F such that the relation

(Lb) : HLb(D, F ) = H(D, F )

holds for every open set D of E.
These results are then applied in Section 3 to study holomorphicity of sep-

arately holomorphic functions in the mixed case. Finally, in Section 4, some
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examples on the existence of non locally bounded holomorphic function with
values in Frechet spaces are given.

1. Preliminaries

In the sequel, we shall use standard notations from the theory of locally convex
spaces as presented in the book of Pietsch [9] or of Schaefer [10]. All convex spaces
are assumed to be complex and Hausdorff.

1.1. Linear Topological Invariants. Let E be a Frechet space with funda-
mental system of semi-norms {‖.‖k}. For a subset B of E, we define the gen-
eralized semi-norm ‖.‖∗B : E′ → [0,+∞], where E′ is the dual space of E, by
‖u‖∗B = sup{|u(x)| : x ∈ B}. Write ‖.‖∗k for B = Uk = {x ∈ E : ‖x‖k ≤ 1}.

We say that E has the property

(Ω̃) ⇐⇒ ∀ p∃ q, d ∀ k∃ C > 0 : ‖.‖∗(1+d)
q ≤ C‖.‖∗k‖.‖∗dp ,

(DN) ⇐⇒ ∃ p ∀ q, d > 0∃ k, C > 0 : ‖.‖1+d
q ≤ C‖.‖k‖.‖d

p,

(DN) ⇐⇒ ∃ p ∀ q∃ k, d, C > 0 : ‖.‖1+d
q ≤ C‖.‖k‖.‖d

p,

(LB∞) ⇐⇒ ∀ ρk > 0, ρk ↑ ∃ p ∀ q∃ kq ≥ q, C > 0 ∀x ∈ E,∃ q ≤ k ≤ kq :

‖x‖1+ρk
q ≤ C‖x‖k‖x‖ρk

p .

The above properties were introduced and investigated by Vogt ([11], [12]).

1.2. Holomorphic functions. Let E, F be locally convex space and D an open
set in E. A function f : D → F is called holomorphic if f is continuous and u ◦ f
is Gateaux holomorphic for all u ∈ F ′. For more details concerning holomorphic
functions on locally convex spaces we refer the readers to the book of Dineen [1]
or of Noverraz [8].

2. Locally bounded holomorphic functions

First we prove the following theorem.

Theorem 2.1. Let E and F be Frechet space with E ∈ (Ω̃) and F ∈ (DN).
Assume that E is nuclear. Then (Lb) holds for every open subset D of E.

Proof. Let {‖.‖}α and {‖.‖}k be increasing sequences of semi-norms defining the
topology of E and F respectively.

Given f ∈ H(D, F ) and z0 ∈ D, we may assume that D is balanced and z0 = 0.
(i) Let α ≥ 1 be such that

Uα = {z ∈ E : ‖z‖α < 1} ⊂ D

and

M(α, p) = sup{‖f(z)‖p : ‖z‖α < 1} < ∞,

where p ≥ 1 is chosen such that (DN) holds.
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Consider E/Ker‖.‖α equipped with the quotient topology and the canonical
map R : E −→ E/Ker‖.‖α. By [1, Proposition 2.23], ωpf can be written in
the form ωpf = gR, where g : R(Uα) −→ F is a holomorphic function and
ωp : F −→ Fp the canonical map from F into the Banach space Fp associated
to the semi-norm ‖.‖p. Since ωp is injective, g = ωpf̃ , where f̃ is a function on
R(Uα) with values in F . From the openness ofR, it follows that f̃ is holomorphic.
On the orther hand, since E ∈ (Ω), we have E/Ker‖.‖α ∈ (Ω).

Thus replacing f by f̃ , without loss of generality we may assume that ‖.‖α is
a norm on E.

Choose a balanced convex compact set K in E, β ≥ α and C, d > 0 such that

(Ω̃K) : ‖.‖∗(1+d)
β ≤ C‖.‖∗K‖.‖∗dα(1)

(see [11] for the existence of this set).
By scaling K we may assume further that C = 1.
Let ωα : E → Eα be the canonical map from E into the Banach space Eα

associated to ‖.‖α and A = ωα|E(K)
, where E(K) is the Banach space spanned

by K. Since E is nuclear, we may assume that E(K) and Eα are Hilbert spaces.
Thus A can be written in the form

Ax =
∞∑

j=1

λj〈x,yj〉zj ,

where λ = (λj)j∈N ∈ s, s is the space of rapidly decreasing sequences, λj > 0
∀ j ≥ 1, {yj}j∈N is a complete orthonormal system in E(K) and {zj}j∈N an
othonormal system in Eα.

Since A
( yj

λj

)
= zj ∈ ωα(Uα) ∀ j ≥ 1 we have

yj

λj
∈ Uα ∀ j ≥ 1. It follows that

m∑
j=1

( µ̃j

λj

)
yj ∈ Uα ∀ m ≥ 1, where µ̃j =

δ

j
and δ > 0 are chosen such that

∞∑

j=1

µ̃2
j ≤ 1

and the set
{

u ∈ Eα : u =
∞∑

j=1
ξjzj with |ξj | ≤ µ̃j ∀ j ≥ 1

}
is contained in

ωα(Uα). Take 0 < ε < 1 such that if µ = εµ̃, then

λjµj ≤ µ̃j ∀ j ≥ 1.

We let χk ∈ E′
α be the functional on E′

α defined by z 7→ 〈z, zk〉α, the scalar
product in Eα.
Then

‖χk‖ = 1 ∀ k ≥ 1(2)
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and

‖A∗χk‖∗K = sup
‖x‖≤1

|χkA(x)| = sup
‖x‖≤1

|λk〈x, yk〉| ≤ λk.

Next we put

ϕk = ω∗α(χk).(3)

From (1), (2), (3) we deduce

‖ϕk‖∗(1+d)
β = ‖ω∗αχk‖∗(1+d)

β ≤ ‖A∗χk‖∗K‖χk‖∗(1+d)
α , ∀k ≥ 1.

It follows that

‖ϕk‖∗β ≤ (λk)
1

1+d ∀ k ≥ 1.

(ii) Let g = ωpf . We put

M = {m = (mj) ∈ NN : mj 6= 0 only for finitely many j}.
For each m = (m1,m2, . . . , mn, 0, 0, . . . ) ∈ M we define

am =
( 1

2πi

)n
∫

|ρ1|=µ̃1

∫

|ρ2|=µ̃2

· · ·
∫

|ρn|=µ̃n

g(ρ1z1 + ρ2z2 + · · ·+ ρnzn)
ρm+1

dρ,

where

ρm+1 := ρm1+1
1 ρm2+1

2 . . . ρmn+1
n ,

dρ := dρ1dρ2 . . . dρn.

Then

‖am‖p ≤ M(α, p)
µ̃m

≤ M(α, p)
µm

,

where µ̃m := µ̃m1
1 µ̃m2

2 . . . µ̃mn
n and µm = µm1

1 · · ·µmn
n , ∀m ∈ M.

Since
m∑

j=1

(ρj

λj

)
yj ∈ Uα ⊂ D ∀ m ≥ 1,

we obtain

g
(∑

j≥1

ρjzj

)
= gA

( ∞∑

j=1

ρj

λj
yj

)
= ωpf

(∑

j

ρj

λj
yj

)
.

On the other hand, by applying the Cauchy integral formula we get

am =
( 1

2πi

)n
∫

|ρ1|=λ1µ1

· · ·
∫

|ρn|=λnµn

ωρf( ρ1

λ1
y1 + ρ2

λ2
y2 + · · ·+ ρn

λn
yn)

λm+1( ρ
λ)m+1

dρ

= ωp

( 1
λm

( 1
2πi

)n
∫

|θ1|=µ1

· · ·
∫

|θn|=µn

f(θ1y1 + θ2y2 + . . . θnyn)
θm+1

dθ

︸ ︷︷ ︸
bm

)
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where θj =
ρj

λj
for all j ≥ 1.

From the definition of bm we have

‖bm‖q ≤ N(q)
λmµm

, ∀ m ∈ M, ∀ q ≥ p,

where

N(q) = sup
{
‖f(x)‖q : x =

∞∑

j=1

ξjyj and |ξj | ≤ µ̃j

}

Note that N(q) < ∞ since

{
x : x =

∞∑

j=1

ξjyi : |ξj | ≤ µ̃j

}

is compact in E(K).

Since F ∈ (DN), for q ≥ p and d̄ =
d

δ
there exists k ≥ q and C > 0 such that

‖.‖1+d̄
q ≤ C‖.‖k‖.‖d̄

p,

where 0 < δ < 1 is chosen so that ε = γ − 1− γ

1 + d̄
> 0 with γ =

1
2(1 + d)

·
Again, by choosing k sufficiently large, without loss of generality we may as-

sume that C = 1.
We have

∑

m∈M

rm‖bm‖q

∞∏

j=1

‖ϕj‖∗mj

β ≤
∑

m∈M

rm‖bm‖q

∞∏

j=1

(λj)
mj
1+d

=
∑

m∈M

rm(λ)2γm‖bm‖q =
∑

m∈M

rm(λm‖bm‖q)γ(λ)γm‖bm‖1−γ
q

≤ N(q)γN(k)
1−γ
1+d̄ M(α, p)

(1−γ)d̄

1+d̄

∑

m∈M

rm
[ λ

m(γ− 1−γ
1+d̄

)

µ
m(γ+ 1−γ

1+d̄
+

(1−γ)d̄

1+d̄
)

]

= N(q)γN(k)
1−γ
1+d̄ M(α, p)

(1−γ)d̄

1+d̄

∞∏

j=1

∞∑

mj=0

(rλε
j

µj

)mj

= N(q)γN(k)
1−γ
1+d̄ M(α, p)

(1−γ)d̄

1+d̄

∞∏

j=1

(
1 − rλε

j

µj

)−1

(see [6], p. 155).
The convergence of the right hand side for r > 0 small enough follows from

the following observation. If λ = (λj) ∈ l1, λj ≥ 0, ∀j ≥ 1 and sup
j≥1

λj < 1, then
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∑
M

λm is convergent. To check this statement, we write

∑

M

λm = lim
n→∞

∑

Mn

λm = lim
n→∞

n∏

j=1

∞∑

mj=0

(λj)mj

= lim
n→∞

n∏

j=1

(1− λj)−1 =
∞∏

j=1

(1− λj)−1,

where Mn = {(m1, . . . , mn, 0, . . . , 0, . . . ) : (m1, . . . , mn) ∈ Nm} ⊂ M.
The convergent of the last product follows from the following estimate

0 <
∞∑

j=1

( 1
1− λj

− 1
)

=
∞∑

j=1

λj

1− λj
<

1
c

∞∑

j=1

λj < ∞,

where

c = inf
j≥1

(1− λj) > 0.

Since λ = (λj) is in s, we have
(λε

j

µj

)
is in l1, and hence, for R =

∞∑
j=1

λα
j

µj
we obtain

R ≥ λε
j

µj
for j ≥ 1.

This implies 0 < sup
{ λε

j

2Rµj
: j ≥ 1

}
<

1
2
. Now we have

∑

M

rm‖bm‖q

∞∏

j=1

‖ϕj‖∗mj

β ≤ N(q)γN(k)
1−γ
1+d̄ M(α, p)

(1−γ)d̄

1+d̄

∞∏

j=1

(
1 − rλε

j

µj

)−1

Hence

h(x) =
∑

M

bm

∞∏

j=1

(ϕj(x))mj

defines a locally bounded holomorphic function on
1

3R
Uβ. The function h is equal

to f on
1

3R
Uβ, because h(x) = f(x) for x =

m∑
j=1

ξjyj ∈ 1
3R

Uβ ∩ E(K) and E(K)

is dense in E.

Theorem 2.2. Let E, F be Frechet spaces, E ∈ (Ω̃) and F ∈ (LB∞). Assume
that B is a Banach space and E a nuclear space. Then, (Lb) holds for every open
set D in B ×E.

Proof. Let D be an open set in B ×E, f ∈ H(D, F ) and (x0, y0) ∈ D. It suffices
to consider the case where D is balanced and (x0, y0) = 0. Without loss of
generality we may assume that B has an absolute basis (ei)i∈I (not-necessarily
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countable), ‖ei‖ = 1, ∀ i ∈ I, since B is a quotient of such a space. Choose two
sequences 1 ≥ εk ↘ 0 and αk ↗∞ such that

Mk = sup
{
‖f(x, y)‖k : ‖x‖ < εk, ‖y‖αk

< 1
}

< ∞ for k ≥ 1.

Put dk =
1
εk

. Since lim
k→∞

εεk
k = 1,

lim
k→∞

δd̄k

εk
= lim

k→∞

( δ

εεk
k

) 1
εk = 0 for 0 < δ < 1.(4)

By applying the hypothesis F ∈ (LB∞) to the sequence {dk} ↑ ∞ we have

∃ p ∀ q ≥ p ∃kq, Cq > 0 ∀ ω ∈ F ∃q ≤ k ≤ kq :

‖ω‖1+dk
q ≤ Cq‖ω‖k‖ω‖dk

p .(5)

By letting δ =
εp+1

εp
in (4) we get

∃ k0 ∀ k ≥ k0 : ε1+dk
p+1 ≤ εkε

dk
p .(6)

We split the rest of the proof into two steps.
Step 1. We will prove that (Lb) holds in the case of E = {0}. For this, it is
enough to check that f is bounded on {x : ‖x‖ < rεp+1}, where r > 0 chosen so
small that

∑

n≥0

rnnn

n!
< ∞.(7)

For ‖x‖ < εp+1 we write

f(rx) =
∑

n≥0

rn
∑

i1,i2,...,in∈I

e∗i1(x) . . . e∗in(x)Pnf(e1, . . . , en).

For each k ∈ [q, kq] we put

Fk =
{

ω ∈ F : ‖ω‖1+dk
q ≤ Cq‖ω‖k‖ω‖dk

p

}
.

Without loss of generality we may assume that Fk are disjoint. This implies that
the sets Jn

k given by

Jn
k =

{
(i1, i2, . . . , in) : Pnf(e1, e2, . . . , en) ∈ Fk

}
.
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are also disjoint. Then, from (5), (6) and (7) it follows that
∑

n≥0

rn
∑

i1,i2,...,in∈I

|e∗i1(x)| . . . |e∗in(x)|‖Pnf(e1, . . . , en)‖q =

=
∑

n≥0

∑

q<k<kq

∑

Jn
k

|e∗i1(x)| . . . |e∗in(x)|‖Pnf(e1, . . . , en)‖q

≤
∑

n≥0

∑

q<k<kq

∑

Jn
k

|e∗i1(x)| . . . |e∗in(x)| C
1

1+dk
q ε

−n
1+dk
k ε

−ndk
1+dk
p ×

× ‖Pnf(εkei1 , . . . , εkein‖
1

1+dk
k × ‖Pnf(εpei1 , . . . , εpein)‖

dk
1+dk
p

≤
∑

n≥0

rn
∑

q≤k≤kq

C
1

1+dk
q ε−n

p+1M
1

1+dk
k M

dk
1+dk
p

(nn

n!

)( ∑

i∈I

|e∗i (x)|
)n

≤
∑

q≤k≤kq

C
1

1+dk
q M

1
1+dk
k M

dk
1+dk
p

∑

n≥0

rnnn

n!
< ∞ for ‖x‖ < εp+1.

Step 2. We will prove the theorem for the case where E is an arbitrary nuclear
Frechet space having (Ω̃). We keep the notations of Theorem 2.1. Choose α = αp

and δ > 0 such that

M(α, p) = sup
{
‖f(x, z)‖p : ‖x‖ < δ, ‖z‖α < 1

}
< +∞.

For α = αp, choose β, d, C > 0, and a compact set K in E for which

‖.‖∗(1+d)
β ≤ C‖.‖∗K‖.‖∗dα .(8)

By scaling K we may assume that C = 1 and hence

‖.‖∗(1+s)
β ≤ ‖.‖∗K‖.‖∗sα ∀s ≥ d.(9)

Choose an arbitrary sequence {sk} ↑ ∞ and 0 < δ < 1 such that

dk =
sk

δ
≥ d, ∀k ≥ 1,

and

εk = γk − 1− γk

1 + dk
> 0, ∀k ≥ 1,

where γk =
1

2(1 + sk)
·

By applying the result proved in Case 1 to f |D∩(B×E(K)) we can find ε > 0
such that f is bounded on{

(x, y) ∈ B × E(K) : ‖x‖ < ε, ‖y‖ < ε
}

.

As in the proof of Theorem 2.1, for each

m ∈ M =
{

m = (mj) ∈ NN : mj 6= 0 only for finitely many j
}
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we set

am(x) =
( 1

2πi

)n
∫

|ρ1|=µ̃1

∫

|ρ2|=µ̃2

· · ·
∫

|ρn|=µ̃n

g(x, ρ1z1 + ρ2z2 + · · ·+ ρnzn)
ρm+1

dρ

= ω
[ 1

λm

( 1
2πi

)n
∫

|θ1|=µ1

∫

|θ2|=µ2

· · ·
∫

|θn|=µn

f(x, θ1y1 + θ2y2 + · · ·+ θnyn)
θm+1

dθ

︸ ︷︷ ︸
bm(x)

]
.

It follows that

sup
{
‖bm(x)‖q : ‖x‖ < ε

}
≤ N(q)

λmµm
, ∀ m ∈ M ∀ q ≥ p,

where

N(q) = sup
{
‖f(x, y)‖q : ‖x‖ < ε, y =

∞∑

j=1

ξjyj and |ξj | ≤ µ̃j

}
.

Since F ∈ (LB∞), there exists p ≥ 1 such that

∀q∃kq ≥ q, Cq > 0, ∀ω ∈ F,∃q ≤ k ≤ kq :

‖ω‖1+dk
q ≤ Cq‖ω‖k ‖ω‖dk

p .

Put

Fk = {ω ∈ F : ||ω||1+dk
q ≤ Cq||ω||k||ω||dk

p }, q ≤ k ≤ kq.

As in Case 1, without loss of generality we may assume that Fk are disjoint. This
implies that the sets Jk

m,n given by

Jk
m,n = {(i1, i2, . . . , in;m) ∈ In ×M : Pn(bm)(ei1 , ei2 , . . . , ein) ∈ Fk}

where Pn(bm) is defined by the Taylor expansion of bm at 0 ∈ B

bm(x) =
∞∑

n=0

Pn(bm)(x),

are also disjoint.
Then we have the estimates
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A =
∑

m∈M

rm‖bm(x)‖q

∞∏

j=1

‖ϕj‖∗mj

β

≤
∑

M

rm
∑

n≥0

∑

i1,i2,...,in∈I

‖Pn(bm)(e1, . . . , en)‖q × |e∗i1(x)| . . . |e∗in(x)|
∞∏

j=1

‖ϕj‖∗mj

β

≤
∑

M

rm
∑

n≥0

∑

q≤k≤kq

∑

Jk
m,n

(λ)2mγk × ‖Pn(bm)(e1, . . . , en)‖q|e∗i1(x)| . . . |e∗in(x)|

=
∑

q≤k≤kq

∑

M

rm
∑

n≥0

∑

Jk
m,n

(
λm‖Pn(bm)(e1, . . . en)‖q

)γk ×

× λmγk‖Pn(bm)(e1, . . . en)‖1−γk
q |e∗i1(x)| . . . |e∗in(x)|

≤
∑

q≤k≤kq

∑

M

rm
∑

n≥0

∑

Jk
m,n

(N(q)
µm

)γk
(nn

n!

)γk

ε−nγk × λmγkC
1−γk
1+dk
q

× ‖Pn(bm)(e1, . . . , en)‖
1−γk
1+dk
k ‖Pn(bm)(e1, . . . , en)‖

(1−γk)dk
1+dk

p |e∗i1(x)| . . . |e∗in(x)|

≤
∑

q≤k≤kq

∑

M

rm
∑

n≥0

∑

Jk
m,n

(N(q)
µm

)γk
(nn

n!

)γk

× ε−nγk × λmγkC
1−γk
1+dk
q ε−n(1−γk) ×

( N(k)
λmµm

) 1−γk
1+dk

×
(nn

n!

) 1−γk
1+dk ×

(M(α, p)
µm

) (1−γk)dk
1+dk

(nn

n!

) (1−γk)dk
1+dk |e∗i1(x)| . . . |e∗in(x)|

=
∑

q≤k≤kq

N(q)γkC
1−γk
1+dk
d N(k)

1−γk
1+dk M(α, p)

(1−γk)dk
1+dk︸ ︷︷ ︸

Dk

×
∑

M

rm
∑

n≥0

( 1
µm

)γk

λmγk

( 1
λmµm

) 1−γk
1+dk ×

×
( 1

µm

) (1−γk)dk
1+dk

∑

i1,i2,...,in∈I

ε−n
(nn

n!

)γk
(nn

n!

) 1−γk
1+dk

(nn

n!

) (1−γk)dk
1+dk

(∑

i∈I

|e∗i (x)|
)n

=
∑

q≤k≤kq

Dk

∑

n≥0

ε−n
(nn

n!

)
‖x‖n

∑

M

rmλ
m(γk− 1−γk

1+dk
) 1

µ
m(γk+

1−γk
1+dk

+
(1−γk)dk

1+dk
)

=
∑

q≤k≤kq

Dk

∑

n≥0

ε−n
(nn

n!

)
‖x‖n

∑

M

(λ
γk− 1−γk

1+dk

µ

)m
rm.

On the other hand, since λ = (λj) ∈ s we have
(λεk

j

µj

)
j
∈ l1 for k ≥ 1. Hence
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sup
{

λ
εk
j

2Rµj

}
≤ 1

2
for

R = max
q≤k≤kq

∞∑

j=1

λεk
j

µj
·

Since
( λεk

j

2Rµj

)
∈ l1, it follows that

∑

M

λmεkrm 1
µm

=
∞∏

j=1

1

1− λεk
j

2Rµj

< ∞

for 0 < r <
1
2
R.

Hence

A ≤
∑

q≤k≤kq

Dk

∑

n≥0

ε−n
(nn

n!

)
tn

∞∏

j=1

1

1− λεk
j

2Rµj

< ∞

for all ‖x‖ < t sufficiently small and all 0 < r <
1

2R
·

Thus f is bounded on
{

(x, y) : ‖x‖ < t, ‖y‖β < r <
1

2R

}
, a neighbourhood of

0 ∈ B ×E.

3. The mixed hartogs theorem

The well-known Hartogs theorem on the holomorphicity of separately holomor-
phic functions was extended to the infinite dimensional case by several authors.
In particular this theorem is true for classes of Frechet spaces and dual Frechet-
Schwartz spaces. However, the problem is more complicated in the mixed case.
In this section, first by using Theorem 2.1 we will prove the following result.

Theorem 3.1. Let E and F be Freschet-Schwarts spasces having (Ω̃) and (DN)
respectively. Assume that E is nuclear. Then every separately holomorphic func-
tion on D × F ′, an open set in E × F ′, is holomorphic.

Proof. Let f : D×F ′ → C be a separately holomorphic function and ω0 ∈ D×F ′.
Without loss of generality we can assume that w0 = 0. Consider the function
fD : D → H(F ′) defined by fD(x) = f(x, .).

From the Frechet-Schwartz property of F , we have the continuity of fD and
hence it is holomorphic. Since H(F ′) ∈ (DN) [4] and E ∈ (Ω̃), by using Theorem
2.1 we see that fD is locally bounded on D. Thus without loss of generality we
may assume that fD is bounded on D.

Similarly, we can consider the function

fF ′ : F ′ → H∞(D), fF ′(u) = f(., u),
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where H∞(D) is the Banach space of bounded holomorphic functions on D. It
is easy to see that fF ′ is holomorphic. Indeed, noting that fF ′ : F ′ → H∞(D) is
Gateaux holomorphic we can write the Taylor expansion of fF ′ at 0 ∈ F ′ as

fF ′(u) =
∑

n≥0

PnfF ′(u).

Let k ≥ 1. Since fD is bounded on D and {u ∈ F ′
k : ‖u‖∗k ≤ r}, r > 0 is relatively

compact in F ′
k+1, we have

Cr = sup
{
|f(x, u)| : x ∈ D, ‖u∗‖∗k ≤ r

}
< ∞.

It follows that

sup
{
|PnfF ′(u)(x)| : x ∈ D, ‖u‖∗k ≤ s

}

= sup
{∣∣∣∣

1
2πi

∫

|λ|=r

fF ′(λu)(x)
λn+1

dλ

∣∣∣∣ : x ∈ D, ‖u‖∗k ≤ s

}

= sup
{∣∣∣∣

1
2πi

∫

|λ|=r

f(x, λu)
λn+1

dλ

∣∣∣∣ : x ∈ D, ‖u‖∗k ≤ s

}

≤ Crs

rn+1
∀ n ≥ 0 ∀r, s > 0.

Hence the series
∑
n≥0

Pnf(u) is convergent in H∞(D) uniformly on every compact

subset of F ′
k. Therefore fF ′ |F ′k : F ′

k → H∞(D) is holomorphic. Since F is Frechet-
Schwartz, fF ′ is holomorphic [1, p. 61]. This yields the local boundedness of f
on D× F ′. On the other hand, since f is Gateaux holomorphic, by [1, Corollary
2.9] f is holomorphic.

Theorem 3.2. Let E and F be Frechet-Schwartz spaces having (Ω) and (DN),
respectively. Assume that E is nuclear. Then every separately holomorphic func-
tion on an open set E ×D in E × F ′, is holomorphic.

Here we recall that E ∈ (Ω) if

∀ p ∃ q ∀ k ∀ d ∃ C > 0 : ‖.‖∗1+d
q ≤ C‖.‖∗k‖.‖∗dp .

Proof. Let f : E × D → C be a seperately holomorphic function and ω0 be a
point of E ×D. Without loss of generality we may assume that ω0 = 0.

Since separately holomorphic functions defined on open subsets of a product of
dual Frechet-Schwartz spaces (DFS-spaces) are holomorphic [1, Example 2.14],
we deduce that f |M×D is holomorphic for all finite domensional subspaces M of
E. This in particular implies that the function f̂ : E → H(D) associated to f :

f̂(z)(u) = f(z, u), z ∈ E, u ∈ D,

is Gateaux holomorphic. On the other hand, we observe the following facts:
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(i) f |E×D∩F ′k
is holomorphic for every k ≥ 1, where D ∩ F ′

k is considered as an
open subset of F ′

k.
(ii) Every compact subset of D is contained and compact in D ∩ F ′

k for some
k ≥ 1, since F is a DFS-space.

Combining these facts and noting that E is nuclear, we see that f̂ is bounded
on every bounded subset of E. Therefore f̂ is holomorphic.

According to a result of Vogt ([12]), there exists a Banach space B such that
F is a subspace of B⊗̂πs, where s is the space of rapidly decreasing sequences.

Consider the restriction map R : B′⊗̂πs′ → F ′. Since F is a Frechet-Schwartz
space, the map R is open.

We choose an open polydics

Da =
{

ξ = (ξj) ∈ s′ : sup |ξj |aj < 1
}
⊂ s′,

where a = (aj) ∈ s, aj ≥ 0 for all j ≥ 1 such that conv(V ⊗Da) ⊂ R−1(D),
where V denotes the unit ball of B.

Take k ≥ 1 sufficiently large such that
∞∑

j=1

1
jk
≤ 2. Put c = (2jkaj) ∈ s.

It is then easy to check that

DV
c =

{ ∞∑

j=1

xj ⊗ ξje
∗
j : x̄ = (xj) ⊂ V, ξ = (ξj) ∈ Dc

}

is a neighbourhood of 0 ∈ B′⊗̂πs′ and contained in conv(V ⊗Da).
Consider the Frechet space Hb(DV

c ) of holomorphic functions h on DV
c satisfy-

ing

‖h‖K̃ = sup
{∣∣∣∣h

(∑

j≥1

xj ⊗ ξje
∗
j

)∣∣∣∣ : x̄ = (xj) ⊂ V, ξ = (ξj) ∈ K

}
< ∞,

for all compact sets K in Dc, where

K̃ =
{∑

j≥1

xj ⊗ ξje
∗
j : (xj) ⊂ V, (ξj) ∈ K

}
.

Observe that R(K̃) is bounded and contained in R(conv(V ⊗Dc)) ⊂ D. Since
every bounded set in F ′ is relatively compact, R(K̃) is relatively compact in D.
It follows that R induces a continuous linear map R̂ : H(D) → Hb(DV

c ). Consider
the fnction g = f0(idE ×R) on DV

c . It is easy to see that ĝ = R̂f̂ : E → Hb(DV
c )

and thus ĝ is holomorphic.
As in the proof of Theorem 3.1, it suffices to prove the following assertions.

Assertion 1.

Hb(DV
c ) has (DN).

Assertion 2. ĝ is of uniformly bounded type.
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Proof of Assertion 1.
a) According to the proof of Proposition 3.6 in [6] we can find a matrix Q =

[qj,k], qj,k ≥ 0, satisfying

(i) ∀ n ∃ k, ε > 0 q1+ε
j,n ≤ qj,kq

ε
j,1 ∀ j ≥ 1.

(ii) ∀n ∃k > n :

sup
qj,n

qj,k
< 1 and

∞∑

j=1

qj,n

qj,k
< ∞.

(iii) The map θ : H(Da) → Λ(M,QM ) given by θ(f) =
(
am(f0

)
m∈M

with

(
am(f) =

( 1
2πi

)n
∫

|λ1|=r1

· · ·
∫

|λn|=rn

f
( n∑

j=1
λje

∗
j

)

λm+1
dλ

)
, 0 < rj <

1
aj
∀ j ≥ 1,

is an isomorphism of H(Da) and Λ(M,QM ), where

Λ(M, QM ) =
{

ξ = (ξm)m∈M : ‖ξ‖k = sup{|ξm|qm
k : m ∈ M} < ∞∀ k ≥ 1

}

and qm
k = qm1

1,k . . . qmn
n,k for m = (m1, . . . ,mn, . . . , 0, . . . ) ∈ M .

From (i) and (iii) we deduce that Hb(Dc) ∈ (DN).
It follows from the isomorphicity of θ that for each k there exist Ck > 0, lk ≥ k,

such that

‖|ϕ‖|k := sup
{∣∣∣am(ϕx̄)

∣∣∣qm
k : x̄ ⊂ B,m ∈ M

}

≤ sup
{∣∣∣∣ϕ

( ∞∑

j=1

xj ⊗ ξje
∗
j )

∣∣∣∣ : x̄ ⊂ B, ξ ∈ Nk

}
= ‖ϕ‖Ñk

:= ‖ϕ‖lk ,

where

Nk =
{

(ξj) : |ξj | ≤ qj,k∀ j ≥ 1
}

.

and

ϕx(ξ) = ϕ
( ∞∑

j=1

xi ⊗ ξje
∗
j

)
.

Hence ‖|.‖|k is a continuous semi-norm on Hb(DV
c ) for k ≥ 1.

On the other hand, since for every n ≥ 1 there exists k > n such that

∞∑

j=1

qj,n

qj,k
< ∞ and 0 ≤ sup

j≥1

qj,n

qj,k
< 1,
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for every ϕ ∈ Hb(DV
c ) we have

‖ϕ‖n ≤ sup
{∑

M

|am(ϕx̄)||ξm| : x̄ ⊂ V, ξ ∈ Nn

}

≤ ‖|ϕ‖|k ×
∑

m∈M

(qn

qk

)m

= ‖|ϕ‖|k ×
∞∏

j=1

∞∑

j≥1

(qj,n

qj,k

)mj

= ‖|ϕ‖|k ×
∞∏

j=1

(
1− qj,n

qj,k

)−1
,

where the last equality follows from (ii).
Since {Nk} is an exhaustion sequence of compact sets in Dc, {‖|.‖|k} is a

fundamental system of semi-norms on Hb(DV
c ) and hence H(DV

c ) is isomorphic
to a subspace of λV (M, QM), where

ΛV (M, QM) = {(ξm,x̄)m∈M,x̄⊂V ⊂ C :

sup{|ξm,x̄|qm
k : m ∈ M, x̄ ⊂ V } < ∞,∀k ≥ 1}.

Morever, from (i) of (a) it follows that λV (M, QM) ∈ (DN); hence Hb(DV
c ) ∈

(DN).

Proof of Assertion 2.

Since E ∈ (Ω) we can find a compact balanced convex subset B of E for which

(Ω)B ∀ p∃ q∀ d > 0∃ C > 0 : ‖.‖∗1+d
1 ≤ C‖.‖∗B‖.‖∗dp .

On the other hand, since Hb(DV
c ) ∈ (DN), by [5] we see that g̃ is of uniformly

bounded type.

4. Some examples

We will establish in this section some examples on the existence of a Frechet
valued holomorphic function which is not locally bounded.

Example 4.1. Let X be a complex space having a non-bounded holomorphic
function σ on X and B a Banach space of infinite dimension. Then there exists
a holomorphic function f : B → H(X) which is not locally bounded.

Proof. Without loss of generality we may assume that supReσ(z) = +∞, z ∈ C.
By [4] there exists a sequence {un} ⊂ B∗ such that un(x) → 0 for x ∈ B but
0 < δ ≤ ‖un‖ ≤ 1 ∀ n ≥ 1.
Then the formula

f(x)(z) =
∑

n≥0

enσ(z)[un(x)]n for x ∈ B, z ∈ X,
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defines a H(X)-valued holomorphic function on B. Note that is not locally
bounded at 0 ∈ B. Otherwise, there exists ε > 0 such that

Mr = sup
{
|f(x)(z) : ‖x‖ ≤ ε, z ∈ Kr

}
< ∞

for all r > 0, where {Kr} is an exhausion sequence of compact sets in X.
This yields

Cn,r = sup
{
|enσ(z)[un(x)]n| : ‖x‖ ≤ ε, z ∈ Kr

}

= sup
{
|Pnf(x)(z)| : ‖x‖ ≤ ε , z ∈ Kr

}

= sup
{∣∣∣∣

1
2πi

∫

|λ|=1

f(λx)(z)
λn+1

dz

∣∣∣∣ : ‖x‖ ≤ ε , z ∈ Kr

}
≤ Mr

for all r > 0, n ≥ 0.
Choose a sequence (xn) ⊂ B with ‖xn‖ ≤ ε such that |un(xn)| ≥ δε ∀ n ≥ 1.

Then for r > 0 sufficiently large we arrive at a contradiction:

∞ = sup
{
|eσ(z)un(xn)|n : n ≥ 1, z ∈ Kr

}

≤ sup
{
|eσ(z)un(x)|n : ‖x‖ ≤ ε, z ∈ Kr

}
= Cn,r ≤ Mr < ∞.

Example 4.2. Let α = (αj) be an exponent sequence and B a Banach space of
infinite dimention. Then there exists a non-locally bounded holomorphic function
from B into Λ∞(α).

Proof. Choose a sequence jk ↗ ∞ such that [αjk
] < [αjk+1

] for k ≥ 1 and let
{un} be chosen as in Example 4.1. It is easy to see that the map

Λ∞(αjk
) 3 (ηjk

) 7→ (ξj) ∈ Λ∞(α),

where

ξj =

{
ηjk

if j = jk

0 if j 6= jk
∀ k ≥ 1,

defines Λ∞(αjk
) as a subspace of Λ∞(α).

Note that

Λ∞(αjk
) ∼= span

(
z[αjk

]
)∞

k=1
⊂ H(C).

and the sequence {un} converges weakly to 0 ∈ B. Then it converges uniformly
on every compact set of B. Hence the series

∑

n≥1

[un(x)]n
∑

k≥1

n[αjk
]z[αjk

]

[αjk
]!
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converges uniformly on compact sets in B ×C. It implies that the formula

f(x)(z) =
∑

n≥1

[un(x)]n
∑

k≥1

n[αjk
]z [αjk

]

[αjk
]!

defines a holomorphic function f : B → Λ∞(αjk
). If f is locally bounded on B,

then there exists ε > 0 such that for every r > 0 and n ≥ 0

Cn,r = sup
{
|un(x)|n

∣∣∣∣
∑

k≥1

n[αjk
]z[αjk

]

[αjk
]!

∣∣∣∣ : ‖x‖ < ε, |z| < r

}

= sup
{
|Pnf(x)(z)| : ‖x‖ < ε, |z| < r

}
≤ Mr,

where

Mr = sup
{
|f(x)(z)| : ||x|| < ε, |z| < r

}
.

By taking r =
2
δε

and putting for each m ≥ 1

Am =
∣∣∣∣u[αjm ](x[αjm ])

∣∣∣∣
[αjm ] [αjm ][αjm ]r[αjm ]

[αjm ]!

we have

sup
{

Am : m ≥ 1
}
≥ sup

{
δ[αjm ]ε[αjm ] [αjm ][αjm ]2[αjm ]

[αjm ]!δ[αjm ]ε[αjm ]
: m ≥ 1

}
= ∞.

On the other hand, for gn(z) =
∑
k≥1

n[αjk
]z[αjk

]

[αjk
]!

we have

∣∣∣∣
n[αjm ]z[αjm ]

[αjm ]!

∣∣∣∣ =
∣∣∣P[αjm ]gn(z)

∣∣∣ =
∣∣∣∣

1
2πi

∫
|λ| = 1

gn(λz)
λ[αjm ]+1

dλ

∣∣∣∣

≤ sup
{
|gn(u)| : |u| ≤ r

}
, ∀|z| < r.

In particular, we obtain

[αjm ][αjm ]r[αjm ]

[αjm ]!
≤ sup

{∣∣∣∣
∑

k≥1

[αjm ][αjk
]z[αjk

]

[αjk
]!

∣∣∣∣ : |z| < r

}
.

Thus we have

∞ = sup
{

Am : m ≥ 1
}

≤ sup
{
|u[αjm ](x)|[αjm ]

∣∣∣∣
∑

k≥1

[αjm ][αjk
]z[αjk

]

[αjk
]!

∣∣∣∣ : |z| < r

}

≤ supC[αjm ],r ≤ Mr < ∞.

We arrive at a contradiction and the proof is complete.
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