
ACTA MATHEMATICA VIETNAMICA 225
Volume 28, Number 2, 2003, pp. 225-240

STRONG MINIMALITY OF GAUSSIAN-SUMMING NORM

V. TARIELADZE AND R. VIDAL

Dedicated to Nguyen Duy Tien on the occassion of his 60th birthday

Abstract. By means of a sequence ϕ· := (ϕn)n∈N of square-integrable func-
tions a notion of a ϕ·-summing operator is defined. It is shown that if
infn ‖ϕn‖2 > 0, then any ϕ·-summing operator is Gaussian-summing. This
recovers a previously known result, which asserts the same in case when
ϕ· := (ϕn)n∈N is an orthonormal sequence.

1. Introduction

Let ϕ· := (ϕn)n∈N be a sequence of square-integrable functions given on a pos-
itive measure space (Ω,A, ν) such that ‖ϕn‖2 > 0, n = 1, 2, . . . . Fix a continuous
linear operator T defined on a Banach space X with values in a Banach space
Y and a natural number n. We denote by ‖T‖n,ϕ·

the least constant c ≥ 0 such
that for any x1, . . . , xn ∈ X the following inequality holds:

(

∫

Ω

∥

∥

∥

n
∑

k=1

Txkϕk(ω)
∥

∥

∥

2
dν(ω)

)1/2
≤ c sup

x∗∈BX∗

(

n
∑

k=1

|x∗(xk)|2
)1/2

.(1.1)

The mapping T → ‖T‖n,ϕ·
is a norm on the space L(X,Y ) of all continuous

linear operators. In [PieWe, (3.11.1)] (when ϕ· := (ϕn)n∈N is an orthonormal
sequence) the quantity ‖T‖n,ϕ·

is denoted by π(T |(ϕ1, . . . , ϕn)) and the mapping
T → π(T |(ϕ1, . . . , ϕn)) is called a Parseval ideal norm.

The operator T will be called ϕ·-summing (or ϕ·-bounding) if

‖T‖ϕ·
:= sup

n
‖T‖n,ϕ·

< ∞.

The set of all ϕ·-summing operators T : X → Y will be denoted Πϕ·
(X,Y ). It

seems that in [PieWe] no special notation is fixed for this class. The mapping
T → ‖T‖ϕ·

is a norm on Πϕ·
(X,Y ) and is called ϕ·-summing norm.
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If g· := (gn)n∈N is a sequence of independent standard Gaussian random vari-
ables given on a probability space, then the class Πg·(X,Y ) of g·-summing opera-
tors will coincide with the class of Gaussian-summing (or γ-summing) operators
introduced in [LiPie] (see also [PieWe, (4.15.7)]).

If r· := (rn)n∈N is the sequence of Rademacher functions given on [0, 1] with the
Lebesgue measure, then the class Πr·(X,Y ) of r·-summing operators will coincide
with the class Πas(X,Y ) of almost summing operators introduced in [DJT].

If ϕ· := (ϕn)n∈N is a sequence of independent identically distributed symmetric
random variables given on a probability space, then the class Πϕ·

(X,Y ) of ϕ·-
summing operators appeared in [BTV].

The class of ϕ·-summing operators when ϕ· := (ϕn)n∈N is an arbitrary ortho-
normal sequence was explicitly defined and studied in details in [Ba].

In [DJT, Theorem 12.12] was shown that for any pair of Banach spaces one
has the coincidence Πas(X,Y ) = Πg·(X,Y ) together with the inequalities

( 2

π

)1/2‖T‖r· ≤ ‖T‖g· ≤ ‖T‖r· .

It is known also that for any pair of Banach spaces and for any orthonormal
sequence ϕ· := (ϕn)n∈N the inclusion Πϕ·

(X,Y ) ⊂ Πg·(X,Y ) remains true and
the inequality ‖T‖g· ≤ ‖T‖ϕ·

holds (cf. [PieWe, (4.15.3) THEOREM]; see also
[GeJu, Remark 3.10] where this fact is mentioned as known, but the proof is
given too. In [Ba, p.16] the considered result also is presented as known and in
its connection is quoted [GeJu, Remark 3.10] and [Se, Theorem 5.5]).

The above results motivate the appearance of the present note. We will show
that for any pair of Banach spaces and for any normalized sequence ϕ· := (ϕn)n∈N

the inclusion Πϕ·
(X,Y ) ⊂ Πg·(X,Y ) remains true and the inequality ‖T‖g· ≤

‖T‖ϕ·
takes place as well (Theorem 3.1).

It arises naturally the problem of non-triviality of the class Πϕ·
(X,Y ). It

turns out that for a given pair of infinite-dimensional Banach spaces X,Y we
have Πϕ·

(X,Y ) 6= {0} if and only if Πϕ·
(R, R) 6= {0}. The proof of this and the

other related results will appear elsewhere.

2. Auxiliary resuts

Thereafter K will denote either the field R of real numbers or the field C

of complex numbers. The considered normed or inner-product spaces will be
supposed to be defined over K. The norm of a normed space, resp., the scalar
product of an inner-product space will be denoted by || · || and (·|·), respectively.
Also ||T || will stand for the ordinary norm of a continuous linear operator T
acting between normed spaces.

For a normed space X,

• X∗ will stand for the topological dual space,
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• We put:

BX := {x ∈ X : ||x|| ≤ 1}, SX := {x ∈ X : ||x|| = 1},

• FD(X) will stand for the collection of all finite-dimensional non-zero vector
subspaces of X.

For normed spaces X and Y ,

• L(X,Y ) is the normed space of all continuous linear operators T : X → Y
and L(X) := L(X,X),

• K(X,Y ) will stand for the set of all compact linear operators T : X → Y
and K(X) := K(X,X).

For a Hilbert space H,

• O1(H) is the set of all orthonormal sequences in H and O2(H) is the set of
all orthonormal basis of H,

• U(H) will stand for the set of isometric surjective linear operators u : H →
H.

The following proposition collects the important known statements about a finite-
dimensional Hilbert space.

Proposition 2.1. Let E be a finite-dimensional Hilbert space with n := dim(E) ≥
1.

(a) U(E) with the topology induced by operator norm is a compact metrizable
topological group, which carries the unique tranlation-invariant probability mea-
sure m given on its Borel σ-algebra.

The measure m is called the (normalized) Haar measure of U(E).

(b) There exists the unique U(E)-invariant probability measure s given on the
Borel σ-algebra of E such that s(SE) = 1.

The measure s is called the uniform distribution on SE .

(c) If f : E → C is a Borel measurable s-integrable (or non-negative) function,
then for each fixed e ∈ SE

∫

SE

f(x)ds(x) =

∫

U(E)

f(ue)dm(u).(2.1)

(d) There exists the unique U(E)-invariant probability measure γ given on the
Borel σ-algebra of E, such that

γ̂(h) :=

∫

E

exp(iRe(x|h))dγ(x) = exp(−κ‖h‖2), ∀h ∈ E.(2.2)

The measure γ is called the standard Gaussian measure. In (2.2) the parameter
κ is 1/2 in real case and is 1 in complex case.
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(e) If f : E → C is a positively 2-homogeneous Borel measurable γ-integrable
(or non-negative) function, then

∫

E

f(x)dγ(x) = n

∫

SE

f(x)ds(x).(2.3)

Proof. The statements (a) and (b) are well-known.

(c) Fix e ∈ SE . Denote se the image of m under the continuous mapping
u → ue from U(E) onto SE . Then by change-variable formula we can write

∫

SE

f(x)dse(x) =

∫

U(E)

f(ue)dm(u).(2.4)

By using translation-invariance of m it is easy to observe that se is a U(E)-
invariant probability measure. By uniqueness part of (b) we get that se = s.
This and (2.4) imply (2.1).

(d) is well-known.

(e) It is easy to observe that
∫

E

‖x‖2dγ(x) = n.

For each Borel subset B ⊂ E, put

µ1(B) =
1

n

∫

B

‖x‖2dγ(x).

Then µ1 is a Borel probability measure on E. Denote µ2 the image of µ1 under

the continuous mapping x → x

‖x‖ from E \ {0} onto SE. Since γ({0}) = 0,

∫

E

f(x)dγ(x) = γ({0})f(0) +

∫

E\{0}

f
( x

‖x‖
)

‖x‖2dγ(x) = n

∫

E\{0}

f
( x

‖x‖
)

dµ1(x).

Then by change-variable formula we can write
∫

E

f(x)dγ(x) = n

∫

E\{0}

f
( x

‖x‖
)

dµ1(x) = n

∫

SE

f(x)dµ2(x).(2.5)

By using U(E)-invariance of γ it is easy to observe that µ2 also is U(E)-invariant
probability measure. By uniqueness part of (b) we get that µ2 = s. This and
(2.5) imply (2.3).

Lemma 2.1. Let E be a non-zero normed space and µ be a positive measure (not
necessarily finite) given on the Borel σ-algebra of E such that

0 < α :=

∫

E

‖x‖2dµ(x) < ∞.
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Then there exists a probability measure µ2 given on the Borel σ-algebra of E
such that µ2(SE) = 1 and for any positively 2-homogeneous Borel measurable
µ-integrable (or non-negative) function f : E → C with f(0) = 0, the equality

∫

E

f(x)dµ(x) = α

∫

SE

f(x)dµ2(x)(2.6)

holds.

Proof. Replace in the proof of Proposition 2.1(e) γ by µ and n by α.

The next statement expresses “the strong minimality” of the Gaussian inte-
grals.

Proposition 2.2. Let E be a finite-dimensional Hilbert space with n := dim(E) ≥
1 and µ be a positive measure (not necessarily finite) given on the Borel σ-algebra
of E such that

0 < α :=

∫

E

‖x‖2dµ(x) < ∞.

Then for any positively 2-homogeneous Borel measurable function f : E → C

with f(0) = 0, we have:
∫

E

|f(x)|ds(x) ≤ 1

α
sup

u∈U(E)

∫

E

|f(ux)|dµ(x)(2.7)

and
∫

E

|f(x)|dγ(x) ≤ n

α
sup

u∈U(E)

∫

E

|f(ux)|dµ(x)(2.8)

holds.

Proof. Let µ2 be the probability measure associated with µ according to Lemma
2.1. Take a positively 2-homogeneous Borel measurable function f : E → C with
f(0) = 0. For each fixed u ∈ U(E) we can apply the equality (2.6) to the function
x → |f(ux)| and write:

∫

E

|f(ux)|dµ(x) = α

∫

SE

|f(ux)|dµ2(x).(2.9)

Hence,

sup
u∈U(E)

∫

E

|f(ux)|dµ(x) = α sup
u∈U(E)

∫

SE

|f(ux)|dµ2(x).(2.10)
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Since m is a normalized positive measure on U(E), we have:

sup
u∈U(E)

∫

SE

|f(ux)|dµ2(x) ≥
∫

U(E)

(

∫

SE

|f(ux)|dµ2(x)
)

dm(u)(2.11)

=

∫

SE

(

∫

U(E)

|f(ue)|dm(u)
)

dµ2(e).

By Proposition 2.1(c) for each fixed e ∈ SE we have
∫

U(E)

|f(ue)|dm(u) =

∫

SE

|f(x)|ds(x).(2.12)

Then, as m2(SE) = 1,
∫

SE

(

∫

U(E)

|f(ue)|dm(u)
)

dµ2(e) =

∫

SE

(

∫

SE

|f(x)|ds(x)
)

dµ2(e)(2.13)

=

∫

SE

|f(x)|ds(x).

Now (2.10), (2.11) and (2.13) imply

sup
u∈U(E)

∫

E

|f(ux)|dµ(x) ≥ α

∫

SE

(

∫

U(E)

|f(ue)|dm(u)
)

dµ2(e) = α

∫

SE

|f(x)|ds(x).

(2.14)

Clearly (2.14) gives (2.7).

Inequality (2.8) follows from (2.7) and Proposition 2.1(e).

Let (Ω,A, ν) be a positive measure space, X a normed space. Then for any
vector-valued function ξ : Ω → X for which the scalar-valued function ω →
‖ξ(ω)‖ is measurable, we put

‖ξ‖2 =
(

∫

Ω

‖ξ(ω)‖2dν(ω)
)1/2

.

If ϕ1, . . . , ϕn are measurable scalar functions given on Ω and x1, . . . , xn are
elements of a given normed space X, then the vector-valued function ω →
n
∑

k=1

xkϕk(ω) will be denoted
n
∑

k=1

xkϕk. Accordingly we have

∥

∥

∥

n
∑

k=1

xkϕk

∥

∥

∥

2
=

(

∫

Ω

∥

∥

∥

n
∑

k=1

xkϕk(ω)
∥

∥

∥

2
dν(ω)

)1/2
.

A sequence g· := (gn)n∈N of independent K-valued random variables given on
a probability space (Ω,A, P) is called a standard Gaussian sequence if for each
natural n the distribution of gn coincides with the standard Gaussian measure
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given on K. Note that if g· := (gn)n∈N is a standard Gaussian sequence, then it
is an orthonormal sequence in the Hilbert space L2(Ω,A, P; K).

In the sequel, g· := (gn)n∈N always will stand for a standard Gaussian sequence.

Lemma 2.2. Let E be a finite-dimensional Hilbert space with n := dim(E) ≥ 1
and (e1, . . . , en) be any fixed orthonormal basis. Then for every Borel measurable
γ-integrable (or non-negative) function f : E → C we have:

∫

Ω

f
(

n
∑

k=1

ekgk(ω)
)

dP(ω) =

∫

E

f(x)dγ(x).(2.15)

In particular, for any normed space Y and any V ∈ L(E,Y ) we have

∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
=

(

∫

E

‖V x‖2dγ(x)
)1/2

.(2.16)

Proof. Put ξ :=
n
∑

k=1

ekgk. Then the distribution of ξ coincides with the standard

Gaussian measure γ on E. From this, by change-variable formula, we get
∫

Ω

f
(

n
∑

k=1

ekgk(ω)
)

dP(ω) =

∫

Ω

f(ξ(ω))dP(ω) =

∫

E

f(x)dγ(x),

i.e., (2.15) is valid.

Fix now a normed space Y and an operator V ∈ L(E,Y ). Clearly, an applica-
tion of (2.15) to the function x → ‖V x‖2 gives

∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
=

(

∫

E

‖V x‖2dγ(x)
)1/2

.

The next result in case of an orthonormal sequence (ϕ1, . . . , ϕn) of functions
is due to [GeJu].

Lemma 2.3. (cf. [GeJu, Lemma 3.10 (1)]) Let E be a finite-dimensional Hilbert
space with n := dim(E) ≥ 1, (e1, . . . , en) is an orthonormal basis of E, (ϕ1, . . . , ϕn)
be a sequence of square integrable scalar functionns given on a positive measure
space (Ω,A, ν) such that

0 < αn :=
(

n
∑

k=1

‖ϕk‖2
2

)1/2
.

Then for any normed space Y and any V ∈ L(E,Y ) the inequality

∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
≤

√
n

αn
sup

u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
(2.17)

holds.
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Proof. Put ξ =
n
∑

k=1

ekϕk. Since (e1, . . . , en) be an orthonormal sequence in E,

‖ξ(ω)‖2 =
∥

∥

∥

n
∑

k=1

ekϕk(ω)
∥

∥

∥

2
=

n
∑

k=1

|ϕk(ω)|2, ∀ω ∈ Ω.

Hence
∫

Ω

‖ξ(ω)‖2dν(ω) =

n
∑

k=1

∫

Ω

|ϕk(ω)|2dν(ω) = α2
n.

Denote the image of ν under Borel measurable mapping ξ : Ω → E by µ. By
change-variable formula we have

α2
n =

∫

Ω

∥

∥

∥

n
∑

k=1

ekϕk(ω)
∥

∥

∥

2
dν(ω) =

∫

Ω

‖ξ(ω)‖2dν(ω) =

∫

E

‖x‖2dµ(x).(2.18)

Let Y be a normed space and V ∈ L(E,Y ). By (2.18), for any fixed u ∈ U(E)
we obtain

∫

Ω

∥

∥

∥

n
∑

k=1

V uekϕk(ω)
∥

∥

∥

2
dν(ω) =

∫

Ω

‖V uξ(ω)‖2dν(ω) =

∫

E

‖V ux‖2dµ(x).

Then

sup
u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
= sup

u∈U(E)

(

∫

E

‖V ux‖2dµ(x)
)1/2

.(2.19)

Therefore, according to (2.16) and Proposition 2.2 applied for the function x →
‖V x‖2 we have

∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
=

(

∫

E

‖V x‖2dγ(x)
)1/2

≤
√

n

αn
sup

u∈U(E)

(

∫

E

‖V ux‖2dµ(x)
)1/2

.

This and (2.19) imply (2.17).

3. Strong minimality of the Gaussian-summing norm

In what follows, for a normed space X, a natural number n and a finite sequence
(x1, . . . , xn) of elements of X we shall put

‖(x1, . . . , xn)‖2 :=
(

n
∑

k=1

‖xk‖2
)1/2

and

‖(x1, . . . , xn)‖2,w := sup
x∗∈BX∗

(

n
∑

k=1

|x∗(xk)|2
)1/2

.

Let us observe that if X is an inner-product space and (x1, . . . , xn) is an or-
thonormal sequence of elements of X, then we have ‖(x1, . . . , xn)‖2 =

√
n and

‖(x1, . . . , xn)‖2,w = 1.
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Let ϕ· := (ϕn)n∈N be a sequence of square-integrable functions given on a
positive measure space (Ω,A, ν) such that ‖ϕn‖2 > 0, n = 1, 2, . . . .

Fix normed spaces X,Y , an operator T ∈ L(X,Y ) and a natural number n.
We define

‖T‖n,ϕ·
= sup

{
∥

∥

∥

n
∑

k=1

Txkϕk

∥

∥

∥

2
: (x1, . . . , xn) ∈ Xn, ‖(x1, . . . , xn)‖2,w ≤ 1

}

.

(3.1)

It is easy to observe that the functional T → ‖T‖n,ϕ·
is a norm on L(X,Y ) with

the property
(

min
k≤n

‖ϕk‖2

)

‖T‖ ≤ ‖T‖n,ϕ·
, ∀T ∈ L(X,Y ).

The operator T will be called ϕ·-summing (or ϕ·-bounding) if

‖T‖ϕ·
:= sup

n
‖T‖n,ϕ·

< ∞.

The set of all ϕ·-summing operators T : X → Y is denoted by Πϕ·
(X,Y ). The

mapping T → ‖T‖ϕ·
is a norm on Πϕ·

(X,Y ) and is called ϕ·-summing norm. It
is easy to see that

(

inf
k∈N

‖ϕk‖2

)

‖T‖ ≤ ‖T‖ϕ·
, ∀T ∈ Πϕ·

(X,Y ).

If g· := (gn)n∈N is a standard Gaussian sequence, then the class Πg·(X,Y ) of g·-
summing operators coincides with the class of Gaussian-summing (or γ-summing)
operators introduced in [LiPie] (see also [PieWe, (4.15.7)]). Accordingly, the norm
‖·‖g· is called the Gaussian-summing norm or γ-summing norm and for it usually
the notation πγ is used.

If r· := (rn)n∈N is the sequence of Rademacher functions given on [0, 1] with
the Lebesgue measure, then the class Πr·(X,Y ) of r·-summing operators coin-
cides with the class Πas(X,Y ) of almost summing operators introduced in [DJT].
Accordingly, the norm ‖·‖r· is called the almost summing norm and for it usually
the notation πas is used.

If ϕ· := (ϕn)n∈N is a sequence of independent identically distributed symmetric
random variables given on a probability space, then the class Πϕ·

(X,Y ) of ϕ·-
summing operators appeared in [BTV].

Lemma 3.1. Let E be a finite-dimensional Hilbert space with n := dim(E) and
T ∈ L(X,Y ). Then

‖T‖n,ϕ·
= sup{‖TW‖n,ϕ·

: W ∈ L(E,X), ‖W‖ ≤ 1}.(3.2)

Proof. Fix arbitrarily (h1, . . . , hn) ∈ En, ‖(h1, . . . , hn)‖2,w ≤ 1 and W ∈ L(E,X),
‖W‖ ≤ 1. Then from ‖W‖ ≤ 1 we get ‖(Wh1, . . . ,Whn)‖2,w ≤ 1. Therefore

∥

∥

∥

n
∑

k=1

TWhkϕk

∥

∥

∥

2
≤ ‖T‖n,ϕ·

.
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Hence ‖TW‖n,ϕ·
≤ ‖T‖n,ϕ·

and

sup{‖TW‖n,ϕ·
: W ∈ L(E,X), ‖W‖ ≤ 1} ≤ ‖T‖n,ϕ·

.(3.3)

Fix a finite sequence (x1, . . . , xn) ∈ Xn, satisfying ‖(x1, . . . , xn)‖2,w ≤ 1 and an
orthonormal basis (e1, . . . , en) ∈ En. Define W ∈ L(E,X) by putting Wek =
xk, k = 1, . . . , n. Then ‖W‖ = ‖(x1, . . . , xn)‖2,w ≤ 1. (As ‖(e1, . . . , en)‖2,w = 1),

∥

∥

∥

n
∑

k=1

Txkϕk

∥

∥

∥

2
=

∥

∥

∥

n
∑

k=1

TWekϕk

∥

∥

∥

2
≤ ‖TW‖n,ϕ·

.

Hence
∥

∥

∥

n
∑

k=1

Txkϕk

∥

∥

∥

2
≤ sup{‖TW‖n,ϕ·

: W ∈ L(E,X), ‖W‖ ≤ 1}.

Consequently,

‖T‖n,ϕ·
≤ sup{‖TW‖n,ϕ·

: W ∈ L(E,X), ‖W‖ ≤ 1}.(3.4)

From (3.3) and (3.4) we obtain (3.2).

Lemma 3.1 reduces the question of computing the norm ‖ · ‖n,ϕ·
to the case

where the domain is a Hilbert space. This case is treated in the next lemma.

Lemma 3.2. Let E be a finite-dimensional Hilbert space with n := dim(E),
(e1, . . . , en) be a fixed orthonormal basis of E and V ∈ L(E,Y ). Then there
exists an orthonormal basis (eo

1, . . . , e
o
n) of E such that

‖V ‖n,ϕ·
= sup

u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
=

∥

∥

∥

n
∑

k=1

V eo
kϕk

∥

∥

∥

2
.(3.5)

Proof. Since for any fixed u ∈ U(E) we have ‖(ue1, . . . , uen)‖2,w = 1, the inequal-
ity

‖V ‖n,ϕ·
≥ sup

u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
(3.6)

is evident.

Fix now a finite sequence (x1, . . . , xn) in E with ‖(x1, . . . , xn)‖2,w ≤ 1. Let us
show that

∥

∥

∥

n
∑

k=1

V xkϕk

∥

∥

∥

2
≤ sup

u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
.(3.7)

Define W ∈ L(E,E) by putting Wek = xk, k = 1, . . . , n. Then ‖W‖ =
‖(x1, . . . , xn)‖2,w ≤ 1. Obviously,

∥

∥

∥

n
∑

k=1

V xkϕk

∥

∥

∥

2
=

∥

∥

∥

n
∑

k=1

V Wekϕk

∥

∥

∥

2
.
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It is known that any W ∈ L(E) is a convex combination of some finite number

of operators from U(E), i.e., W =
p

∑

j=1
tjuj , where 0 ≤ tj ≤ 1,

p
∑

j=1
tj = 1 and

uj ∈ U(E), j = 1, . . . , n. Using this, we can write

n
∑

k=1

V Wekϕk =

n
∑

k=1

V
(

p
∑

j=1

tjujek

)

ϕk =

p
∑

j=1

tj

(

n
∑

k=1

V ujekϕk

)

and so,

∥

∥

∥

n
∑

k=1

V Wekϕk

∥

∥

∥

2
≤

p
∑

j=1

tj

∥

∥

∥

n
∑

k=1

V ujekϕk

∥

∥

∥

2

≤ max
j≤p

∥

∥

∥

n
∑

k=1

V ujekϕk

∥

∥

∥

2

≤ sup
u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
.

i.e., (3.7) is true. It is evident that (3.7) implies

‖V ‖n,ϕ·
≤ sup

u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
.(3.8)

From (3.6) and (3.8) we get

‖V ‖n,ϕ·
= sup

u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
.(3.9)

Clearly, the supremun in (3.9) is attained in some uo ∈ U(E). Put eo
k := uoek,

k = 1, . . . , n. Then (eo
1, . . . , e

o
n) is an othonormal basis of E for which (3.5) is

satisfied.

In Lemma 3.2, in general, for a given fixed orthonormal basis (e1, . . . , en) one

may have the strict inequality ‖V ‖n,ϕ·
>

∥

∥

∥

n
∑

k=1

V ekϕk

∥

∥

∥

2
(see, e.g., [TTV], where

the the case of the sequence of Rademacher functions is investigated). However,
in the Gaussian case the situation is nicer.

Corollary 3.1. Let E be a finite-dimensional Hilbert space with n := dim(E) ≥
1, Y a normed space, V : E → Y a linear operator and (e1, . . . , en) any fixed
orthonormal basis of E. Then

‖V ‖n,g· =
∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
.(3.10)
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Proof. By Lemma 3.2 there is an orthonormal basis (eo
1, . . . , e

o
n) of E such that

‖V ‖n,g· =
∥

∥

∥

n
∑

k=1

V eo
kgk

∥

∥

∥

2
(3.11)

and, by Lemma 2.2, we can write
∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
=

(

∫

E

‖V x‖2dγ(x)
)1/2

=
∥

∥

∥

n
∑

k=1

V eo
kgk

∥

∥

∥

2
= ‖V ‖n,g· .

For a given finite-dimensional Hilbert space E with dim(E) = n, a given
normed space Y and an operator T ∈ L(E,Y ), in general one may have the strict
inequality ‖V ‖ϕ·

> ‖V ‖n,ϕ·
. However, it is well-known that this cannot happen

in Gaussian case. The following statement (which is not needed for the proof of
Theorem 3.1) contains a proof of this important fact; it contains, in particular,
another proof of Corollary 3.1 too.

Lemma 3.3. Let E be a finite-dimensional Hilbert space with n := dim(E) ≥
1, Y a normed space, V : E → Y a linear operator and (e1, . . . , en) a fixed
orthonormal basis of E. Then

‖V ‖g· = ‖V ‖n,g· =
∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
(3.12)

and
√

n
(

∫

SE

‖V x‖2ds(x)
)1/2

= ‖V ‖n,g· = ‖V ‖g· .(3.13)

Proof. Observe that (3.13) follows from (3.12) via Lemma 2.2. So it remains to
prove (3.12).

The inequalities ‖V ‖g· ≥ ‖V ‖n,g· ≥
∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
are evident.

Fix now arbitrarily a natural number n′, a finite sequence (x1, . . . , xn′) ∈ En′

,
‖(x1, . . . , xn′)‖2,w ≤ 1. Let us show that

∥

∥

∥

n′

∑

k=1

V xkgk

∥

∥

∥

2
≤

∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
.

Fix then a Hilbert space E′ with dim(E′) = n′ and an orthonormal basis (eo
1, . . . , e

o
n′)

of it.

Define W ∈ L(E′, E) by putting Weo
k = xk, k = 1, . . . , n′. Then ‖W‖ =

‖(x1, . . . , xn′)‖2,w ≤ 1. Clearly,

∥

∥

∥

n′

∑

k=1

V xkgk

∥

∥

∥

2
=

∥

∥

∥

n′

∑

k=1

V Weo
kgk

∥

∥

∥

2
.
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The operator W admits the spectral representation

Wx =
n′

∑

k=1

λk(x|h′
k)hk, ∀x ∈ E′,

where (h′
1, . . . , h

′
n′) is an orthonormal basis of E′, (h1, . . . , hn′) is a finite sequence

in E whose non-zero members form an orthonormal sequence in E and

1 ≥ ‖W‖ = λ1 ≥ λ2 ≥ . . . λn′ ≥ 0.

Applying Lemma 2.2 to E′ and to the operator V ′ := V W we can write

∥

∥

∥

n′

∑

k=1

V Weo
kgk

∥

∥

∥

2
=

∥

∥

∥

n′

∑

k=1

V Wh′
kgk

∥

∥

∥

2
.

Then, as Wh′
k = λkhk, k = 1, . . . , n′,

∥

∥

∥

n′

∑

k=1

V Weo
kgk

∥

∥

∥

2
=

∥

∥

∥

n′

∑

k=1

λkV hkgk

∥

∥

∥

2
.

From this, using the contraction principle (see, e.g. [VTC, Lemmma 5.4.1(c),
p.298]), we obtain

∥

∥

∥

n′

∑

k=1

V Weo
kgk

∥

∥

∥

2
≤

(

max
k≤n′

λk

)

∥

∥

∥

n′

∑

k=1

V hkgk

∥

∥

∥

2
≤

∥

∥

∥

n′

∑

k=1

V hkgk

∥

∥

∥

2
.

Let (h̃1, . . . , h̃n) be an othonormal basis of E containing the orthonormal set con-
sisting of the non-zero terms of (h1, . . . , hn′). Then (e.g., again by the contraction
principle):

∥

∥

∥

n′

∑

k=1

V hkgk

∥

∥

∥

2
≤

∥

∥

∥

n
∑

k=1

V h̃kgk

∥

∥

∥

2
.

Applying Lemma 2.2 to E and to the operator V we can write

∥

∥

∥

n
∑

k=1

V h̃kgk

∥

∥

∥

2
=

∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
.

Consequently,

∥

∥

∥

n′

∑

k=1

V xkgk

∥

∥

∥

2
=

∥

∥

∥

n′

∑

k=1

V Weo
kgk

∥

∥

∥

2
=

∥

∥

∥

n′

∑

k=1

λkV hkgk

∥

∥

∥

2

≤
∥

∥

∥

n
∑

k=1

V h̃kgk

∥

∥

∥

2
=

∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
,

which yields the needed inequality.

The next lemma is a key step in the proof of the main theorem.
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Lemma 3.4. Let E be a finite-dimensional Hilbert space with n := dim(E) ≥ 1,
(ϕ1, . . . , ϕn) a sequence of square integrable scalar functionns given on a positive
measure space (Ω,A, ν) such that

0 < αn :=
(

n
∑

k=1

‖ϕk‖2
2

)1/2
.

Then for any normed space Y and any V ∈ L(E,Y ) the inequality

‖V ‖n,g· ≤
√

n

αn
‖V ‖n,ϕ·

(3.14)

holds.

Proof. Fix an orthonormal basis (e1, . . . , en) of E. Then from Corollary 3.1,
Lemma 2.3 and the obvious inequality

sup
u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
≤ ‖V ‖n,ϕ·

we get

‖V ‖n,g· =
∥

∥

∥

n
∑

k=1

V ekgk

∥

∥

∥

2
≤

√
n

αn
sup

u∈U(E)

∥

∥

∥

n
∑

k=1

V uekϕk

∥

∥

∥

2
≤

√
n

αn
‖V ‖n,ϕ·

.

Theorem 3.1. Let X,Y be normed spaces, (ϕk)k∈N a sequence of square in-
tegrable scalar functions given on a positive measure space (Ω,A, ν) such that
‖ϕn‖2 = 1, n = 1, 2, . . . . Then

(a) For every natural n and any continuous linear operator T : X → Y the
inequality

‖T‖n,g· ≤ ‖T‖n,ϕ·
(3.15)

holds;

(b) We have Πϕ·
(X,Y ) ⊂ Πg·(X,Y ) and

‖T‖g· ≤ ‖T‖ϕ·
, ∀T ∈ Πϕ·

(X,Y ).(3.16)

Proof. (a) Let T ∈ L(X,Y ) and n be a natural number. Fix a Hilbert space E
with dim(E) = n and an operator W ∈ L(E,X). Lemma 3.4, applied to the
operator TW ∈ L(E,X), gives

‖TW‖n,g· ≤ ‖TW‖n,ϕ·
(3.17)

By (3.17) and Lemma 3.1 we can write

‖T‖n,g· = sup{‖TW‖n,g· : W ∈ L(E,X), ‖W‖ ≤ 1}
≤ sup{‖TW‖n,ϕ·

: W ∈ L(E,X), ‖W‖ ≤ 1} = ‖T‖n,ϕ·
.

The statement (b) follows from (a).

In the same way we can prove also the next result.
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Theorem 3.2. Let X,Y be normed spaces, (ϕk)k∈N a sequence of square in-
tegrable scalar functions given on a positive measure space (Ω,A, ν) such that
‖ϕn‖2 > 0, n = 1, 2, . . . and

β := sup
n

√
n

( n
∑

k=1

‖ϕk‖2
2

)1/2
< ∞.

Then

(a) For every natural n and any continuous linear operator and T : X → Y
the inequality

‖T‖n,g· ≤ β‖T‖n,ϕ·
(3.18)

holds;

(b) We have Πϕ·
(X,Y ) ⊂ Πg·(X,Y ) and

‖T‖g· ≤ β‖T‖ϕ·
, ∀T ∈ Πϕ·

(X,Y ).(3.19)

Proof. (a) Let T ∈ L(X,Y ) and n be a natural number. Fix a Hilbert space E
with dim(E) = n and an operator W ∈ L(E,X). Lemma 3.4, applied to the
operator TW ∈ L(E,X), implies

‖TW‖n,g· ≤
√

n

αn
‖TW‖n,ϕ·

≤ β‖TW‖n,ϕ·
.(3.20)

By (3.20) and Lemma 3.1 we can write

‖T‖n,g· = sup{‖TW‖n,g· : W ∈ L(E,X), ‖W‖ ≤ 1}
≤ β sup{‖TW‖n,ϕ·

: W ∈ L(E,X), ‖W‖ ≤ 1} = β‖T‖n,ϕ·
.

The statement (b) follows from (a).

Remark. In general, for a given sequence (ϕk)k∈N of square integrable scalar
functions given on a positive measure space (Ω,A, ν) such that ‖ϕn‖2 = 1, n =
1, 2, . . . it may happen that Πϕ·

(R, R) = {0} (assume, e.g., that ν(Ω) = 1 and
put ϕn = 1, n = 1, 2, . . . ). Therefore, in general, we do not have the equality
Πϕ·

(X,Y ) = Πg·(X,Y ). A characterization of the orthonormal sequences (ϕk)k∈N

for which the coincidence Πϕ·
(X,Y ) = Πg·(X,Y ) takes place is given in [Ba,

Theorem 4.3, p. 24].
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