
ACTA MATHEMATICA VIETNAMICA 185
Volume 28, Number 2, 2003, pp. 185-199

A DISCRETE LOCATION PROBLEM

HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

Abstract. An efficient algorithm based on discrete monotonic optimization
is proposed for finding the largest ball centered in a given finite S ⊂ R

n and
disjoint from any of m given balls in R

n.

1. Introduction

We are concerned with a discrete version of the following computational geom-
etry problem:

(DC) Given m balls in R
n, of centres aj ∈ R

n
++ and radii θj ≥ 0, and a bounded

set S ⊂ R
n
+, find the largest ball that has centre in S and is disjoint from any of

these m balls.

In engineering design this problem appears as a variant of the “design centring
problem” [4]. An important special case of it when θj = 0, j = 1, . . . ,m, is the
“largest empty ball problem” formulated as follows:

(LB) Given m points a1, . . . , am in R
n
++ and a bounded set S ⊂ R

n
+ find the

largest ball that has centre in S and contains none of these m given points.

In location theory (DC) is interpreted as a “maximin location problem”. Then
(LB) is the problem that arises when we want to construct a residence in a given
area S so that it lies outside the polluted sphere of each of m obnoxious facilities
and as far as possible from the nearest of these obnoxious facilities.

A global optimization method was first proposed in [9] for solving the general
design centring problem (see also [3], [4]). Since analytically (DC) can be refor-
mulated as a nonconvex quadratic optimization problem it can, theoretically, be
approached by different nonconvex quadratic programming methods developed in
recent years (see e.g. [12], [2]). Let us also mention a d.c. optimization method,
combining outer, inner approximation and branch and bound, proposed in [8] for
the problem (LB).

However, to date very little experience has been available on the practical
computational implementation of any of the above methods in dimension n > 2.
Although the largest empty ball problem in dimension 2 is known to be solvable in
time O(m log m), traditional methods for this problem, such as Voronoi diagram,

Received May 25, 2002; in revised form September 5, 2002.
Key words and phrases. Maximin location problem, design centring, largest empty ball, dis-

crete monotonic optimization.

186 HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

which have proved to be very efficient in dimension 2, cannot be easily extended
to higher dimension.

In [15] it was shown that Problem (DC) or (LB) can be reduced to solving a
number of successive feasibility problems of the following form:

(FP) Given m balls in R
n, of centres aj ∈ R

n
++ and radii αj ≥ 0, and a bounded

set S ⊂ R
n
+, find a point x ∈ S lying outside all these m balls, if there is one.

In the case when S ⊂ R
n is a polytope, an efficient d.c. optimization algorithm

was developed in [15] to solve the feasibility problem (FP) and thereby, to serve
as the main subroutine for solving problems (DC) and (LB).

When S is a finite set problems (DC), (LB), (FP) turned out to be quite
complicated if S is very large. In particular, the discrete problem (FP), which is
basic for the study of discrete problems (DC) and (LB), becomes a combinatorial
optimization problem belonging to a class of notoriously difficult problems. To
our knowledge no serious computational result for the discrete problem (FP) in
dimension n > 2 is available as yet.

The aim of the present paper is to discuss a practical approach to the discrete
problem (FP) based on ideas of discrete monotonic optimization developed in [5].

The paper consists of several sections. In Section 2 we formulate (FP) (for
a finite set S) as a discrete monotonic optimization problem (DM). Section 3
discusses some basic properties of the problem. Section 4 describes an opera-
tion called the Z-adjustment which will play a fundamental role in our solution
method. Section 5 presents the discrete polyblock method for solving (DM) based
on ideas developed earlier in [5]. Section 6 is devoted to an alternative branch and
bound algorithm, combining ideas of d.c. optimization with polyblock approxi-
mation. The last section presents an illustrative example and some preliminary
computational results.

2. Discrete monotonic reformulation

For convenience let us recall the problem we are concerned with:

(FP) Given m balls in R
n, of centres aj ∈ R

n
++ and radii αj ≥ 0, and a finite

set S ⊂ R
n
+, find a point x ∈ S lying outside all these m balls, if there is one.

In terms of location theory, the problem is to check whether there is a point in
S outside all the polluted spheres of m given obnoxious facilities located at aj,
j = 1, . . . ,m, with pollution radii αj . Obviously, when |S| is small, the simplest
method for solving problem (FP) is to check |S| inequalities:

min
j=1,... ,m

(‖x− aj‖ − αj) > 0.

However, this approach becomes inefficient or even impracticable when |S| is very
large.

As was established in [15] (FP) can be solved by solving the following mathe-
matical program

max{‖x‖2 − ϕ(x)| x ∈ S},(Q)

A DISCRETE LOCATION PROBLEM 187

where ϕ(x) is a convex piecewise affine function defined by

ϕ(x) = max
j=1,... ,m

(2〈aj , x〉+ α2
j − ‖a

j‖2).(1)

If the optimal value of this program is positive, an optimal solution of (Q) will
solve (FP). Otherwise, (FP) is infeasible.

Let us introduce some notations and definitions. For any two vectors x, y ∈ R
n

we write x ≤ y (x < y, resp.) and say that x is dominated (strictly dominated,
resp.) by y to mean that xi ≤ yi (xi < yi, resp.) for every i = 1, . . . , n. If a ≤ b
then the box [a, b] ((a, b], resp.) is the set of all x ∈ R

n satisfying a ≤ x ≤ b
(a < x ≤ b, resp.). A function u : [a, b]→ R is said to be increasing if

a ≤ x ≤ y ≤ b ⇒ u(x) ≤ u(y).

Now, since aj , x ∈ R
n
++, both functions ‖x‖2 and ϕ(x) are increasing, and the

objective function in problem (Q) is a difference of two monotonic functions (a
d.m. function).

Let B be a box known to contain at least an optimal solution, if any, and define
[a, b] ⊂ B such that

ai = min
x∈B∩S

xi, bi = max
x∈B∩S

xi i = 1, . . . , n(2)

Introducing an additional variable t we can rewrite (Q) as

max{‖x‖2 + t| ϕ(x) + t ≤ 0, x ∈ S ∩ [a, b], an+1 ≤ t ≤ bn+1}(3)

where an+1 = −ϕ(b), bn+1 = −ϕ(a). This problem belongs to the class of discrete
monotonic optimization problems studied in [5].

By setting

z = (x, t) ∈ R
n × R, ā = (a, an+1), b̄ = (b, bn+1),

Z = {(x, t)| x ∈ S, t = −ϕ(x)}

f(z) = ‖x‖2 + t, g(z) = ϕ(x) + t, G = {z| g(z) ≤ 0}

problem (Q) can be restated in the usual monotonic format:

max{f(z)| z ∈ G, z ∈ Z ⊂ [ā, b̄]}.(DM)

Here the functions f(z) and g(z) are increasing in [ā, b̄], and the set Z is a discrete
subset of [ā, b̄].

3. Basic properties

We first investigate some basic properties of problem (DM).

Proposition 1. (i) G is closed and contains ā in its interior.

(ii) If z ∈ G and z′ ≤ z then z′ ∈ G.

188 HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

Proof. (i) follows from the fact that g(z) is continuous and g(ā) = ϕ(a)+ an+1 =
ϕ(a)− ϕ(b) < 0.

(ii) is also obvious because the function g(z) is increasing, so if g(z) ≤ 0 and
z′ ≤ z then g(z′) ≤ g(z) ≤ 0.

The property (ii) is expressed by saying that the set G is normal. For any set

A ⊂ [ā, b̄] the set Ae := ∪z∈A[ā, z] is called the normal hull of A. Clearly Ge = G.

Proposition 2. If A is compact then so is Ae.

Proof. If A is compact then A is contained in a ball B around ā, and if xk ∈ Ae,
k = 1, 2, . . . , then since xk ∈ [ā, zk] ⊂ B, there exists a subsequence {kν} ⊂
{1, 2, . . . } such that zkν → z0 ∈ A, xkν → x0 ∈ [ā, z0], hence x0 ∈ Ae, proving
the compactness of Ae.

For any finite set T ⊂ [ā, b̄], the set P = T e is called a polyblock in [ā, b̄] and
each point v ∈ T is called a vertex of the polyblock P . We also write T = vertP
to mean that T is the vertex set of P . A vertex v of a polyblock P is called proper

if it is not dominated by any other vertex v′, i.e. if v′ = v whenever v ≤ v′ and
v′ ∈ vertP . The proper vertex set of a polyblock P is denoted by pvert (P).

Proposition 3. For any point z in a polyblock P there is a proper vertex v of P
such that z ≤ v.

Proof. If z ∈ pvert P one can take v = z. Otherwise, if T denotes the vertex set
of P then, since P =

⋃

v∈T

[ā, v], there is a v ∈ T such that z ∈ [ā, v], i.e. v ≥ z.

Either v ∈ pvertP and we are done, or by definition of proper vertices, there is
at least one y ∈ T satisfying y ≥ z. Let V = {y ∈ T | y ≥ z}. Since this is a
finite set ordered by the dominance relation, it has a maximal element v in this
ordering. Clearly v is proper, since any v′ ∈ T such that v′ ≥ v would satisfy
v′ ≥ z and hence would equal v by maximality of v.

This proposition shows that the proper vertex set fully determines the poly-
block and that it is the minimal set having this property.

Now define D = (G ∩ Z)e, i.e. D is the normal hull of the set G ∩ Z. Since
G ∩ Z is a finite set, D is a polyblock and pvert(D) ⊂ G ∩ Z.

Proposition 4. An optimal solution of (DM) is achieved at a proper vertex of

the polyblock D with vertex set G ∩ Z.

Proof. Let z̄ be an optimal solution. Obviously z̄ ∈ D. Since D is a polyblock
there exists by Proposition 3 a proper vertex v of D such that z̄ ∈ [ā, v]. We have
v ∈ G ∩ Z and f(v) ≥ f(z̄) while z̄ is an optimal solution, therefore v is also an
optimal solution.

We have thus reduced the problem to maximizing the increasing function f(z)
over the proper vertex set of the polyblock D. The difficulty, of course, is that
this proper vertex set of D, though finite, is not easily computable.

A DISCRETE LOCATION PROBLEM 189

In the next section we show how to get round this difficulty.

4. The S-adjustment operation

Proposition 5. For any u ∈ G and v ∈ [ā, b̄] such that u ≤ v let zuv = u+λ(v−
u) ∈ G, with

λ = sup{α ≥ 0| u + α(v − u) ∈ G}.(4)

Then v ∈ G if λ ≥ 1, and v /∈ G, if λ < 1.

Proof. Since G is closed, zuv ∈ G. By normality of G, if u + α(v − u) ∈ G then
u + α′(v − u) ∈ G for all α′ ∈ [0, α]. Hence v ∈ G if and only if λ ≥ 1.

We also write zuv = πu(v) and if u = ā we simply write π(v) instead of πā(v).
Since v /∈ G and u ≤ v we always have πu(v) ≤ v.

Proposition 6. If v /∈ G and z = π(v) then (z, b̄] ∩ G = ∅, i.e. the cone

{z′| z′ > z} separates v from G.

Proof. Indeed, let z = ā + λ(v − ā), so that ā + α(v − ā) /∈ G ∀α > λ. If there
exists y ∈ G ∩ (z, b̄] then, since y ∈ G we have, by normality of G, [ā, y] ⊂ G,
hence, since z < y, ā + α(z − ā) ∈ G for α > λ, contradiction.

Lemma 1. If ā < v < b̄, then the set [ā, b̄] \ (v, b̄] is a polyblock with vertices

ui = b̄ + (vi − b̄i)e
i, i = 1, . . . , n + 1(5)

where ei denotes the i-th unit vector of R
n+1.

Proof. Let Ki = {u ∈ [ā, b̄]| vi < ui}. Clearly (v, b̄] =
⋂

i=1,... ,n+1
Ki, so [ā, b̄] \

(v, b̄] =
⋃

i=1,... ,n+1
([ā, b̄] \Ki). But

[ā, b̄] \Ki = {u| āi ≤ ui ≤ vi, āj ≤ uj ≤ b̄j ∀j 6= i} = [ā, ui],

completing the proof of the Lemma.

Note that u1, . . . , un+1 are the n + 1 vertices of the hyperrectangle [v, b̄] that
are adjacent to b̄. For convenience, if z, u ∈ R

n+1, we also write y = z ∧ u to
mean that yi = min{zi, ui} for every i = 1, . . . , n + 1. With this notation it is
clear that [ā, z] ∩ [ā, u] = [ā, z ∧ u]. Also define J(z, u) = {j| zj > uj}.

Proposition 7. Let P be a polyblock with proper vertex set T ⊂ [ā, b̄], let v ∈
[ā, b̄] such that T∗ = {z ∈ T | z ≥ v} 6= ∅. For every z ∈ T∗ define zi =
z + (vi − zi)e

i, i = 1, . . . , n + 1. Then the set

T ′ = (T \ T∗) ∪ {z
i| z ∈ T∗, zi > vi, i = 1, . . . , n + 1}.(6)

is the vertex set of the polyblock P \ (v, b̄]. An element zi ∈ T ′ is improper if and

only if there exists y ∈ T∗ such that J(z, y) = {i}.

190 HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

Proof. Since [ā, z]∩(v, b̄] = ∅ for every z ∈ T \T∗, it follows that P \(v, b̄] = P1∪P2,
where P1 is the polyblock with vertex T \ T∗ and P2 = (∪z∈T∗

[ā, z]) \ (v, b̄] =
⋃

z∈T∗

([ā, z] \ (v, b̄]). Noting that [ā, b̄] \ (v, b̄] is a polyblock with vertices given by

(5), we can then write [ā, z]\(v, b̄] = [ā, z]∩([ā, b̄]\(v, b̄]) = [ā, z]∩(
⋃

i=1,... ,n+1
ui) =

⋃

i=1,... ,n+1
[ā, z] ∩ [ā, ui] =

⋃

i=1,... ,n+1
[ā, z ∧ ui], hence P2 = ∪{[ā, z ∧ ui]| z ∈ T∗, i =

1, . . . , n + 1}, which shows that the vertex set of P \ (v, b̄] is the set T ′ given by
(6).

It remains to show that every y ∈ T \ T∗ is proper, while a zi with z ∈ T∗ is
improper if and only if J(z, y) = {i} for some y ∈ T∗.

Since every y ∈ T \ T∗ is proper in T, if z′ ≥ y for some z′ ∈ T ′, then z′ must
be some zi with z ∈ T∗, i ∈ {1, . . . , n + 1}. But then z ≥ z ∧ ui = zi ≥ y,
conflicting with y being proper in T . Therefore, every y ∈ T \ T∗ is proper.
On the other hand, if zi ≤ y for some y ∈ T \ T∗ then vi = zi

i ≤ yi, while
vj ≤ zj = zi

j ≤ yj ∀j 6= i, hence v ≤ y. i.e. y ∈ T∗, conflicting with y /∈ T∗.

Consequently, if zi is improper then zi ≤ yl for some (y, l) 6= (z, i), y ∈ T∗,
l ∈ {1, . . . , n + 1}. We cannot have y = z, l 6= i for then the relation zi ≤ zl

would imply zl = zi
l ≤ zl

l = vl, conflicting with (6). So y 6= z and zi
j ≤ yl

j

∀j = 1, . . . , n + 1, which means that vi ≤ yi, zl ≤ vl, zj ≤ yj ∀j /∈ {i, l}. Since
vl ≤ yl, we thus have zj ≤ yj ∀j 6= i, hence, noting that z 6≤ y (z is proper),
we derive zi > yi, so that J(z, y) = {i}. Thus any improper zi must satisfy
J(z, y) = {i} for some y ∈ T∗. Conversely, if J(z, y) = {i} for some y ∈ T∗ then
zj ≥ yj ∀j 6= i, hence zi ≤ yi, i.e. zi is improper. This completes the proof of
the Proposition.

We now introduce the operation d·eS , by defining for any x ∈ [a, b]:

dxeS = x̃ with x̃i = max
y∈S
{yi| yi < xi} i = 1, . . . , n.(7)

In view of (4), dxeS ∈ [a, b] and dxeS < x; we shall refer to the vector dxeS as
the S-adjustment of x. Remembering that Z = {z = (x, t)| x ∈ S, t = −ϕ(x)}
we also define, for z = (x, t) ∈ [ā, b̄]:

dzeZ = (x̃, t̃), with x̃ = dxeS , t̃ = −ϕ(x̃)(8)

and call dzeZ the Z-adjustment of z.

A special case frequently encountered is when S = S1× · · · × Sn, and every Si

is a finite set of real numbers. In this case for any x ∈ [a, b] we have x̃ = dxeS ∈ S
because x̃i ∈ Si ∀i = 1, . . . , n. (For example if Si is the set of natural numbers,
then x̃i is the largest integer still less than xi.)

Also if dxeS ∈ S then it is the maximal element of the set S[a,x) := {x′ ∈
S ∩ [a, b]| x′ < x}, i.e. x′ ≤ dxeS ∀x

′ ∈ S[a,x) (but the converse may not be true).

For our purpose the most useful property of S-adjustment is the following.

A DISCRETE LOCATION PROBLEM 191

Lemma 2. Let z = (x, t) with t = −ϕ(x). If [z, b̄] ∩ (G ∩ Z) = ∅ and z̃ = dzeZ
then (z̃, b̄] ∩ (G ∩ Z) = ∅.

Proof. Suppose there is z′ ∈ (z̃, b̄] ∩ (G ∩ Z). Then z′ = (x′, t′) with x′ ∈ S,
t′ = −ϕ(x′), x′ > x̃, t′ > t̃. On the other hand, since z′ ∈ G ∩ Z while [z, b̄] ∩
(G ∩ Z) = ∅, there is at least one i ∈ {1, . . . , n + 1} such that z′i < zi. The
fact x′ > x̃ (i.e. z′i > x̃i ∀i = 1, . . . , n) then implies that t′ < zn+1 = t, and
noting that t = −ϕ(x) < −ϕ(x̃) (because x̃ < x), we have t′ < −ϕ(x̃) = t̃, a
contradiction.

Proposition 8. For v /∈ G, if z = π(v) and

ṽ =

{

z if z ∈ Z

dzeZ if z /∈ Z.
(9)

then (ṽ, b̄]∩ (G∩Z) = ∅, i.e. the cone {z| z ≥ ṽ} separates v from D = (G∩Z)e.

Proof. By Proposition 6 we always have (z, b̄] ∩ G = ∅. If z ∈ Z then, by (9)
ṽ = z, hence (ṽ, b̄] ∩ (G ∩ Z) = ∅. If z /∈ Z, then ṽ = dzeZ , hence, by Lemma 2,
(ṽ, b̄] ∩ (G ∩ Z) = ∅.

5. The discrete polyblock algorithm

With the above backgound we now describe a method for solving (DM). This
method consists in constructing a sequence of polyblocks, P0 ⊃ P1 ⊃ · · · together
with a sequence of numbers γ0 ≤ γ1 ≤ · · · , such that:

(i) γk = f(z̄k), for some z̄k ∈ G ∩ Z (current best feasible solution) if γk > 0;

(ii) Pk ⊃ G ∩ Zγk
where

Zγk
= {(x, t)| x ∈ Sγk

, t = −ϕ(x)},

Sγk
= {x ∈ S| ‖x‖2 − ϕ(x) > γk}.

We will show that the sequence P0 ⊃ P1 ⊃ · · · can be so constructed that it
will terminate at some Pk = ∅: then the corresponding γk will be the optimal
value of the problem, unless the latter has no optimal solution.

As initial polyblock P0 we can take any P0 ⊃ G ∩ Z, e.g. P0 = [ā, b̄], with
vertex set T0 = {b̄}, and γ0 = 0. At iteration k = 0, 1, . . . , let Pk be the current
polyblock, Tk its vertex set, γk (current best value) and z̄k ∈ G∩Z (current best
feasible solution), satisfying (i) and (ii).

Then we prune Tk by droping every improper element, and every v ∈ Tk such
that f(v) ≤ γk. Letting T̃k, P̃k be the resulting set and polyblock, we reset

Tk ← T̃k, Pk ← P̃k. If Tk = ∅ the procedure terminates: z̄k is optimal (if γk > 0),
or the problem is infeasible (if γk = 0). If Tk 6= ∅ select (by an arbitrary rule)
vk ∈ Tk. Two cases may arise:

Case 1: vk ∈ G ∩ Z. Then we let ṽk = vk.

Since ṽk is feasible, we use it to define the new current best value γk+1 and
new current best feasible solution z̄k+1 (reset γk+1 = max{γk, f(ṽk)}, z̄k+1 = ṽk

192 HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

if γk+1 > γk, z̄k+1 = z̄k otherwise), then define Pk+1 to be the polyblock with
vertex set Tk+1 = Tk \ {ṽ

k} and go to the next iteration.

Case 2: vk /∈ G ∩ Z. In this case we compute zk = π(vk) then set ṽk = zk if
zk ∈ Sγk

, ṽk = dzkeZγk
if zk /∈ Sγk

. If ṽk is feasible we use it to define γk+1 and

z̄k+1.

Letting Tk,∗ = {z ∈ Tk| z ≥ ṽk}, we further compute

Tk+1 = (Tk \ Tk,∗) ∪ {z
k,i| z ∈ Tk,∗, zi > ṽk

i , i = 1, . . . , n + 1}

where zk,i = z + (ṽk
i − zi)e

i, i = 1, . . . , n + 1. Defining then Pk+1 to be the
polyblock with vertex set

Tk+1 = (T̃k \ T̃∗k) ∪ {z
k,1, . . . , zk,n+1}.(10)

we go to the next iteration.

Proposition 9. The polyblock Pk+1 satisfies G∩Zγk+1
⊂ Pk+1 ⊂ Pk \ (ṽ

k, b̄]. In

particular, conditions (i), (ii) still hold for k ← k + 1.

Proof. We have Pk+1 ⊂ Pk \ (ṽk, b̄] by Proposition 6. To show that G ∩ Zγk+1
⊂

Pk+1, observe that in case 1, (vk, b̄] ∩ G = ∅ because vk ∈ pvert(Pk). Noting
that f(z) ≤ γk+1 ∀x ∈ [a, vk], we can then write G ∩ Sk+1 ⊂ (G ∩ Sk) \ [a, vk] ⊂
Pk \ [a, vk] ⊂ Pk+1. In case 2, if vk ∈ G \ Z then, since Pk ⊃ G ∩ Zγk

whereas
[vk, b̄]∩Pk = {vk} we must have [vk, b̄]∩G∩Zγk

= ∅. Therefore, by Proposition

7, (ṽk, b̄] ∩G ∩ Zγk
= ∅, and consequently, Pk+1 ⊃ G ∩ Zγk

⊃ G ∩ Zγk+1
. On the

other hand, if vk /∈ G (in case 2), Proposition 9 implies that (ṽk, b̄]∩G∩Zγk
= ∅,

and again Pk+1 ⊃ G ∩ Zγk
⊃ G ∩ Zγk+1

.

Thus, Pk+1, γk+1 and z̄k+1 still satisfies (i), (ii) for k ← k+1, and so the above
described procedure continues further if Tk+1 6= ∅. In a formal way we can state

Algorithm A. Initialization. Let T0 = {b̄}. Let z̄ be the best feasible solution
available (the current best feasible solution), γ̄ = max{0, f(z̄)} (current best
value). If no feasible solution is available, let γ̄ = 0. Set k = 0

Step 1. From Tk remove: all z ∈ Tk such that f(z) ≤ γ̄ and all improper

elements. Let T̃k be the resulting set. Reset Tk ← T̃k.

Step 2. If Tk = ∅, terminate: if γ̄ = 0, the problem is infeasible; if γ̄ > 0, z̄ is
an optimal solution.

Step 3. If Tk 6= ∅, select vk ∈ Tk.

If vk ∈ G∩S define Tk+1 = Tk \{v
k}, update γ̄ and z̄ (using vk), set k ← k+1

and go back to Step 1.

Step 4. a) If vk ∈ G \ S, compute ṽk = dvkeZγ̄ (using formula (7) with S

replaced by Sγ̄ := {x ∈ S| ‖x‖2 − ϕ(x) > γ̄}).

b) If vk /∈ G compute zk = π(vk) and define ṽk = zk if zk ∈ Sγk
, and

ṽk = dzkeZγ̄ if zk /∈ Sγk
.

Update γ̄ and z̄ if ṽk ∈ G ∩ Z.

A DISCRETE LOCATION PROBLEM 193

Step 5. Let Tk,∗ = {z ∈ Tk| z ≥ ṽk}. Compute

T ′
k = (Tk \ Tk,∗) ∪ {z

k,i| z ∈ Tk,∗, zi > ṽk
i , i = 1, . . . , n + 1}.

where zk,i = z + (ṽk
i − zi)e

i. Let Tk+1 be the set that remains from T ′
k after

removing every zi such that {j| zj > yj} = {i} for some y ∈ Tk,∗.

Set k ← k + 1 and go back to Step 1.

Theorem 1. Algorithm A is finite.

Proof. Since for every i = 1, . . . , n+1 the set Xi = zi(Z) = {ξ ∈ R| ξ = zi, z ∈ Z}
is finite, so is the set X =

∏

i=1,... ,n+1
Xi. At each iteration k a point vk ∈ Pk

together with ṽk ≤ vk are generated such that either ṽk < vk, Pk+1 ⊂ Pk \ (ṽ
k, b̄],

or ṽk = vk, Pk+1 ⊂ Pk \ [vk, b̄]. Hence, [ṽk, b̄] cannot contain any ṽl with l > k.
That is, ṽk is distinct from all ṽl with l > k, and so there can be no repetition
in the sequence {ṽ0, ṽ1, . . . , ṽk, . . . } ⊂ X. The finiteness of the algorithm then
follows from the finiteness of the set X.

Remark 1. If in Step 3 we always select vk ∈ argmax{f(z)| z ∈ Tk} then
when vk ∈ G ∩ S the algorithm terminates, with vk being optimal. However,
this rule for selecting vk may not always be the best one. Sometimes the rule
vk ∈ argmin{‖z‖| z ∈ Tk} may help to reach a feasible solution more rapidly.
If storage problem is a matter of concern, vk can be selected according to the
depth-first rule, in order to minimize memory requirements.

6. Alternative branch and bound algorithm

Algorithm A can be interpreted as a branch and bound algorithm in which a
node z of the monitoring tree represents a box [ā, z] and branching is performed
by splitting a node into n+1 descendants while the bound over a node z is taken
to be f(z). A positive feature of this algorithm is that the bounding operation
is straightforward. However, since each node has n + 1 descendants, storage
problems may arise with the growth of the number of iterations. Therefore,
an alternative rectangular branch and bound algorithm in a more conventional
format such as the following one may be more efficient.

Since the basic variables are x = (x1, . . . , xn) we branch upon x (and not upon
z = (x, t)) and use rectangular subdivision. Thus a partition set is a rectangle
M = [p, q] ⊂ [a, b].

Bounding. An upper bound µ(M) for the value

SP(M) max{‖x‖2 − ϕ(x) : x ∈M}

is computed as follows.

• Step 1: For i = 1, . . . , n let p̂i = min
x∈S∩M

xi, q̂i = max
x∈S∩M

xi. Set [p, q]← [p̂, q̂].

(the replacement of [p, q] by p̂, q̂] will be referred to as a box reduction operation).

194 HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

• Step 2: If ‖q‖2 − ϕ(p) ≤ 0, set µ(M) = 0. In fact, for all x ∈ [p, q] we have
‖p‖2 ≤ ‖x‖2 ≤ ‖q‖2 while ϕ(p) ≤ ϕ(x) ≤ ϕ(q), hence ‖x‖2−ϕ(x) ≤ ‖q‖2−ϕ(p) ≤
0, hence max{‖x‖2 − ϕ(x)| p ≤ x ≤ q} ≤ 0.

• Step 3: (entered with ‖q‖2 − ϕ(p) > 0) Compute an upper bound µ(M) of
the objective function value over the feasible solutions of (FP) in M . For this,
solve the relaxed subproblem

LP(M)

maximize
n
∑

i=1
[(pi + qi)xi − piqi] + t

s.t. 2〈aj , x〉+ α2
j − ‖a

j‖2 + t ≤ 0, j = 1, . . . , s

x ∈M

Take µ(M) to be the optimal value of this linear program.

• Step 4: (when µ(M) > 0) compute a lower bound ν(M) of the objective
function value over the feasible solutions of (FP) in M and if ν(M) > 0 a point
x̄M such that ν(M) = ‖x̄M‖2 − ϕ(x̄M). Two options are proposed for this com-
putation:

Option 1. (to be used if S satisfies the following condition

xi = min{zi
i | z

i ∈ S} (i = 1, . . . , n)⇒ x ∈ S,(11)

e.g. if S = S1 × · · · × Sn). If µ(M) > 0, let xM be an optimal solution of the
linear progam LP(M). Compute dxM eS , the S-adjustment of xM . If ‖dxM eS‖

2−
ϕ(dxM eS) > 0, then set x̄M = dxM eS , and ν(M) = ‖x̄M‖2 − ϕ(x̄M). Otherwise,
set ν(M) = 0.

Option 2. Write SP(M) in the monotonic format:

max{‖x‖2 + t| ϕ(x) + t ≤ 0, x ∈ S, −ϕ(q) ≤ t ≤ −ϕ(p)},

that is,

SD(M) max{f(z)| z ∈ G, z ∈ Z ∩ [p̃, q̃]}

where z = (x, t), f(z) = ‖x‖2 + t, G = {z| ϕ(x) + t ≤ 0}, Z = {(x, t)| x ∈ S,
t = −ϕ(x)}, p̃ = (−ϕ(q), a), q̃ = (−ϕ(p), q). (see Section 2). Apply Algorithm A
to SD(M) until evidence of infeasibility or a feasible solution x̄M is obtained. In
the former case reset µ(M) = 0; in the latter case, set ν(M) = ‖x̄M‖2 − ϕ(x̄M).

Thus in option 2, a feasible solution of (FP) in M will always be found, provided
there is one; on the other hand, option 2 is computationally more expensive than
option 1.

Algorithm B

Step 0. Start with P1 = S1 = {M1 = [a, b]} (reduced box). Set k = 1.
Step 1. For each box M ∈ Pk compute µ(M) and ν(M) (when µ(M) > 0).
Let CBV = max{ν(M)| M ∈ Pk}, and when CBV > 0 let CBS = x̄k be the
best among all x̄M , M ∈ Pk, i.e. such that ‖x̄k‖2 − ϕ(x̄k) = CBV .

A DISCRETE LOCATION PROBLEM 195

Step 2. Delete every M ∈ Sk such that µ(M) ≤ CBV . Let Rk be the
collection of remaining members of Sk. If Rk = ∅, then terminate: x̄k is an
optimal solution if νk > 0, or the problem is infeasible otherwise.

Step 3. Select Mk ∈ Rk}. Choose jk ∈ argmaxi{qi − pi} and divide Mk into
two subboxes via the hyperplane yjk

= (pk
jk

+qk
jk

)/2. Let Pk+1 be the partition
of Mk.

Step 4. Set Sk+1 = (Rk \ {Mk})∪Pk+1. Set k ← k + 1 and go back to Step 1.

Proposition 10. Algorithm B terminates after finitely many iterations, yielding

an optimal solution of (FP) or establishing that the problem is infeasible.

Proof. For every i = 1, . . . , n the set Xi = {ξ ∈ R| ξ = xi, x ∈ S} is finite.
Since every box M can be assumed to be of the form [p, q] with pi ∈ S, qi ∈ S
∀i = 1, . . . , n, (see the box reduction operation in the Bounding process), it
follows that the total number of nodes of the monitoring tree in each iteration is
also finite. Whence the finiteness of the algorithm

7. Solution method for problem (DC)

So far we have been concerned with problem (FP). Turning now to problem
(DC) let us examine how Algorithm 1 (or 2) can be used to solve (DC).

Given a number r ≥ 0, we say that the value r is feasible if there exists a point
x(r) ∈ S such that the ball of centre x(r) and radius r does not intersect any one
of the m given balls of centres aj , radii θj. Clearly checking whether r is feasible
and if yes, finding x(r), amounts to solving the following subproblem

(*) FP(r) Find a point x(r) ∈ S lying outside any one of the m balls of centres

aj and radii αj = θj + r (j = 1, . . . ,m).

Since this problem can be solved by either Algorithm A or Algorithm B, and
since solving (DC) amounts to finding the maximal feasible value rmax, to solve
(DC) we can proceed as follows:

Algorithm C (for solving (DC)

Let s be an estimated upper bound for rmax.

Step 0. Solve FP(0) by Algorithm 2. If FP(0) is infeasible then stop: (DC) is
infeasible. Otherwise, we obtain a point x(0) ∈ S. If min

j
{‖x(0)−aj‖−θj} = 0,

stop: x0 is a solution of (DC) with optimal value 0. If min
j
{‖x(0)−aj‖−θj} >

0, set z` = min
j
{‖x(0) − aj‖ − θj}, zu = s, x̄ = x(0).

Step 1. If zu−z` ≤ ε, stop: x̄ is ε-optimal solution of (DC) with optimal value
min

j
(‖x̄− aj‖ − θj − r). Otherwise, go to Step 2.

Step 2. Solve Q((z` + zu)/2) to obtain the optimal value ρ̄ and an optimal
solution x̄. If ρ̄ = 0, stop: x̄ is optimal solution of (DC). If ρ̄ > 0, reset
z` ← min

j
(‖x̄−aj‖−θj) and go back to Step 1. If ρ̄ < 0, reset zu ← (z` +zu)/2

and go back to Step 1.

196 HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

8. Illustrative example

To illustrate the method we consider a problem (DC) in R
2 with m = 10 balls

of centres aj and radii θj, j = 1, . . . , 10 as given in the following table and with
S being the set of points with integral coordinates in the rectangle 1 ≤ x1 ≤ 12,
1 ≤ x2 ≤ 12. (so a = (1, 1), b = (12, 12)).

j aj θj

1 (1, 5) 3
2 (3, 12) 2
3 (12.5, 11.5) 2.5
4 (14.5, 5) 3.5
5 (5, 8) 1
6 (6, 2) 2
7 (7, 10) 1
8 (10, 8) 1
9 (9, 2) 1
10 (6.5, 5.5) 0.5

The solution of this problem by Algorithm C yields the following results:

Running time (on a PC Pentium II 300 MHz): 5 Seconds

Number of solved subproblems FP: 7 (see Table 1)

Number of interations: 65

Maximal number of active nodes in branch and bound trees: 5

Optimal Solution: ball of centre x̄ = (9, 5) and radius rmax = 2.00.

The example is illustrated by Figure 1.

Table 1. zl = 1.08, zu =3.89

Subprob z x̄ zt N # Iter Time
1 2.49 infeasible 3 8 0.52
2 1.78 (9,5) 2.0 1 2 0.08
3 2.24 infeasible 3 8 0.51
4 2.12 infeasible 3 9 0.53
5 2.06 infeasible 4 12 0.68
6 2.03 infeasible 5 13 0.70
7 2.02 infeasible 5 13 0.71

9. Computational experiments

Algorithm B has been coded in C++ and tested on a number of problem in-
stances of dimension ranging from 2 to 10. The computations have been carried
out on a PC Pentium 300 MHz with linear subproblems solved using the LP

A DISCRETE LOCATION PROBLEM 197

software CPLEX. The results are summarized in Table 2, where the following
abbreviations are used:

n: dimension

m: number of given points aj

sub:number of subproblems FP needed

N : maximal number of active nodes in the branch and bound trees

Time: running time in seconds.

Table 2

Problem n m #sub N Time
1 2 100 11 7 7
2 2 200 12 10 12
3 2 300 11 18 28
4 2 400 12 21 43
5 3 50 9 11 9
6 3 150 10 17 19
7 3 250 10 34 54
8 4 80 9 9 10
9 4 120 9 10 11
10 4 300 9 33 54
11 5 100 8 17 13
12 5 200 9 28 35
13 6 80 8 13 13
14 6 250 8 27 37
15 7 100 8 29 19
16 7 300 8 20 34
17 8 150 8 39 48
18 8 250 8 25 40
19 9 100 8 10 12
20 9 250 8 24 48
21 10 100 8 24 24
22 10 200 8 20 33
23 10 300 8 25 47
24 10 400 9 33 112

198 HOANG TUY, NGUYEN DUC NGHIA AND LE SI VINH

1

2

Fig. 1

0 5 10

5

10

3

4

6

7

85

9

10

12

12

References

[1] B. Dasarathy and L. J. White, One some maximin location and classifier problems, Com-
puter Science Conference, Washington D. C., 1975.

[2] C. A. Floudas, Deterministic Global Optimization, Kluwer, 2000.
[3] R. Horst and H. Tuy, Global Optimization–Deterministic Approaches. 3rd edition, Springer,

1996.
[4] H. Konno, P. T. Thach and H. Tuy, Optimization on Low Rank Nonconvex Structures,

Kluwer, 1997.
[5] M. Minoux and H. Tuy, Discrete monotonic optimization, Preprint, Institute of Mathe-

matics, 2001.
[6] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer,

1985.
[7] A. Rubinov, H. Tuy and H. Mays, Algorithm for a monotonic global optimization problem,

Optimization 11 (2000), 464-494.
[8] J. S. Shi and Y. Yamamoto, A D.C. Approach to the largest empty sphere problem in higher

dimension, in State of the Art in Global Optimization, C. Floudas and P. Pardalos eds,
Kluwer, 1996, 395-411.

[9] P. T. Thach, The design centering problem as a D.C. programming problem, Mathematical
Programming 41 (1988), 229-248.

[10] P. T. Thach and H. Tuy, Parametric approach to a class of nonconvex global optimization

problems, Optimization 19 (1988), 3-1.
[11] H. Tuy, Normal sets, polyblocks, and monotonic optimization, Vietnam J. Math. 27 (1999),

277-300.
[12] H. Tuy, Monotonic optimization: problems and solution approaches, SIAM J. Optim. 11

(2000), 464-494.

A DISCRETE LOCATION PROBLEM 199

[13] H. Tuy and L. T. Luc, A new approach to optimization under monotonic constraint, J.
Global Optim. 18 (2000), 1-15.

[14] H. Tuy and Ng. T. Hoai-Phuong, A unified monotonic approach to generalized linear frac-

tional programming, Journal of Global Optimization, to appear.
[15] H. Tuy, N. D. Nghia and L. S. Vinh, Efficient DC approach to maximin location and design

centring problems, Preprint, Institute of Mathematics, Hanoi, 2001.

Institute of Mathematics,
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam

E-mail address: htuy@thevinh.ac.vn

Faculty of Information Technology,
Hanoi University of Technology

E-mail address: nghiand@it-hut.edu.vn

Faculty of Information Technology,
Hanoi State University

E-mail address: VinhLS@ho.fpt.vn

