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GROWTH OF A CLASS OF COMPOSITE

ENTIRE FUNCTIONS

JIANWU SUN

Abstract. In this paper, we obtain the following results:

Let f1, f2 and g1, g2 be four transcendental entire functions with T (r, f1) =

O∗((log r)νe(log r)α

) and T (r, g1) = O∗((log r)β) (i.e., there exist four positive

constants K1, K2, K3 and K4 such that K1 ≤
T (r, f1)

(log r)νe(log r)α
≤ K2 and

K3 ≤
T (r, g1)

(log r)β
≤ K4).

If T (r, f1) ∼ T (r, f2), T (r, g1) ∼ T (r, g2) (r → ∞), then

T (r, f1(g1)) ∼ T (r, f2(g2)) (r → ∞, r 6∈ E)

where ν > 0, 0 < α < 1, β > 1 and αβ < 1 and E is a set of finite logarithmic
measure.

We solved a problem due to C. C. Yang concerning the characteristic func-
tions of the composite functions.

1. Introduction

Chitai Chuang and C. C. Yang [2] proposed the following problem: Let f1, f2

and g1, g2 be entire functions. If T (r, f1) ∼ T (r, f2), T (r, g1) ∼ T (r, g2) (r → ∞),
whether or not the relation

T (r, f1(g1)) ∼ T (r, f2(g2)) (r → ∞),(1)

holds ?

If (1) does not hold, what conditions can assure that (1) holds ?

Obviously, if f1 is a polynomial, then (1) holds. However, we point out that
(1) does not hold the general case.

Example 1. Let f1(z) = ez, f2(z) = 2ez and g1(z) = zn, g2(z) = 2zn. Then we
have
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f1(g1) = ezn , f2(g2) = 2e2zn

m(r, f1) =
r

π
, m(r, f2) =

r

π
+ log 2,

m(r, g1) = n log r, m(r, g2) = n log r + log 2.

Thus

T (r, g1) ∼ T (r, g2), T (r, f1) ∼ T (r, f2) (r → ∞).

But

m(r, f1(g1)) =
1

2π

2π
∫

0

log+|ernεinθ

|dθ =
rn

π
,

and

m(r, f2(g2)) =
1

2π

2π
∫

0

log+|2e2rnεinθ

|dθ =
2rn

π
+ log 2.

Thus

lim
r→∞

T (r, f1(g1))

T (r, f2(g2))
= lim

r→∞

m(r, f1(g1))

m(r, f2(g2))
= 2.

This shows that T (r, f1(g1)) is not equivalent to T (r, f2(g2)) when r → ∞.

We now give sufficient conditions for (1) to hold.

Theorem 1. Let f1, f2 and g1, g2 be four transcendental entire functions with
T (r, f1) = O∗((log r)νe(log r)α

) and T (r, g1) = O∗((log rβ) (i.e., there exist four

positive constants K1, K2, K3 and K4 such that K1 ≤
T (r, f1)

(log r)νε(log r)α ≤ K2 and

K3 ≤
T (r, g1)

(log r)β
≤ K4). If T (r, f1) ∼ T (r, f2) and T (r, g1) ∼ T (r, g2) (r → ∞),

then

T (r, f1(g1)) ∼ T (r, f2(g2)) (r → ∞, r 6∈ E),

where ν > 0, 0 < α < 1, αβ < 1, and E is a set of finite logarithmic measure.

2. Some lemmas

Lemma 1 ([4]). Let f(z) be an entire function. For 0 ≤ r < R < ∞, we have

T (r, f) ≤ log+M(r, f) ≤
R + r

R − r
T (R, f).

Lemma 2 ([5]). Let f(z) and g(z) be two entire functions and g(0) = 0. Then
for all r > 0 we have

T (r, f(g)) ≤ T (M(r, g), f).
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Lemma 3 ([3]). Let f and g be two entire functions and g(0) = 0. Then

M(r, f(g)) ≥ M((1 − o(1)M(r, g), f) (r → ∞, r 6∈ E),

where E is a set of finite logarithmic measure of r.

Lemma 4 ([1]). Let f be an entire function of order zero and z = reiθ. Then,
for any ζ > 0 and η > 0, there exist R0 = R0(ζ, η) and k = k(ζ, η) such that for
all R > R0 it holds

log|f(reiθ)| − N(2R) − log|c| > −kQ(2R), ζR ≤ r ≤ R,

except in a set of circles enclosing the zeros of f , the sum of whose radii is at
most ηR. Here

Q(r) = r

∞
∫

r

n(t, 1/f)

t2
dt and N(r) =

r
∫

0

n(t, 1/f)

t
dt.

Lemma 5. Let f be a transcendental entire function with T (r, f) = O∗((log r)βe(log r)α
)

(0 < α < 1, β > 0) (i.e., there exist two positive constants K1 and K2 such that

K1 ≤
T (r, f1)

(log r)βe(log r)α ≤ K2. Then

1. T (r, f) ∼ log M(r, f) (r → ∞, r 6∈ E),

2. T (σr, f) ∼ T (r, f) (r → ∞, σ ≥ 2, r 6∈ E),

where E is a set of finite logarithmic measure.

Proof. We may assume f(0) = 1 (otherwise, we only need to make the transfor-
mation F (z) = f(z) − f(0) + 1). By Jeesen’s theorem,

N(r, 1/f) =

r
∫

0

n(t, 1/f)

t
dt =

1

2π

2π
∫

0

log|f(reiθ)|dθ ≤ log M(r, f)(2)

for r > 1 and A > 1. By (2) we have

n(r, 1/f)log A ≤

Ar
∫

r

n(t, 1/f)

t
dt ≤ N(Ar, 1/f) ≤ log M(Ar, f).

So

n(r, 1/f) ≤
log M(Ar, f)

log A
·(3)

Since T (r, f) = O∗((log r)βe(log r)α
) (0 < α < 1, β > 1), by Lemma 1 we get

log M(r, f) = O∗((log r)βe(log r)α

).(4)
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Take A = rσ(r) and σ(r) =
1

(log r)α
. By (3) we have

n(r, 1/f) ≤
log M(r1+σ(r), f)

σ(r)log r
·(5)

Therefore, putting r = eu we obtain

(log r1+σ(r))βe(log r1+σ(r))α

r1/2σ(r)log r
=

(

1 +
1

(log r)α

)β
(log r)βe

(1+ 1
(log r)α

)α(log r)α

r1/2(log r)1−α

=
(1 + 1/uα)βuβe(1+1/uα)αuα

(eu)1/2u1−α

=
(1 + 1/uα)β

euα( 1
2
u1−α

−(1+1/uα)α
−(α+β−1)u−α log u)

·(6)

Since 0 < α < 1 and β > 1, for sufficiently large values of u we have

1

2
u1−α − (1 + 1/uα)α − (α + β − 1)u−αlog u > 0

and
1

2
u1−α − (1 + 1/uα)α − (α + β − 1)u−αlog u increases. By (6), for sufficiently

large values of r,
(log r1+σ(r))βe(log r1+σ(r))α

r1/2σ(r)log r
decreases.

By (1) and (5) we have

Q(r) = r

+∞
∫

r

n(t, 1/f)

t2
dt ≤ r

+∞
∫

r

log M(t1+σ(t), f)

t2σ(t)log t
dt

= r

+∞
∫

r

O∗((log t1+σ(t))βe(log t1+σ(t))α
)

t2σ(t)log t
dt

= O∗

(

r

+∞
∫

r

(log t1+σ(t))βe(log t1+σ(t))α

t2σ(t)log t
dt

)

≤
r1/2O∗((log r1+σ(r))βe(log r1+σ(r))α

)

σ(r)log r

+∞
∫

r

t−3/2dt

=
2log M(r1+σ(r), f)

σ(r)log r
·(7)
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Note that

(log r1+σ(r))βe(log r1+σ(r))α

(log r)βe(log r)α = (1 + σ(r))βe(log r)α[(1+σ(r))α
−1]

= (1 + (σ(r))βe(log r)αασ(r)(1+o(1))

=
(

1 +
1

(log r)α

)β
e
(log r)αα 1

(log r)α
(1+o(1))

→ eα(≥ 1) (r → ∞).(8)

From (7) and (8) it follows that

Q(r)

log M(r, f)
≤

2log M(r1+σ(r), f)

σ(r)log rlog M(r, f)

≤
2K2(log r1+σ(r))βe(log r1+σ(r))α

K1σ(r)log r(log r)βe(log r)α

=
2K2

K1
·

1

(log r)1−α
·
(log r1+σ(r))βe(log r1+σ(r))α

(log r)βe(log r)α

→ 0 (r → ∞).

So

Q(r) = o(log M(r, f)).(9)

Since T (r, f) = O∗(log r)βe(log r)α
), the order ρ of f is equal to zero, n(r, 1/f) =

o(r) and

log M(r, f) ≤ log

+∞
∏

n=1

(1 + r/rn) =

+∞
∫

0

log (1 + r/`)dn(`, 1/f)

≤

+∞
∫

0

r

t
dn(t, 1/f) = r

+∞
∫

0

n(t, 1/f)

t(t + r)
dt

= r
(

τ
∫

0

+

+∞
∫

r

)n(t, 1/f)

t(t + r)
dt

≤ r
1

r

r
∫

0

n(t, 1/f)

t
dt + r

+∞
∫

r

n(t, 1/f)

t2
dt

= N(r) + Q(r).(10)



180 JIANWU SUN

So, from Lemma 4 and (9), (10) we obtain

log|f(reiθ)| > N(2R) − kQ(2R) (ζR ≤ r ≤ R, r 6∈ E)

= N(2R) + Q(2R) − (k + 1)Q(2R)

≥ log M(2R, f) − (k + 1) ◦ (log M(2R, f))

= log M(2R, f)(1 − o(1))(11)

≥ log M(r, f)(1 − o(1)),(12)

where E is a set of finite logarithmic measure.

On the other hand,

log|f(z)| ≤ log M(r, f) ≤ log M(σr, f) (|z| = r, σ ≥ 2).(13)

In (11), let 2R = σr, σ ≥ 2. Then from (11), (12) and (13) we get

log|f(z)| ∼ log M(σr, f) (r → ∞, r 6∈ E),(14)

log|f(z)| ∼ log M(r, t) (r → ∞), r 6∈ E).(15)

By (15), for sufficiently large values of r, we have

m(r, f) =
1

2π

2π
∫

0

log+|f(reiθ)|dθ =
1

2π

2π
∫

0

log M(r, f)(1 + o(1))dθ

= log M(r, f)(1 + o(1)) (r → ∞, r 6∈ E).

So

lim
r→∞

T (r, f)

log M(r, f)
= 1 (r 6∈ E).(16)

By (14) and (15), we get

log M(σr, f) ∼ log M(r, f) (r → ∞, r 6∈ E, σ ≥ 2).(17)

Hence, from (16) and (17) we obtain

T (σr, f) ∼ T (r, f) (r → ∞, r 6∈ E, σ ≥ 2).(18)

From (16) and (18) we get the desired conclusion.

3. Proof of Theorem 1

By Lemma 2 we have

T (r, f1(g1)) ≤ T (M(r, g1), f1) = O∗((log M(r, g1))
νe(log M(r,g1))α

).(19)

Since T (r, g1) = O∗((log r)β), by Lemma 1 we obtain

log M(r, g1) = O∗((log r)β).(20)
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So

T (r, f1(g1)) ≤ O∗((log M(r, g1))
νe(log M(r,g1))α

)

= O∗(O∗((log r)βνe(O∗((log r)β))α

))

= O∗(O∗((log r)βνeO∗((log r)αβ))).

Since O∗((log r)αβ) ≤ K(log r)αβ (K > 0), there exist r0 > 1 and µ > 0 (αβ <
µ < 1) such that for r > r0 we have K(log r)αβ < (log r)µ. So

O∗((log r)αβ) ≤ (log r)µ (αβ < µ < 1).

Similarly, we have

O∗((log r)βν) ≤ (log r)σ (βν < σ).

Thus

T (r, f1(g1)) < O∗((log r)σe(log r)µ

).

This implies that

T (r, f1(g1)) = O∗∗((log r)σe(log r)µ

) (0 < βν < σ, 0 < αβ < µ < 1).

(i.e., there exist two positive constants K ′, K ′′ such that K ′ ≤
T (r, f1)

(log r)σe(log r)µ ≤

K ′′).

Hence, by Lemma 5 we have

T (r, f1(g1)) ∼ log M(r, f1(g1)) (r → ∞, r 6∈ E),(21)

where E is a set of finite logarithmic measure, and

lim
r→∞

T
(1

8
M(r, g1), f1

)

/T (M(r, g1), f1) = 1 (r 6∈ E).(22)

On the other hand, we may assume that g1(0) = b, G(z) = g1(z)− b and F (z) =
f1(z + b). Then

G(0) = g1(0) − b = 0,

F (G(z)) = f1(G(z) + b) = f1(g1(z)).

By (21), (22), Lemma 3 and Lemma 5, for sufficiently large values of r, we
have
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T (r, f1(g1)) = T (r, F (G)) = log M(r, F (G))(1 + o(1))

≥ log M(1 − o(1))M(r,G), F )(1 + o(1))

≥ log M
(1

4
M(r,G), F

)

(1 + o(1))

= log M
(1

4
M(r, g1 − b), F

)

(1 + o(1))

≥ log M
(1

8
M(r, g1), f1

)

(1 + o(1))

= T
(1

8
M(r, g1), f1

)

(1 + o(1))

= T (M(r, g1), f1)(1 + o(1)) (r 6∈ E).(23)

Thus, from (19) and (20) it follows that

T (r, f1(g1)) ∼ T (M(r, g1), f1) (r → ∞, r 6∈ R).(24)

Since T (r, f2) ∼ T (r, f1), T (r, g2) ∼ T (r, g1) (r → ∞), we have

T (r, f2) = O∗((log r)νe(log r)α

)(1 + o(1)),

T (r, g2) = O∗((log r)β)(1 + o(1)).

Similarly,

T (r, f2(g2)) ∼ T (M(r, g2), f2) (r → ∞, r 6∈ E).(25)

Since T (r, g2) = O∗((log r)β), by Lemma 5 we obtain

log M(r, g2) = O∗((log r)β).(26)

Then there exist two constants K5 and K6 (K6 > K5 > 0), K6 > 1, such that

K5 ≤ log M(r, g2)/(log r)β ≤ K6.

Then

eK5(log r)β

≤ M(r, g2) ≤ eK6(log r)β

.(27)

Since T (r, g2) ∼ T (r, g1) (r → ∞) and T (r, g1) = O∗((log r)β), by Lemma 5 we
have

log M(r, g1) sin T (r, g1) ∼ T (r, g2) ∼ log M(r, g2) (r → ∞).

Therefore, for sufficiently small ε > 0, there exist r1 > r0 > 0 such that for r > r1

it holds

1 − ε <
log M(r, g1)

log M(r, g2)
< 1 + ε.

Take ε = 1/(log r)β. By (27),

M(r, g1) < (M(r, g2))
1+ε ≤ M(r, g2)e

K6ε(log r)β

= eK6M(r, g2),
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and

M(r, g1) > (M(r, g2))
1−ε ≥ e−K5M(r, g2) > 1/2(e−K5M(r, g2)).

Put δ = eK6 (δ > 2) and δ′ = 1/2(e−K5) (0 < δ′ < 1/2). We have

δ′M(r, g2) < M(r, g1) < δM(r, g2).(28)

By (28) and Lamma 5, we get

T (M(r, g1), f1) ≤ T (δM(r, g2), f1) = T (M(r, g2), f1)(1 + o(1)),

and

T (M(r, g1), f1) ≥ T (δ′M(r, g2), f1)

= T
( 1

δ′
δ′M(r, g2), f1

)

(1 + o(1))

= T (M(r, g2), f1)(1 + o(1)).

So

T (M(r, g1), f1) ∼ T (M(r, g2), f1) (r → ∞).(29)

Similarly we have

T (M(r, g1), f2) ∼ T (M(r, g2), f2) (r → ∞).(30)

Since T (r, f1) ∼ T (r, f2) (r → ∞), it holds

T (M(r, g1), f1) ∼ T (M(r, g1), f2) (r → ∞).

By (29) and (30),

T (M(r, g1), f1) ∼ T (M(r, g2), f2) (r → ∞).(31)

Combining (24), (25) and (31) we get

T (r, f1(g1)) ∼ T (r, f2(g2)) (r → ∞, r 6∈ E).

This completes the proof of Theorem 1.
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