GROWTH OF A CLASS OF COMPOSITE ENTIRE FUNCTIONS

JIANWU SUN

ABSTRACT. In this paper, we obtain the following results:

Let f_1 , f_2 and g_1 , g_2 be four transcendental entire functions with $T(r, f_1) = O^*((\log r)^{\nu} e^{(\log r)^{\alpha}})$ and $T(r, g_1) = O^*((\log r)^{\beta})$ (i.e., there exist four positive constants K_1 , K_2 , K_3 and K_4 such that $K_1 \leq \frac{T(r, f_1)}{(\log r)^{\nu} e^{(\log r)^{\alpha}}} \leq K_2$ and

$$K_{3} \leq \frac{T(r, g_{1})}{(\log r)^{\beta}} \leq K_{4}).$$

If $T(r, f_{1}) \sim T(r, f_{2}), \ T(r, g_{1}) \sim T(r, g_{2}) \ (r \to \infty), \text{ then}$
$$T(r, f_{1}(g_{1})) \sim T(r, f_{2}(g_{2})) \quad (r \to \infty, \ r \notin E)$$

where $\nu>0,\, 0<\alpha<1,\,\beta>1$ and $\alpha\beta<1$ and E is a set of finite logarithmic measure.

We solved a problem due to C. C. Yang concerning the characteristic functions of the composite functions.

1. INTRODUCTION

Chitai Chuang and C. C. Yang [2] proposed the following problem: Let f_1 , f_2 and g_1 , g_2 be entire functions. If $T(r, f_1) \sim T(r, f_2)$, $T(r, g_1) \sim T(r, g_2)$ $(r \to \infty)$, whether or not the relation

(1)
$$T(r, f_1(g_1)) \sim T(r, f_2(g_2)) \quad (r \to \infty),$$

holds?

If (1) does not hold, what conditions can assure that (1) holds?

Obviously, if f_1 is a polynomial, then (1) holds. However, we point out that (1) does not hold the general case.

Example 1. Let $f_1(z) = e^z$, $f_2(z) = 2e^z$ and $g_1(z) = z^n$, $g_2(z) = 2z^n$. Then we have

Received March 25, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 30D35.

Key words and phrases. Entire function, composition, growth.

$$f_1(g_1) = e^{z_n}, \quad f_2(g_2) = 2e^{2z^n}$$

$$m(r, f_1) = \frac{r}{\pi}, \quad m(r, f_2) = \frac{r}{\pi} + \log 2,$$

$$m(r, g_1) = n \log r, \quad m(r, g_2) = n \log r + \log 2.$$

Thus

$$T(r,g_1) \sim T(r,g_2), \quad T(r,f_1) \sim T(r,f_2) \quad (r \to \infty).$$

But

$$m(r, f_1(g_1)) = \frac{1}{2\pi} \int_{0}^{2\pi} \log^+ |e^{r^n \varepsilon^{in\theta}}| d\theta = \frac{r^n}{\pi},$$

and

$$m(r, f_2(g_2)) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |2e^{2r^n \varepsilon^{in\theta}}| d\theta = \frac{2r^n}{\pi} + \log 2.$$

Thus

$$\lim_{r \to \infty} \frac{T(r, f_1(g_1))}{T(r, f_2(g_2))} = \lim_{r \to \infty} \frac{m(r, f_1(g_1))}{m(r, f_2(g_2))} = 2$$

This shows that $T(r, f_1(g_1))$ is not equivalent to $T(r, f_2(g_2))$ when $r \to \infty$.

We now give sufficient conditions for (1) to hold.

Theorem 1. Let f_1 , f_2 and g_1 , g_2 be four transcendental entire functions with $T(r, f_1) = O^*((\log r)^{\nu} e^{(\log r)^{\alpha}})$ and $T(r, g_1) = O^*((\log r^{\beta}) \text{ (i.e., there exist four positive constants } K_1, K_2, K_3 \text{ and } K_4 \text{ such that } K_1 \leq \frac{T(r, f_1)}{(\log r)^{\nu} \varepsilon^{(\log r)^{\alpha}}} \leq K_2 \text{ and } K_3 \leq \frac{T(r, g_1)}{(\log r)^{\beta}} \leq K_4$). If $T(r, f_1) \sim T(r, f_2)$ and $T(r, g_1) \sim T(r, g_2)$ $(r \to \infty)$, then

$$T(r, f_1(g_1)) \sim T(r, f_2(g_2)) \quad (r \to \infty, \ r \notin E),$$

where $\nu > 0$, $0 < \alpha < 1$, $\alpha\beta < 1$, and E is a set of finite logarithmic measure.

2. Some Lemmas

Lemma 1 ([4]). Let f(z) be an entire function. For $0 \le r < R < \infty$, we have

$$T(r,f) \le \log^+ M(r,f) \le \frac{R+r}{R-r}T(R,f).$$

Lemma 2 ([5]). Let f(z) and g(z) be two entire functions and g(0) = 0. Then for all r > 0 we have

$$T(r, f(g)) \le T(M(r, g), f).$$

Lemma 3 ([3]). Let f and g be two entire functions and g(0) = 0. Then

$$M(r, f(g)) \ge M((1 - o(1)M(r, g), f) \quad (r \to \infty, \ r \notin E),$$

where E is a set of finite logarithmic measure of r.

Lemma 4 ([1]). Let f be an entire function of order zero and $z = re^{i\theta}$. Then, for any $\zeta > 0$ and $\eta > 0$, there exist $R_0 = R_0(\zeta, \eta)$ and $k = k(\zeta, \eta)$ such that for all $R > R_0$ it holds

$$\log|f(re^{i\theta})| - N(2R) - \log|c| > -kQ(2R), \quad \zeta R \le r \le R,$$

except in a set of circles enclosing the zeros of f, the sum of whose radii is at most ηR . Here

$$Q(r) = r \int_{r}^{\infty} \frac{n(t, 1/f)}{t^2} dt$$
 and $N(r) = \int_{0}^{r} \frac{n(t, 1/f)}{t} dt.$

Lemma 5. Let f be a transcendental entire function with $T(r, f) = O^*((\log r)^\beta e^{(\log r)^\alpha})$ $(0 < \alpha < 1, \beta > 0)$ (i.e., there exist two positive constants K_1 and K_2 such that $K_1 \le \frac{T(r, f_1)}{(\log r)^\beta e^{(\log r)^\alpha}} \le K_2$. Then 1. $T(r, f) \sim \log M(r, f)$ $(r \to \infty, r \notin E)$, 2. $T(\sigma r, f) \sim T(r, f)$ $(r \to \infty, \sigma \ge 2, r \notin E)$, where E is a set of finite logarithmic measure.

Proof. We may assume f(0) = 1 (otherwise, we only need to make the transformation F(z) = f(z) - f(0) + 1). By Jeesen's theorem,

(2)
$$N(r, 1/f) = \int_{0}^{r} \frac{n(t, 1/f)}{t} dt = \frac{1}{2\pi} \int_{0}^{2\pi} \log|f(re^{i\theta})| d\theta \le \log M(r, f)$$

for r > 1 and A > 1. By (2) we have

$$n(r,1/f)\log A \le \int_{r}^{Ar} \frac{n(t,1/f)}{t} dt \le N(Ar,1/f) \le \log M(Ar,f).$$

 So

(3)
$$n(r, 1/f) \le \frac{\log M(Ar, f)}{\log A} \cdot$$

Since $T(r, f) = O^*((\log r)^{\beta} e^{(\log r)^{\alpha}})$ $(0 < \alpha < 1, \beta > 1)$, by Lemma 1 we get

(4)
$$\log M(r,f) = O^*((\log r)^\beta e^{(\log r)^\alpha}).$$

Take $A = r^{\sigma(r)}$ and $\sigma(r) = \frac{1}{(\log r)^{\alpha}}$. By (3) we have

(5)
$$n(r, 1/f) \le \frac{\log M(r^{1+\sigma(r)}, f)}{\sigma(r) \log r} \cdot$$

Therefore, putting $r = e^u$ we obtain

$$\frac{(\log r^{1+\sigma(r)})^{\beta} e^{(\log r^{1+\sigma(r)})^{\alpha}}}{r^{1/2} \sigma(r) \log r} = \frac{\left(1 + \frac{1}{(\log r)^{\alpha}}\right)^{\beta} (\log r)^{\beta} e^{(1 + \frac{1}{(\log r)^{\alpha}})^{\alpha} (\log r)^{\alpha}}}{r^{1/2} (\log r)^{1-\alpha}} \\
= \frac{(1 + 1/u^{\alpha})^{\beta} u^{\beta} e^{(1 + 1/u^{\alpha})^{\alpha} u^{\alpha}}}{(e^{u})^{1/2} u^{1-\alpha}} \\
= \frac{(1 + 1/u^{\alpha})^{\beta}}{e^{u^{\alpha} (\frac{1}{2} u^{1-\alpha} - (1 + 1/u^{\alpha})^{\alpha} - (\alpha + \beta - 1)u^{-\alpha} \log u)}} \cdot$$
(6)

Since $0 < \alpha < 1$ and $\beta > 1$, for sufficiently large values of u we have

$$\frac{1}{2}u^{1-\alpha} - (1+1/u^{\alpha})^{\alpha} - (\alpha+\beta-1)u^{-\alpha}\log u > 0$$

and $\frac{1}{2}u^{1-\alpha} - (1+1/u^{\alpha})^{\alpha} - (\alpha+\beta-1)u^{-\alpha}\log u$ increases. By (6), for sufficiently large values of r, $\frac{(\log r^{1+\sigma(r)})^{\beta}e^{(\log r^{1+\sigma(r)})^{\alpha}}}{r^{1/2}\sigma(r)\log r}$ decreases.

By (1) and (5) we have

(7)

$$Q(r) = r \int_{r}^{+\infty} \frac{n(t, 1/f)}{t^2} dt \le r \int_{r}^{+\infty} \frac{\log M(t^{1+\sigma(t)}, f)}{t^2 \sigma(t) \log t} dt$$

$$= r \int_{r}^{+\infty} \frac{O^*((\log t^{1+\sigma(t)})^\beta e^{(\log t^{1+\sigma(t)})^\alpha})}{t^2 \sigma(t) \log t} dt$$

$$= O^* \left(r \int_{r}^{+\infty} \frac{(\log t^{1+\sigma(t)})^\beta e^{(\log t^{1+\sigma(t)})^\alpha}}{t^2 \sigma(t) \log t} dt \right)$$

$$\le \frac{r^{1/2} O^*((\log r^{1+\sigma(r)})^\beta e^{(\log r^{1+\sigma(r)})^\alpha})}{\sigma(r) \log r} \int_{r}^{+\infty} t^{-3/2} dt$$

$$= \frac{2\log M(r^{1+\sigma(r)}, f)}{\sigma(r) \log r} \cdot$$

Note that

$$\frac{(\log r^{1+\sigma(r)})^{\beta} e^{(\log r^{1+\sigma(r)})^{\alpha}}}{(\log r)^{\beta} e^{(\log r)^{\alpha}}} = (1+\sigma(r))^{\beta} e^{(\log r)^{\alpha} [(1+\sigma(r))^{\alpha}-1]} \\
= (1+(\sigma(r))^{\beta} e^{(\log r)^{\alpha} \alpha \sigma(r)(1+o(1))} \\
= \left(1+\frac{1}{(\log r)^{\alpha}}\right)^{\beta} e^{(\log r)^{\alpha} \alpha \frac{1}{(\log r)^{\alpha}}(1+o(1))} \\
\rightarrow e^{\alpha} (\geq 1) \quad (r \to \infty).$$
(8)

From (7) and (8) it follows that

$$\begin{split} \frac{Q(r)}{\log M(r,f)} &\leq \frac{2\log M(r^{1+\sigma(r)},f)}{\sigma(r)\log r\log M(r,f)} \\ &\leq \frac{2K_2(\log r^{1+\sigma(r)})^\beta e^{(\log r^{1+\sigma(r)})^\alpha}}{K_1\sigma(r)\log r(\log r)^\beta e^{(\log r)^\alpha}} \\ &= \frac{2K_2}{K_1} \cdot \frac{1}{(\log r)^{1-\alpha}} \cdot \frac{(\log r^{1+\sigma(r)})^\beta e^{(\log r^{1+\sigma(r)})^\alpha}}{(\log r)^\beta e^{(\log r)^\alpha}} \\ &\to 0 \quad (r \to \infty). \end{split}$$

 So

(9)
$$Q(r) = o(\log M(r, f)).$$

Since $T(r, f) = O^*(\log r)^\beta e^{(\log r)^\alpha}$, the order ρ of f is equal to zero, n(r, 1/f) = o(r) and

$$\log M(r,f) \leq \log \prod_{n=1}^{+\infty} (1+r/r_n) = \int_{0}^{+\infty} \log (1+r/\ell) dn(\ell, 1/f)$$
$$\leq \int_{0}^{+\infty} \frac{r}{t} dn(t, 1/f) = r \int_{0}^{+\infty} \frac{n(t, 1/f)}{t(t+r)} dt$$
$$= r \Big(\int_{0}^{\tau} + \int_{r}^{+\infty} \Big) \frac{n(t, 1/f)}{t(t+r)} dt$$
$$\leq r \frac{1}{r} \int_{0}^{r} \frac{n(t, 1/f)}{t} dt + r \int_{r}^{+\infty} \frac{n(t, 1/f)}{t^2} dt$$
$$= N(r) + Q(r).$$
(10)

So, from Lemma 4 and (9), (10) we obtain

(11)

$$\log|f(re^{i\theta})| > N(2R) - kQ(2R) \quad (\zeta R \le r \le R, \ r \notin E)$$

$$= N(2R) + Q(2R) - (k+1)Q(2R)$$

$$\ge \log M(2R, f) - (k+1) \circ (\log M(2R, f))$$

$$= \log M(2R, f)(1 - o(1))$$

(12) $\geq \log M(r, f)(1 - o(1)),$

where E is a set of finite logarithmic measure.

On the other hand,

(13)
$$\log|f(z)| \le \log M(r, f) \le \log M(\sigma r, f) \quad (|z| = r, \sigma \ge 2).$$

In (11), let $2R = \sigma r$, $\sigma \ge 2$. Then from (11), (12) and (13) we get

(14)
$$\log|f(z)| \sim \log M(\sigma r, f) \quad (r \to \infty, r \notin E),$$

(15)
$$\log|f(z)| \sim \log M(r,t) \quad (r \to \infty), r \notin E).$$

By (15), for sufficiently large values of r, we have

$$m(r,f) = \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |f(re^{i\theta})| d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \log M(r,f) (1+o(1)) d\theta$$
$$= \log M(r,f) (1+o(1)) \quad (r \to \infty, r \notin E).$$

 So

(16)
$$\lim_{r \to \infty} \frac{T(r, f)}{\log M(r, f)} = 1 \quad (r \notin E).$$

By (14) and (15), we get

(17)
$$\log M(\sigma r, f) \sim \log M(r, f) \quad (r \to \infty, r \notin E, \sigma \ge 2).$$

Hence, from (16) and (17) we obtain

(18)
$$T(\sigma r, f) \sim T(r, f) \quad (r \to \infty, r \notin E, \sigma \ge 2).$$

From (16) and (18) we get the desired conclusion.

3. Proof of Theorem 1

By Lemma 2 we have

(19)
$$T(r, f_1(g_1)) \le T(M(r, g_1), f_1) = O^*((\log M(r, g_1))^{\nu} e^{(\log M(r, g_1))^{\alpha}}).$$

Since $T(r, g_1) = O^*((\log r)^\beta)$, by Lemma 1 we obtain

(20)
$$\log M(r, g_1) = O^*((\log r)^{\beta}).$$

 So

$$T(r, f_1(g_1)) \leq O^*((\log M(r, g_1))^{\nu} e^{(\log M(r, g_1))^{\alpha}})$$

= $O^*(O^*((\log r)^{\beta\nu} e^{(O^*((\log r)^{\beta}))^{\alpha}}))$
= $O^*(O^*((\log r)^{\beta\nu} e^{O^*((\log r)^{\alpha\beta})})).$

Since $O^*((\log r)^{\alpha\beta}) \leq K(\log r)^{\alpha\beta}$ (K > 0), there exist $r_0 > 1$ and $\mu > 0$ $(\alpha\beta < \mu < 1)$ such that for $r > r_0$ we have $K(\log r)^{\alpha\beta} < (\log r)^{\mu}$. So

$$O^*((\log r)^{\alpha\beta}) \le (\log r)^{\mu} \quad (\alpha\beta < \mu < 1).$$

Similarly, we have

$$O^*((\log r)^{\beta\nu}) \le (\log r)^{\sigma} \quad (\beta\nu < \sigma).$$

Thus

$$T(r, f_1(g_1)) < O^*((\log r)^{\sigma} e^{(\log r)^{\mu}}).$$

This implies that

$$T(r, f_1(g_1)) = O^{**}((\log r)^{\sigma} e^{(\log r)^{\mu}}) \quad (0 < \beta\nu < \sigma, \ 0 < \alpha\beta < \mu < 1).$$

(i.e., there exist two positive constants K', K'' such that $K' \leq \frac{T(r, f_1)}{(\log r)^{\sigma} e^{(\log r)^{\mu}}} \leq K''$).

Hence, by Lemma 5 we have

(21)
$$T(r, f_1(g_1)) \sim \log M(r, f_1(g_1)) \quad (r \to \infty, r \notin E),$$

where E is a set of finite logarithmic measure, and

(22)
$$\lim_{r \to \infty} T\left(\frac{1}{8}M(r,g_1), f_1\right) / T(M(r,g_1), f_1) = 1 \quad (r \notin E).$$

On the other hand, we may assume that $g_1(0) = b$, $G(z) = g_1(z) - b$ and $F(z) = f_1(z+b)$. Then

$$G(0) = g_1(0) - b = 0,$$

$$F(G(z)) = f_1(G(z) + b) = f_1(g_1(z)).$$

By (21), (22), Lemma 3 and Lemma 5, for sufficiently large values of r, we have

(23)

$$T(r, f_{1}(g_{1})) = T(r, F(G)) = \log M(r, F(G))(1 + o(1)))$$

$$\geq \log M(1 - o(1))M(r, G), F)(1 + o(1))$$

$$\geq \log M\left(\frac{1}{4}M(r, G), F\right)(1 + o(1))$$

$$\geq \log M\left(\frac{1}{4}M(r, g_{1} - b), F\right)(1 + o(1))$$

$$\geq \log M\left(\frac{1}{8}M(r, g_{1}), f_{1}\right)(1 + o(1))$$

$$= T\left(\frac{1}{8}M(r, g_{1}), f_{1}\right)(1 + o(1))$$

$$= T(M(r, g_{1}), f_{1})(1 + o(1)) \quad (r \notin E).$$

Thus, from (19) and (20) it follows that

(24)
$$T(r, f_1(g_1)) \sim T(M(r, g_1), f_1) \quad (r \to \infty, r \notin R)$$

Since $T(r, f_2) \sim T(r, f_1), T(r, g_2) \sim T(r, g_1) \quad (r \to \infty)$, we have $T(r, f_2) = O^*((\log r)^{\nu} e^{(\log r)^{\alpha}})(1 + o(1)),$ $T(r, g_2) = O^*((\log r)^{\beta})(1 + o(1)).$

Similarly,

(25)
$$T(r, f_2(g_2)) \sim T(M(r, g_2), f_2) \quad (r \to \infty, r \notin E).$$

Since $T(r, g_2) = O^*((\log r)^\beta)$, by Lemma 5 we obtain

(26)
$$\log M(r, g_2) = O^*((\log r)^{\beta})$$

Then there exist two constants K_5 and K_6 ($K_6 > K_5 > 0$), $K_6 > 1$, such that

$$K_5 \le \log M(r, g_2) / (\log r)^\beta \le K_6.$$

Then

(27)
$$e^{K_5(\log r)^\beta} \le M(r, g_2) \le e^{K_6(\log r)^\beta}.$$

Since $T(r, g_2) \sim T(r, g_1)$ $(r \to \infty)$ and $T(r, g_1) = O^*((\log r)^{\beta})$, by Lemma 5 we have

$$\log M(r,g_1) \sin T(r,g_1) \sim T(r,g_2) \sim \log M(r,g_2) \quad (r \to \infty).$$

Therefore, for sufficiently small $\varepsilon > 0$, there exist $r_1 > r_0 > 0$ such that for $r > r_1$ it holds

$$1 - \varepsilon < \frac{\log M(r, g_1)}{\log M(r, g_2)} < 1 + \varepsilon.$$

Take $\varepsilon = 1/(\log r)^{\beta}$. By (27),

$$M(r,g_1) < (M(r,g_2))^{1+\varepsilon} \le M(r,g_2)e^{K_6\varepsilon(\log r)^{\beta}} = e^{K_6}M(r,g_2)e^{K_6\varepsilon(\log r)^{\beta}}$$

and

$$M(r,g_1) > (M(r,g_2))^{1-\varepsilon} \ge e^{-K_5} M(r,g_2) > 1/2(e^{-K_5} M(r,g_2)).$$

Put $\delta = e^{K_6}$ ($\delta > 2$) and $\delta' = 1/2(e^{-K_5})$ ($0 < \delta' < 1/2$). We have
(28) $\delta' M(r,g_2) < M(r,g_1) < \delta M(r,g_2).$

By (28) and Lamma 5, we get

$$T(M(r,g_1),f_1) \le T(\delta M(r,g_2),f_1) = T(M(r,g_2),f_1)(1+o(1)),$$

and

$$T(M(r,g_1), f_1) \ge T(\delta' M(r,g_2), f_1)$$

= $T\left(\frac{1}{\delta'}\delta' M(r,g_2), f_1\right)(1+o(1))$
= $T(M(r,g_2), f_1)(1+o(1)).$

 So

(29)
$$T(M(r,g_1),f_1) \sim T(M(r,g_2),f_1) \quad (r \to \infty).$$

Similarly we have

(30)
$$T(M(r,g_1),f_2) \sim T(M(r,g_2),f_2) \quad (r \to \infty)$$

Since $T(r,f_1) \sim T(r,f_2) \quad (r \to \infty)$, it holds

$$T(M(r, g_1), f_1) \sim T(M(r, g_1), f_2) \quad (r \to \infty).$$

By (29) and (30),

(31)
$$T(M(r,g_1),f_1) \sim T(M(r,g_2),f_2) \quad (r \to \infty).$$

Combining (24), (25) and (31) we get

$$T(r, f_1(g_1)) \sim T(r, f_2(g_2)) \quad (r \to \infty, r \notin E).$$

This completes the proof of Theorem 1. \square

References

- [1] M. L. Cartwight, Integral Function Cambridge University Press, 1956.
- [2] Chitai Chuang and C. C. Yang, The Fixpoint of Meromorphic and Factorization Theory, Beijing Univ. Press, 1988.
- [3] J. Clunie, The composition of entire and meromorphic functions, In: Mathematical Essays dedicated to A. J. Macintyre, Ohio Univ. Press, 1972, pp. 75-92.
- [4] W. K. Hayman, Meromorphic Functions, Oxford, 1964.
- [5] K. Niino and N. Suita, Growth of a composite function of entire functions, Kodai Math. J. 3 (1980), 374-379.

DEPARTMENT OF MATHEMATICS, HUAIYIN TEACHER'S COLLEGE, JIANGSU 223001, P. R. CHINA