MAI XUAN THAO

USING WAVELET DECOMPOSITIONS

ABSTRACT. In the present paper, we extend results of Dinh Dung [5] on nonlinear *n*-term L_q -approximation and non-linear widths to the Besov class $SB_{p,\theta}^{\omega}$ where $1 \leq p, q \leq \infty, 0 < \theta \leq \infty$, and ω is a given function of modulus of smoothness type.

1. INTRODUCTION

Recently it has been of great interest in non-linear *n*-term approximations. Among many papers on this topic we would like to mention [6], [7], [8] and [10] which are related to our paper. For brief surveys in non-linear *n*-term approximations and relevant problems the reader can see [4], [6].

Let X be a quasi-normed linear space and $\Phi = \{\varphi_k\}_{k=1}^{\infty}$ a family of elements in X. Denote by $M_n(\Phi)$ the set of all linear combinations φ of n free terms of the form

$$\varphi = \sum_{k \in Q} a_k \varphi_k,$$

where Q is a set of natural numbers having n elements. We also put $M_0(\Phi) = \{0\}$. Obviously, $M_n(\Phi)$ is a non-linear set. The approximation to an element $f \in X$ by elements of $M_n(\Phi)$ is called the *n*-term approximation to f with regard to the family Φ .

The error of this approximation is measured by

(1)
$$\sigma_n(f, \Phi, X) := \inf_{\varphi \in M_n(\Phi)} \|f - \varphi\|.$$

Let W be a subset in X. Then the worst case error of n-term approximation to the elements in W with regard to the family Φ , is given by

(2)
$$\sigma_n(W, \Phi, X) := \sup_{f \in W} \sigma_n(f, \Phi, X).$$

Received December 20, 2001; in revised form August 5, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 41A25, 41A46, 42C15.

Key words and phrases. Non-linear n-term approximation, non-linear n-width, wavelet decomposition, Besov class.

An algorithm of *n*-term approximation with regard to Φ can be represented as a mapping *S* from *W* into $M_n(\Phi)$. If *S* is continuous, then the algorithm is called continuous. Denote by $\mathcal{F}(X)$ the set of all bounded Φ such that for any finite-dimetional subspace $L \subset X$, the set $\Phi \cap L$ is finite. We will restrict the approximation by elements of $M_n(\Phi)$ only to those using continuous algorithms and in addition only for families Φ from $\mathcal{F}(X)$.

The *n*-term approximation with these restrictions leads to the non-linear *n*-width $\tau_n(W, X)$ which is given by

(3)
$$\tau_n(W, X) := \inf_{\Phi, S} \sup_{f \in W} \|f - S(f)\|,$$

where the infimum is taken over all continuous mappings from W into $M_n(\Phi)$ and all families $\Phi \in \mathcal{F}(X)$.

The non-linear *n*-width $\tau'_n(W, X)$ is defined similarly to $\tau_n(W, X)$, but the infimum is taken over all continuous mappings S from W into a finite-dimensional subset of $M_n(\Phi)$ or equivalently, over all continuous mappings S from W into $M_n(\Phi)$ and all finite families Φ in X.

Let l_{∞} be the normed space of all bounded sequences of numbers $x = \{x_k\}_{k=1}^{\infty}$ equipped with the norm

$$||x||_{\infty} := \sup_{1 \le k < \infty} |x_k|.$$

Denote by M_n the subset in l_{∞} of all $x \in l_{\infty}$ for which $x_k = 0, k \notin Q$. Consider the mapping R_{Φ} from the metric space M_n into $M_n(\Phi)$ which is defined as follows

$$R_{\Phi}(x) := \sum_{k \in Q} x_k \varphi_k$$

if $x = \{x_k\}_{k=1}^{\infty}$ and $x_k = 0, k \notin Q$.

Notice that $M_n(\Phi) = R_{\Phi}(M_n)$ and if the family Φ is bounded, then R_{Φ} is a continuous mapping. Any algorithm S of *n*-term approximation to f with regard to Φ , can be treated as a composition $S = R_{\Phi} \circ G$ for some mapping G from W into M_n . Therefore, if G is required to be continuous, then the algorithm S will also be continuous. These preliminary remarks are a basis for the notion of the non-linear *n*-width $\alpha_n(W, X)$ which is given by

(4)
$$\alpha_n(W, X) := \inf_{\Phi, G} \sup_{f \in W} \|f - R_{\Phi}(G(f))\|,$$

where the infimum is taken over all continuous mappings G from W into M_n and all bounded families Φ in X.

The non-linear widths τ_n , τ'_n , α_n were introduced by Dinh Dung [5]. There are other non-linear *n*-widths which are based on continuous algorithms of non-linear approximations, but different from *n*-term approximation. They are the Alexandroff *n*-width $a_n(W, X)$, the non-linear manifold *n*-width $\delta_n(W, X)$, introduced by DeVore, Howard and Micchelli [2], the non-linear *n*-width $\beta_n(W, X)$ (see [5] for its definition). All these non-linear *n*-widths are different. However, they possess some common properties and are closely related (see [6] for details). We now give a definition of Besov spaces. Let $1 \leq q \leq \infty$ and $\mathbf{T} := [-\pi, \pi]$ be the torus. Denote by $L_q = L_q(\mathbf{T})$ the normed space of functions on \mathbf{T} , equipped with the usual *p*-integral norm. Let

$$\omega_l(f,t)_q := \sup_{|h| < t} \left\| \Delta_h^l f \right\|_{L_q}$$

be the *l*-th modulus of smoothness of f, where the *l*-th difference $\Delta_h^l f$ is defined inductively by

$$\Delta_h^l := \Delta_h^1 \Delta_h^{l-1}$$

starting from

$$\Delta_h^1 f := f(\cdot + h/2) - f(\cdot - h/2)$$

The class MS_l of functions ω of modulus of smoothness type is defined as follows. It consists of all non-negative ω on $[0, \infty)$ such that

(i) $\omega(0) = 0$.

(ii)
$$\omega(t) \leq \omega(t')$$
 if $t \leq t'$.

(iii) $\omega(kt) \le k^{l}\omega(t)$ for k = 1, 2, 3, ...

(iv) ω satisfies Condition Z_l , that is, there exist a positive number a < l and positive constant C_l such that

$$\omega(t)t^{-a} \ge C_l \omega(h)h^{-a}, \quad 0 \le t \le h.$$

(v) ω satisfies Condition BS, that is, there exist a positive number b and positive constant C such that

$$\omega(t)t^{-b} \le C\omega(h)h^{-b}, \quad 0 \le t \le h \le 1.$$

Let $\omega \in MS_l$, $1 \le p \le \infty$, $0 < \theta \le \infty$. Denote by $B_{p,\theta}^{\omega}$ the space of all functions $f \in L_p$ for which the Besov semi-quasi norm

(5)
$$|f|_{B^{\omega}_{p,\theta}} := \begin{cases} \left(\int_{0}^{\infty} \left\{ \omega_l(f,t)_p/\omega(t) \right\}^{\theta} dt/t \right)^{1/\theta} & \text{for } \theta < \infty \\ \sup_{t>0} \left\{ \omega_l(f,t)_p/\omega(t) \right\} & \text{for } \theta = \infty \end{cases}$$

is finite.

The Besov quasi-norm is defined by

(6)
$$||f||_{B^{\omega}_{p,\theta}} := ||f||_p + |f|_{B^{\omega}_{p,\theta}}.$$

For $1 \leq p \leq \infty$, the definition of $B_{p,\theta}^{\omega}$ does not depend on l, it means for a given ω , (5) and (6) determine equivalent quasi-norms for all l such that $\omega \in MS_l$ (see [4]). Denote by $SB_{p,\theta}^{\omega}$ the unit ball of the Besov space $B_{p,\theta}^{\omega}$.

The trigometric polynomial

$$V_m(t) := \frac{1}{3m^2} \sum_{k=m}^{2m-1} D_k(t) = \frac{\sin\frac{mt}{2}\sin\frac{3mt}{2}}{3m^2\sin^2\left(\frac{t}{2}\right)}$$

is called the de la Vallée Poussin kernel of order m, where $D_m(t) = \sum_{|k| \le m} e^{ikt}$ is the Dirichlet kernel of order m.

We let

$$v_{k,s} := v_k \left(\cdot - \frac{2\pi s}{2^k} \right), \quad s = 0, 1, \dots, 2^k - 1$$

be the integer translates of the dyadic scaling functions

$$v_0 := 1, \quad v_k := V_{2^k - 1}; \quad k = 1, 2, \dots$$

Each function $f \in L_q$ has a wavelet decomposition

(7)
$$f = \sum_{k=0}^{\infty} \sum_{s=0}^{2^{k}-1} \lambda_{k,s} v_{k,s}$$

with the convergence in L_q , where $\lambda_{k,s}$ are certain coefficient functionals of f (see [4] for details).

Let V_k be the span of the functions $v_{k,s}$, $s = 0, 1, \ldots, 2^{k-1} - 1$. Then the family $\{V_k\}_{k=0}^{\infty}$ forms a multiresolution of L_q with the following properties:

- MR1. $V_k \subset V_{k'}$, for k < k'.
- MR2. $\bigcup_{k \in \mathbb{Z}} V_k$ is dense in L_p .

MR3. For k = 0, 1, ... dim $V_k = 2^k$ and the functions $v_{k,s} := v_k (.-2\pi s/2^k)$, $s = 0, 1, ..., 2^{k-1} - 1$, form a Riesz basis for V_k , it means there are positive constants C_q and C'_q such that

$$C_q 2^{-k/q} \|\{a_s\}\|_q \le \left\|\sum_{s=0}^{2^k-1} a_s v_k(.-s)\right\|_q \le C_q' 2^{-k/q} \|\{a_s\}\|_q$$

for all $\{a_s\}_{s=0}^{2^k-1} \in l_q^{2^k}$ (see [4]).

Let us give a wavelet decomposition and discrete characterization for the Besov space $B_{p,\theta}^{\omega}$ of functions on **T**. Let $1 \leq p < \infty$ and $0 < \theta \leq \infty$. A function $f \in L_p$ belongs to the Besov space on $B_{p,\theta}^{\omega}$ if f has a wavelet decomposition (7) and in addition the quasi-norm of the Besov space $B_{p,\theta}^{\omega}$ given in (6) is equivalent to the discrete quasi-norm

(8)
$$\|f\|_{B^{\omega}_{p,\theta}} \asymp \left(\sum_{k=0}^{\infty} \left(\left\|\{\lambda_{k,s}\}\right\|_{p}/2^{k/p}\omega(2^{-k})\right)^{\theta}\right)^{1/\theta}$$

(the sum is changed to the supremum when $\theta = \infty$).

For the space $B_{p,\theta}^r$, r > 0, a proof of the equivalence of quasi-norms and a contruction of continuous coefficient functionals $\lambda_{k,s}$ were given in [5]. In the general case they can be obtained similarly.

For *n*-term approximation of the functions from $SB_{p,\theta}^{\omega}$, we take the family of wavelets

$$V := \{ v_{k,s} : s = 0, 1, \dots, 2^k - 1; \quad k = 0, 1, 2, \dots \}.$$

Denote by γ_n any one of the non-linear *n*-widths τ_n , τ'_n , α_n , β_n , a_n and δ_n . We use the notations $a_+ := \max\{a, 0\}$; $A \simeq B$ if $A \ll B$ and $B \ll A$; and $A \ll B$ if $A \leq cB$ with *c* an absolute constant. We say that ω satisfies Condition R(p,q) if $\omega(t)t^{-(1/p-1/q)}$ satisfies Condition *BS*.

The main result of the present paper is the following

Theorem 1. Let $1 \le p, q \le \infty, 0 < \theta \le \infty$ and ω satisfy Condition R(p,q). Then we have

(9)
$$\sigma_n(SB^{\omega}_{p,\theta}, V, L_q) \asymp \gamma_n(SB^{\omega}_{p,\theta}, L_q) \asymp \omega(1/n).$$

The case $\omega(t) = t^{\alpha}$, $\alpha > 0$, of Theorem 1 was proved in [5]. To prove Theorem 1 we develop further the method of [5]. However, because the smoothness of the class $B^{\omega}_{p,\theta}$ is complicated, we have to overcome certain difficulties.

2. AUXILIARY RESULTS

In this section we give necessary auxiliaries for proving Theorem 1. For $0 , denote by <math>l_p^m$ the space of all sequence $x = \{x_k\}_{k=1}^m$ of numbers, equipped with the quasi-norm

$$\|\{x_k\}\|_{l_p^m} = \|x\|_{l_p^m} := \left(\sum_{k=1}^m |x_k|^p\right)^{1/p}$$

(the sum is changed to max when $p = \infty$).

Let
$$\mathcal{E} = \{e_k\}_{k=1}^m$$
 be the canonical basis in l_p^m . It means that $x = \sum_{k=1}^m x_k e_k$ for $x = \{x_k\}_{k=1}^m \in l_p^m$. We let the set $\{k_j\}_{j=1}^m$ be ordered so that $|x_{k_1}| \ge |x_{k_2}| \ge \cdots \ge |x_{k_j}| \ge \cdots \ge |x_{k_n}| \ge \cdots \ge |x_{k_m}|.$

The greedy algorithm G_n for the *n*-term approximation with regard to \mathcal{E} is defined by

$$G_n(x) := \sum_{j=1}^n x_{k_j} e_{k_j}.$$

Clearly, G_n is not continuous. However, the mapping

$$G_n^C(x) := \begin{cases} \sum_{j=1}^n (x_{k_j} - |x_{k_{n+1}}| \text{sign } x_{k_j}) e_{k_j}, & \text{for } p < q \\ \sum_{k=1}^n x_k e_k & \text{for } p \ge q, \end{cases}$$

defines a continuous algorithm of *n*-term approximation.

Denote by B_p^m the unit ball in l_p^m .

Lemma 1. Let $0 < p, q \leq \infty$. Then we have for any positive integer n < m

$$\sup_{x \in B_p^m} \left\| x - G_n(x) \right\|_{l_q^m} \le \sup_{x \in B_p^m} \left\| x - G_n^C(x) \right\|_{l_q^m} \le A_{p,q}(m,n),$$

where

$$A_{p,q}(m,n) := \begin{cases} n^{1/q-1/p} & \text{for } p < q\\ (m-n)^{1/q-1/p} & \text{for } p \ge q \end{cases}$$

Lemma 1 and the following two lemmas were proved in [7].

Lemma 2. Let $0 < q \leq \infty$ and L be a s-dimensional linear subspace in l_q^m $(s \leq m)$. Then we have for any positive integer n < s,

$$\sigma_n \left(B_{\infty}^m \cap L, \mathcal{E}, l_{\infty}^m \right) = 1$$

and for any positive integer n < s - 1,

$$\sigma_n \left(B_{\infty}^m \cap L, \mathcal{E}, l_q^m \right) \ge (m - n - 1)^{1/q}.$$

Lemma 3. Let $0 < q \leq \infty$ and $n < s \leq m$. Let L be a s-dimensional linear subspace in l_q^m and $P : l_q^m \longrightarrow L$ is a linear projector in l_q^m . Then we have

$$a_n(B_{\infty}^m \cap L, l_q^m) \ge ||P||^{-1}(m-n)^{1/q}.$$

3. Upper bounds

To prove the upper bound of $\sigma_n(SB_{p,\theta}^{\omega}, V, L_q)$, we explicitly construct a finite subset V^* of V and a positive homogeneous mapping $G^* : B_{p,\theta}^{\omega} \longrightarrow M_n$ such that

(10)
$$\sup_{f \in SB_{p,\theta}^{\omega}} \left\| f - S_n^*(f) \right\|_q \ll \omega (1/n),$$

where $S_n^* := R_{V^*} \circ G^*$. This means that the algorithm S^* of *n*-term approximation with regard to V is asymptotically optimal for σ_n .

Because $\| \cdot \|_{B^{\omega}_{p,\infty}} \leq C \| \cdot \|_{B^{\omega}_{p,\theta}}$ (for $0 < \theta < \infty$), the space $B^{\omega}_{p,\theta}$ can be considered as a subspace of the largest space $B^{\omega}_{p,\infty}$. Hence, it is sufficient to construct S^*_n for $H := SB^{\omega}_{p,\infty}$.

For each function

(11)
$$g = \sum_{s=0}^{2^{k}-1} a_{s} v_{k,s}$$

belonging to V_k , we have by MR3

(12)
$$||g||_q \approx 2^{-k/q} ||\{a_s\}||_q$$

Using the equivalence of quasi-norms (8) for H, from (7) we find that a function $f \in L_p$ belongs to H if f can be decomposed into the functions f_k by a series

(13)
$$f = \sum_{k=0}^{\infty} f_k,$$

where the functions

$$f_k = \sum_{s=0}^{2^k - 1} \lambda_{k,s} v_{k,s}$$

are from V_k and satisfy the condition

(14)
$$||f_k||_p \approx 2^{-k/p} ||\{\lambda_{k,s}\}||_{l_p^{2^k}} \le C\omega(2^{-k}), \quad k = 0, 1, 2, \dots$$

(see [4]).

For a non-negative number n, let $\{n_k\}$ be a sequence of non-negative integers such that

(15)
$$\sum_{k=0}^{\infty} n_k \le n$$

Let $\mathcal{E} = \{e_s\}_{s=0}^{2^k-1}$ be the canonical basis in $l_q^{2^k}$. For $a = \sum_{s=0}^{2^k-1} a_s e_s \in l_q^{2^k}$, we let the set $\{s_j\}_{j=0}^{2^k-1}$ be ordered so that

$$|a_{s_0}| \ge |a_{s_1}| \ge \dots \ge |a_{s_{n_k-1}}| \ge \dots \ge |a_{s_{2^{k}-1}}|.$$

Then, the greedy algorithm G_{n_k} for the n_k -term approximation with regard to \mathcal{E} is

(16)
$$G_{n_k}(a) := \sum_{j=0}^{n_k-1} a_{s_j} e_{s_j}$$

For any positive integer $n_k < 2^k$ and all $a \in B_q^{2^k}$, by Lemma 1 we have

(17)
$$\|a - G_{n_k}(a)\|_{l_q^{2^k}} \le A_{p,q}(2^k, n_k),$$

where

$$A_{p,q}(2^k, n_k) := \begin{cases} n_k^{1/q-1/p} & \text{for } p < q\\ (2^k - n_k)^{1/q-1/p} & \text{for } p \ge q. \end{cases}$$

Observe that the greedy algorithm G_{n_k} in $l_q^{2^k}$ corresponds to the greedy algorithm G'_{n_k} of n_k -term approximation in V_k which is given by

(18)
$$G'_{n_k}(g) := \sum_{j=0}^{n_k-1} a_{s_j} v_{k,s_j}$$

for a function represented as in (11). Because of the norm equivalence (12) for each function $g \in V_k$, we have

(19)
$$\left\| g - G'_{n_k}(g) \right\|_q \approx 2^{-k/q} \left\| \{a_s\} - G_{n_k}(\{a_s\}) \right\|_{l_q^{2^k}}$$

For each function $f \in H$ represented as in (13), from (19) we obtain

$$\begin{split} \left\| f_k - G'_{n_k}(f_k) \right\|_q &\asymp 2^{-k/q} \left\| \left\{ \lambda_{k,s} \right\} - G_{n_k}(\{\lambda_{k,s}\}) \right\|_{l_q^{2k}} \\ &\leq C.2^{k/p - k/q} \omega(2^{-k}) \left\| \left\{ \lambda_{k,s}^* \right\} - G_{n_k}\left(\left\{ \lambda_{k,s}^* \right\} \right) \right\|_{l_q^{2k}} \\ &\leq C.2^{k \left(1/p - 1/q \right)} \omega(2^{-k}) A_{p,q}(2^k, n_k), \end{split}$$

where

(20)
$$\lambda_{k,s}^* = \frac{\lambda_{k,s}}{C \cdot 2^{k/p} \omega(2^{-k})} \quad \text{and} \quad \left\{\lambda_{k,s}^*\right\} \in B_p^{2^k}.$$

Because ω satisfies Condition R(p,q), there exist $C_1 > 0$ and $\delta > 0$ such that for $k \ge k'$

(21)
$$\omega(2^{-k})(2^{-k})^{-(1/p-1/q)-\delta} \le C_1 \omega(2^{-k'})(2^{-k'})^{-(1/p-1/q)-\delta}.$$

Let us now select a sequence $\{n_k\}_{k=0}^{\infty}$ satisfying the condition (15). For simplicity we consider the case p < q (the other cases can be treated similarly). Fix a number ε so that $0 < \varepsilon < \delta/(1/p - 1/q)$. For a given natural number n, let the integer r be defined from the conditions $2^{r+2} \le n < 2^{r+3}$. Then an appropriate selection of $\{n_k\}_{k=0}^{\infty}$ is given by

(22)
$$n_k = \begin{cases} 2^k & \text{for } k \le r\\ \left[an2^{-\varepsilon(k-r)}\right] & \text{for } k > r \end{cases}$$

where $a = \frac{2^{\varepsilon} - 1}{2}$ and [t] denotes the integer part of t. Then we have

$$\sum_{k=0}^{\infty} n_k \le \sum_{k=0}^r 2^k + \sum_{k=r+1}^{\infty} an 2^{-\varepsilon(k-r)} = (2^{r+1} - 1) + \frac{an}{2^{\varepsilon} - 1} \le \frac{n}{2} + \frac{n}{2} = n.$$

This means that (15) is satisfied. We take a positive constant λ so that

$$\frac{1+\varepsilon}{\varepsilon}>\lambda>\frac{1/p-1/q+\delta}{\delta}$$

and put $k^* = [\lambda r]$.

We construct a mapping $S_k : H \longrightarrow M_{n_k}(V)$ as follows

$$S_k(f) := \begin{cases} G'_{n_k}(f_k) & \text{for } k \le k^* \\ 0 & \text{for } k > k^*. \end{cases}$$

Notice that for $k \leq r$, we have $S_k(f) = f_k$ and therefore,

(23)
$$||f_k - S_k(f)||_q = 0$$

Next, for $r < k \leq k^*$, from (20) we have

(24)
$$\left\|f_k - S_k(f)\right\|_q \le C 2^{k\left(1/p - 1/q\right)} \omega(2^{-k}) A_{p,q}(2^k, n_k),$$

and for $k > k^*$, we have

(25)
$$\left\| f_k - S_k(f) \right\|_q = \| f_k \|_q \le C' 2^{k \left(1/p - 1/q \right)} \omega(2^{-k}).$$

 Put

$$S_n^*(f) := \sum_{k=0}^{\infty} S_k(f) \text{ for } f = \sum_{k=0}^{\infty} f_k.$$

Then by (21), (23), (24) and (25) we get

(26)
$$\left\| f - S_n^*(f) \right\|_q \le \sum_{k=r+1}^{\infty} \left\| f_k - S_k(f) \right\|_q \le C^* \omega(2^{-k_0}) \asymp C^* \omega(1/n).$$

Put

$$G^*(f) := \{G'_{n_k}(f_k)\}_{k \le k^*} \text{ for } f = \sum_{k \le k^*} f_k \in H.$$

Then G^* is a positive homogeneous mapping H into M_n , and $S_n^* = R_{V^*} \circ G^*$, where $V^* := \{v_{k,s} : s = 0, 1, \dots, 2^k - 1; k \leq k^*\}$. From (26) we obtain (10). This also proves the upper bound of $\sigma_n(SB_{p,\theta}^{\omega}, V, L_q)$.

We now prove the upper bound

(27)
$$\gamma_n \left(SB^{\omega}_{p,\theta}, L_q \right) \ll \omega \left(1/n \right).$$

Using inequalities between α_n , τ_n , τ'_n , δ_n , β_n , and a_n (see [6]), we prove only for one of them, namely for α_n . If in (26), G'_{n_k} are replaced by $G^{c'}_{n_k}$, then S_n is a continuous algorithm of *n*-term approximation, which satisfy (14). Hence, we prove the upper bound of $\alpha_n(SB^{\omega}_{p,\theta}, L_q)$ and we receive (27). The upper bounds of (9) in Theorem 1 are proved.

4. Lower bounds

We first prove the lower bound for σ_n :

(28)
$$\sigma_n \left(SB_{p,\theta}^{\omega}, V, L_q \right) \gg \omega \left(1/n \right)$$

Because of the inequality $\|.\|_{\infty} \ge c\|.\|_p$ for $1 \le p < \infty$, it is sufficient to prove (28) for the case $p = \infty$. For a positive integer k, denote by B(k) the space of all trigonometric polynomials f of the form

$$f = \sum_{s=0}^{2^{\kappa}-1} \lambda_{k,s} v_{k,s},$$

and for $1 \leq \eta \leq \infty$, denote by $B(k)_{\eta}$ the subspace in L_{η} , which consists of all $f \in B(k)$. For $SB(k)_{\infty}$ the unit ball in $B(k)_{\infty}$, by (8) we have $\omega(2^{-k})SB(k)_{\infty} \subset aSB_{\infty,\theta}^{\omega}$ with some a > 0. Hence

(29)
$$\sigma_n(SB^{\omega}_{\infty,\theta}, V, L_q) \gg \omega(2^{-k})\sigma_n(SB(k)_{\infty}, V, L_q).$$

Let X be a normed space and Y a subspace of X, $W \subset X$, and let Φ be a family in X. If $P : X \longrightarrow Y$ is a linear projection such that $||P(f)|| \leq ||f||$ for

every $f \in X$, then $\sigma_n(W, \Phi, X) \geq \sigma_n(W, P(\Phi), Y)$. Applying this inequality to the linear projection

$$P(k,f) = \sum_{s=0}^{2^k - 1} \lambda_{k,s} v_{k,s}$$

in the space L_q , gives

(30)
$$\sigma_n(SB(k)_{\infty}, V, L_q) \ge \sigma_n(SB(k)_{\infty}, V', B(k)q),$$

where V' = P(k, V) (see [4]). From (29) and (30) we have

(31)
$$\sigma_n(SB^{\omega}_{\infty,\theta}, V, L_q) \gg \omega(2^{-k})\sigma_n(SB(k)_{\infty}, V', B(k)_q)$$

Let us give a lower bound for $\sigma_n(SB(k)_{\infty}, V', B(k)_q)$.

Define k = k(n) from the conditions

(32)
$$n \asymp 2^k \asymp \dim B(k) > 2n$$

From (8) we have

(33)
$$||f||_{B(k)_{\infty}} \asymp ||J(f)||_{l^{2^k}_{\infty}}, \quad ||f||_{B(k)_q} \asymp 2^{-k/q} ||J(f)||_{l^{2^k}_q},$$

where J is the positive homogeneous continuous mapping from $B(k)_q$ into $l_{\infty}^{2^k}$, given by

$$J(f) := \left\{ \lambda_{k,s} \right\}_{s=0}^{2^{k}-1} \text{ for } f = \sum_{s=0}^{2^{k}-1} \lambda_{k,s} v_{k,s}.$$

Clearly, $J(V') = \mathcal{E}'$ and $J(B(k)_q) = l_q^{2^k}$, where \mathcal{E}' is the canonical basis in $l_q^{2^k}$ (see [4]).

Also, if S is an algorithm of n-term approximation with regard to V' in $B(k)_q$, then $J \circ S$ will be an algorithm of n-term approximation with regard to \mathcal{E}' in $l_q^{2^k}$. Therefore, by (32), (33) and Lemma 2, we obtain

(34)
$$\sigma_n \left(SB(k)_{\infty}, V', B(k)_q \right) \approx 2^{-k/q} \sigma_n \left(B_{\infty}^{2^k}, \mathcal{E}', l_q^{2^k} \right) \geq 2^{-k/q} (m-n-1)^{1/q} \gg 1.$$

where $m \asymp \dim B(k) \asymp 2^k$. From (34) and (31) we obtain (28).

Because of inequalities between $\alpha_n, \tau_n, \tau'_n, \beta_n, a_n$, and δ_n (see [6]), it is enough to prove $a_n(SB^{\omega}_{p,\theta}, L_q) \gg \omega(1/n)$. It can be proved in the same way as the proof of the lower bound for $\sigma_n(SB^{\omega}_{p,\theta}, V, L_q)$, but by using Lemma 1 and Lemma 3. Thus, we have completed the proof of Theorem 1.

References

- [1] R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51–150.
- [2] R. DeVore, R. Howard, and C. Micchelli, Optimal non-linear approximation, Manuscripta Math. 63 (1989), 469–478.
- [3] R. DeVore, G. Lorentz, Constructive Approximation, Springer-Verlag, 1993.

- [4] Dinh Dung, Non-linear approximations using wavelet decompositions, Vietnam J. Math. 29 (2001), 197–224.
- [5] Dinh Dung, On non-linear n-widths and n-term approximation, Vietnam J. Math. 26 (1998), 165–176.
- [6] Dinh Dung, Continuous algorithms in n-term approximation and non-linear n-widths, J. Approx. Theory 102 (2000), 217–242.
- [7] Dinh Dung, Asymptotic orders of optimal non-linear approximations, East J. on Approx. 7 (2001), 55–76.
- [8] B. Kashin and V. Temlyakov, On best m-term approximation and the entropy of sets in the space L¹, Math. Notes 36 (1994), 1137–1157.
- [9] V. Temlyakov, Approximation of periodic functions, Nova Science Publishers, New York, 1993.
- [10] V. Temlyakov, Greedy algorithms with regard to the multivariate systems with a special structure, Constr. Approx. 16 (2000), 339–425.

Hong Duc University, Thanh Hoa, Vietnam