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ON NON-LINEAR APPROXIMATIONS OF

PERIODIC FUNCTIONS OF BESOV CLASSES

USING WAVELET DECOMPOSITIONS

MAI XUAN THAO

Abstract. In the present paper, we extend results of Dinh Dung [5] on non-
linear n-term Lq-approximation and non-linear widths to the Besov class SBω

p,θ

where 1 ≤ p, q ≤ ∞, 0 < θ ≤ ∞, and ω is a given function of modulus of
smoothness type.

1. Introduction

Recently it has been of great interest in non-linear n-term approximations.
Among many papers on this topic we would like to mention [6], [7], [8] and [10]
which are related to our paper. For brief surveys in non-linear n-term approxi-
mations and relevant problems the reader can see [4], [6].

Let X be a quasi-normed linear space and Φ = {ϕk}
∞
k=1 a family of elements

in X. Denote by Mn(Φ) the set of all linear combinations ϕ of n free terms of
the form

ϕ =
∑

k∈Q

akϕk,

where Q is a set of natural numbers having n elements. We also put M0(Φ) = {0}.
Obviously, Mn(Φ) is a non-linear set. The approximation to an element f ∈ X
by elements of Mn(Φ) is called the n-term approximation to f with regard to the
family Φ.

The error of this approximation is measured by

σn(f,Φ,X) := inf
ϕ∈Mn(Φ)

‖f − ϕ‖.(1)

Let W be a subset in X. Then the worst case error of n-term approximation
to the elements in W with regard to the family Φ, is given by

σn(W,Φ,X) := sup
f∈W

σn(f,Φ,X).(2)
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An algorithm of n-term approximation with regard to Φ can be represented as
a mapping S from W into Mn(Φ). If S is continuous, then the algorithm is
called continuous. Denote by F(X) the set of all bounded Φ such that for any
finite-dimetional subspace L ⊂ X, the set Φ ∩ L is finite. We will restrict the
approximation by elements of Mn(Φ) only to those using continuous algorithms
and in addition only for families Φ from F(X).

The n-term approximation with these restrictions leads to the non-linear n-
width τn(W,X) which is given by

τn(W,X) := inf
Φ,S

sup
f∈W

‖f − S(f)‖,(3)

where the infimum is taken over all continuous mappings from W into Mn(Φ)
and all families Φ ∈ F(X).

The non-linear n-width τ ′
n(W,X) is defined similarly to τn(W,X), but the

infimum is taken over all continuous mappings S from W into a finite-dimensional
subset of Mn(Φ) or equivalently, over all continuous mappings S from W into
Mn(Φ) and all finite families Φ in X.

Let l∞ be the normed space of all bounded sequences of numbers
x = {xk}

∞
k=1 equipped with the norm

‖x‖∞ := sup
1≤k<∞

|xk|.

Denote by Mn the subset in l∞ of all x ∈ l∞ for which xk = 0, k 6∈ Q. Consider
the mapping RΦ from the metric space Mn into Mn(Φ) which is defined as follows

RΦ(x) :=
∑

k∈Q

xkϕk

if x = {xk}
∞
k=1 and xk = 0, k 6∈ Q.

Notice that Mn(Φ) = RΦ(Mn) and if the family Φ is bounded, then RΦ is a
continuous mapping. Any algorithm S of n-term approximation to f with regard
to Φ, can be treated as a composition S = RΦ ◦ G for some mapping G from W
into Mn. Therefore, if G is required to be continuous, then the algorithm S will
also be continuous. These preliminary remarks are a basis for the notion of the
non-linear n-width αn(W,X) which is given by

αn(W,X) := inf
Φ,G

sup
f∈W

‖f − RΦ(G(f))‖,(4)

where the infimum is taken over all continuous mappings G from W into Mn and
all bounded families Φ in X.

The non-linear widths τn, τ ′
n, αn were introduced by Dinh Dung [5]. There are

other non-linear n-widths which are based on continuous algorithms of non-linear
approximations, but different from n-term approximation. They are the Alexan-
droff n-width an(W,X), the non-linear manifold n-width δn(W,X), introduced
by DeVore, Howard and Micchelli [2], the non-linear n-width βn(W,X) (see [5]
for its definition). All these non-linear n-widths are different. However, they
possess some common properties and are closely related (see [6] for details).



NON-LINEAR APPROXIMATIONS OF PERIODIC FUNCTIONS 149

We now give a definition of Besov spaces. Let 1 ≤ q ≤ ∞ and T := [−π, π] be
the torus. Denote by Lq = Lq(T) the normed space of functions on T, equipped
with the usual p-integral norm. Let

ωl(f, t)q := sup
|h|<t

∥

∥∆l
hf

∥

∥

Lq

be the l-th modulus of smoothness of f , where the l-th difference ∆l
hf is defined

inductively by

∆l
h := ∆1

h∆l−1
h

starting from

∆1
hf := f(· + h/2) − f(· − h/2).

The class MSl of functions ω of modulus of smoothness type is defined as follows.
It consists of all non-negative ω on [0,∞) such that

(i) ω(0) = 0.

(ii) ω(t) ≤ ω(t′) if t ≤ t′.

(iii) ω(kt) ≤ klω(t) for k = 1, 2, 3, . . .

(iv) ω satisfies Condition Zl, that is, there exist a positive number a < l and
positive constant Cl such that

ω(t)t−a ≥ Clω(h)h−a, 0 ≤ t ≤ h.

(v) ω satisfies Condition BS, that is, there exist a positive number b and
positive constant C such that

ω(t)t−b ≤ Cω(h)h−b, 0 ≤ t ≤ h ≤ 1.

Let ω ∈ MSl, 1 ≤ p ≤ ∞, 0 < θ ≤ ∞. Denote by Bω
p,θ the space of all functions

f ∈ Lp for which the Besov semi-quasi norm

∣

∣f
∣

∣

Bω
p,θ

:=











( ∞
∫

0

{

ωl(f, t)p/ω(t)
}θ

dt/t
)1/θ

for θ < ∞

sup
t>0

{

ωl(f, t)p/ω(t)
}

for θ = ∞
(5)

is finite.

The Besov quasi-norm is defined by

‖f‖Bω
p,θ

:= ‖f‖p + |f |Bω
p,θ

.(6)

For 1 ≤ p ≤ ∞, the definition of Bω
p,θ does not depend on l, it means for a given

ω, (5) and (6) determine equivalent quasi-norms for all l such that ω ∈ MSl (see
[4]). Denote by SBω

p,θ the unit ball of the Besov space Bω
p,θ.

The trigometric polynomial

Vm(t) :=
1

3m2

2m−1
∑

k=m

Dk(t) =
sin

mt

2
sin

3mt

2

3m2 sin2
( t

2

)
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is called the de la Vallée Poussin kernel of order m, where Dm(t) =
∑

|k|≤m

eikt is

the Dirichlet kernel of order m.

We let

vk,s := vk

(

. −
2πs

2k

)

, s = 0, 1, . . . , 2k − 1

be the integer translates of the dyadic scaling functions

v0 := 1, vk := V2k−1; k = 1, 2, . . .

Each function f ∈ Lq has a wavelet decomposition

f =

∞
∑

k=0

2k−1
∑

s=0

λk,svk,s(7)

with the convergence in Lq, where λk,s are certain coefficient functionals of f (see
[4] for details).

Let Vk be the span of the functions vk,s, s = 0, 1, . . . , 2k−1−1. Then the family
{

Vk

}∞

k=0
forms a multiresolution of Lq with the following properties:

MR1. Vk ⊂ Vk′ , for k < k′.

MR2.
⋃

k∈Z

Vk is dense in Lp.

MR3. For k = 0, 1,... dim Vk = 2k and the functions vk,s := vk

(

. − 2πs/2k
)

,

s = 0, 1, . . . , 2k−1 − 1, form a Riesz basis for Vk, it means there are positive
constants Cq and C ′

q such that

Cq2
−k/q

∥

∥

{

as

}
∥

∥

q
≤

∥

∥

∥

2k−1
∑

s=0

asvk(. − s)
∥

∥

∥

q
≤ C ′

q2
−k/q

∥

∥

{

as

}
∥

∥

q

for all
{

as

}2k−1

s=0
∈ l2

k

q (see [4]).

Let us give a wavelet decomposition and discrete characterization for the Besov
space Bω

p,θ of functions on T. Let 1 ≤ p < ∞ and 0 < θ ≤ ∞. A function f ∈ Lp

belongs to the Besov space on Bω
p,θ if f has a wavelet decomposition (7) and in

addition the quasi-norm of the Besov space Bω
p,θ given in (6) is equivalent to the

discrete quasi-norm

∥

∥f
∥

∥

Bω
p,θ

�
(

∞
∑

k=0

(
∥

∥

{

λk,s

}
∥

∥

p

/

2k/pω(2−k)
)θ

)1/θ
(8)

(the sum is changed to the supremum when θ = ∞).

For the space Br
p,θ, r > 0, a proof of the equivalence of quasi-norms and a

contruction of continuous coefficient functionals λk,s were given in [5]. In the
general case they can be obtained similarly.



NON-LINEAR APPROXIMATIONS OF PERIODIC FUNCTIONS 151

For n-term approximation of the functions from SBω
p,θ, we take the family of

wavelets

V :=
{

vk,s : s = 0, 1, . . . , 2k − 1; k = 0, 1, 2, . . .
}

.

Denote by γn any one of the non-linear n-widths τn, τ ′
n, αn, βn, an and δn. We

use the notations a+ := max{a, 0}; A � B if A � B and B � A; and A � B if
A ≤ cB with c an absolute constant. We say that ω satisfies Condition R(p, q) if

ω(t)t
−
(

1/p−1/q
)

+ satisfies Condition BS.

The main result of the present paper is the following

Theorem 1. Let 1 ≤ p, q ≤ ∞, 0 < θ ≤ ∞ and ω satisfy Condition R(p, q).
Then we have

σn

(

SBω
p,θ, V, Lq

)

� γn

(

SBω
p,θ, Lq

)

� ω
(

1/n
)

.(9)

The case ω(t) = tα, α > 0, of Theorem 1 was proved in [5]. To prove Theorem
1 we develop further the method of [5]. However, because the smoothness of the
class Bω

p,θ is complicated, we have to overcome certain difficulties.

2. Auxiliary results

In this section we give necessary auxiliaries for proving Theorem 1. For 0 <
p ≤ ∞, denote by lmp the space of all sequence x =

{

xk

}m

k=1
of numbers, equipped

with the quasi-norm

∥

∥

{

xk

}
∥

∥

lmp
=

∥

∥x
∥

∥

lmp
:=

(

m
∑

k=1

|xk|
p
)1/p

(the sum is changed to max when p = ∞).

Let E =
{

ek

}m

k=1
be the canonical basis in lmp . It means that x =

m
∑

k=1

xkek for

x =
{

xk

}m

k=1
∈ lmp . We let the set

{

kj

}m

j=1
be ordered so that

|xk1
| ≥ |xk2

| ≥ · · · ≥ |xkj
| ≥ · · · ≥ |xkn

| ≥ · · · ≥ |xkm
|.

The greedy algorithm Gn for the n-term approximation with regard to E is defined
by

Gn(x) :=

n
∑

j=1

xkj
ekj

.

Clearly, Gn is not continuous. However, the mapping

GC
n (x) :=















n
∑

j=1

(

xkj
− |xkn+1

∣

∣sign xkj

)

ekj
, for p < q

n
∑

k=1

xkek for p ≥ q,

defines a continuous algorithm of n-term approximation.

Denote by Bm
p the unit ball in lmp .
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Lemma 1. Let 0 < p, q ≤ ∞. Then we have for any positive integer n < m

sup
x∈Bm

p

∥

∥x − Gn(x)
∥

∥

lmq
≤ sup

x∈Bm
p

∥

∥x − GC
n (x)

∥

∥

lmq
≤ Ap,q(m,n),

where

Ap,q(m,n) :=

{

n1/q−1/p for p < q

(m − n)1/q−1/p for p ≥ q.

Lemma 1 and the following two lemmas were proved in [7].

Lemma 2. Let 0 < q ≤ ∞ and L be a s-dimensional linear subspace in lmq
(s ≤ m). Then we have for any positive integer n < s,

σn

(

Bm
∞ ∩ L, E , lm∞

)

= 1

and for any positive integer n < s − 1,

σn

(

Bm
∞ ∩ L, E , lmq

)

≥ (m − n − 1)1/q.

Lemma 3. Let 0 < q ≤ ∞ and n < s ≤ m. Let L be a s-dimensional linear

subspace in lmq and P : lmq −→ L is a linear projector in lmq . Then we have

an

(

Bm
∞ ∩ L, lmq

)

≥ ‖P‖−1(m − n)1/q.

3. Upper bounds

To prove the upper bound of σn(SBω
p,θ, V, Lq), we explicitly construct a finite

subset V ∗ of V and a positive homogeneous mapping G∗ : Bω
p,θ −→ Mn such

that

sup
f∈SBω

p,θ

∥

∥f − S∗
n(f)

∥

∥

q
� ω

(

1/n
)

,(10)

where S∗
n := RV ∗◦G∗. This means that the algorithm S∗ of n-term approximation

with regard to V is asymptotically optimal for σn.

Because ‖ . ‖Bω
p,∞

≤ C‖ . ‖Bω
p,θ

(for 0 < θ < ∞), the space Bω
p,θ can be considered

as a subspace of the largest space Bω
p,∞. Hence, it is sufficient to construct S∗

n

for H := SBω
p,∞.

For each function

g =

2k−1
∑

s=0

asvk,s(11)

belonging to Vk, we have by MR3

‖g‖q � 2−k/q
∥

∥

{

as

}
∥

∥

q
.(12)

Using the equivalence of quasi-norms (8) for H, from (7) we find that a function
f ∈ Lp belongs to H if f can be decomposed into the functions fk by a series

f =

∞
∑

k=0

fk,(13)
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where the functions

fk =

2k−1
∑

s=0

λk,svk,s

are from Vk and satisfy the condition

‖fk‖p � 2−k/p
∥

∥

{

λk,s

}∥

∥

l2k
p

≤ Cω(2−k), k = 0, 1, 2, . . .(14)

(see [4]).

For a non-negative number n, let {nk} be a sequence of non-negative integers
such that

∞
∑

k=0

nk ≤ n.(15)

Let E = {es}
2k−1
s=0 be the canonical basis in l2

k

q . For a =
2k−1
∑

s=0
ases ∈ l2

k

q , we let the

set {sj}
2k−1
j=0 be ordered so that

|as0
| ≥ |as1

| ≥ · · · ≥ |asnk−1
| ≥ · · · ≥ |as

2k−1
|.

Then, the greedy algorithm Gnk
for the nk-term approximation with regard to E

is

Gnk
(a) :=

nk−1
∑

j=0

asj
esj

.(16)

For any positive integer nk < 2k and all a ∈ B2k

q , by Lemma 1 we have

∥

∥a − Gnk
(a)

∥

∥

l2k
q

≤ Ap,q(2
k, nk),(17)

where

Ap,q(2
k, nk) :=

{

n
1/q−1/p
k for p < q

(2k − nk)
1/q−1/p for p ≥ q.

Observe that the greedy algorithm Gnk
in l2

k

q corresponds to the greedy algorithm

G′
nk

of nk-term approximation in Vk which is given by

G′
nk

(g) :=

nk−1
∑

j=0

asj
vk,sj

(18)

for a function represented as in (11). Because of the norm equivalence (12) for
each function g ∈ Vk, we have

∥

∥g − G′
nk

(g)
∥

∥

q
� 2−k/q

∥

∥

{

as

}

− Gnk

({

as

})
∥

∥

l2k
q

.(19)
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For each function f ∈ H represented as in (13), from (19) we obtain
∥

∥fk − G′
nk

(fk)
∥

∥

q
� 2−k/q

∥

∥

{

λk,s

}

− Gnk
({λk,s})

∥

∥

l2k
q

≤ C.2k/p−k/qω(2−k)
∥

∥

{

λ∗
k,s

}

− Gnk

({

λ∗
k,s

})
∥

∥

l2k
q

≤ C.2k
(

1/p−1/q
)

ω(2−k)Ap,q(2
k, nk),

where

λ∗
k,s =

λk,s

C.2k/pω(2−k)
and

{

λ∗
k,s

}

∈ B2k

p .(20)

Because ω satisfies Condition R(p, q), there exist C1 > 0 and δ > 0 such that
for k ≥ k′

ω(2−k)(2−k)−
(

1/p−1/q
)

−δ ≤ C1ω(2−k′

)(2−k′

)−
(

1/p−1/q
)

−δ.(21)

Let us now select a sequence
{

nk

}∞

k=0
satisfying the condition (15). For sim-

plicity we consider the case p < q (the other cases can be treated similarly). Fix
a number ε so that 0 < ε < δ

/

(1/p − 1/q). For a given natural number n, let the

integer r be defined from the conditions 2r+2 ≤ n < 2r+3. Then an appropriate
selection of

{

nk

}∞

k=0
is given by

nk =

{

2k for k ≤ r
[

an2−ε(k−r)
]

for k > r,
(22)

where a =
2ε − 1

2
and [t] denotes the integer part of t. Then we have

∞
∑

k=0

nk ≤

r
∑

k=0

2k +

∞
∑

k=r+1

an2−ε(k−r) = (2r+1 − 1) +
an

2ε − 1
≤

n

2
+

n

2
= n.

This means that (15) is satisfied. We take a positive constant λ so that

1 + ε

ε
> λ >

1/p − 1/q + δ

δ

and put k∗ = [λr].

We construct a mapping Sk : H −→ Mnk
(V ) as follows

Sk(f) :=

{

G′
nk

(fk) for k ≤ k∗

0 for k > k∗.

Notice that for k ≤ r, we have Sk(f) = fk and therefore,

‖fk − Sk(f)‖q = 0.(23)

Next, for r < k ≤ k∗, from (20) we have

∥

∥fk − Sk(f)
∥

∥

q
≤ C2k

(

1/p−1/q
)

ω(2−k)Ap,q(2
k, nk),(24)
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and for k > k∗, we have
∥

∥fk − Sk(f)
∥

∥

q
= ‖fk‖q ≤ C ′2k

(

1/p−1/q
)

ω(2−k).(25)

Put

S∗
n(f) :=

∞
∑

k=0

Sk(f) for f =

∞
∑

k=0

fk.

Then by (21), (23), (24) and (25) we get

∥

∥f − S∗
n(f)

∥

∥

q
≤

∞
∑

k=r+1

∥

∥fk − Sk(f)
∥

∥

q
≤ C∗ω(2−k0) � C∗ω

(

1/n
)

.(26)

Put

G∗(f) :=
{

G′
nk

(fk)
}

k≤k∗
for f =

∑

k≤k∗

fk ∈ H.

Then G∗ is a positive homogeneous mapping H into Mn, and S∗
n = RV ∗ ◦ G∗,

where V ∗ := {vk,s : s = 0, 1, . . . , 2k − 1; k ≤ k∗}. From (26) we obtain (10).
This also proves the upper bound of σn

(

SBω
p,θ, V, Lq

)

.

We now prove the upper bound

γn

(

SBω
p,θ, Lq

)

� ω
(

1/n
)

.(27)

Using inequalities between αn, τn, τ ′
n, δn, βn, and an (see [6]), we prove only

for one of them, namely for αn. If in (26), G′
nk

are replaced by Gc′
nk

, then Sn is
a continuous algorithm of n-term approximation, which satisfy (14). Hence, we
prove the upper bound of αn

(

SBω
p,θ, Lq

)

and we receive (27). The upper bounds

of (9) in Theorem 1 are proved.

4. Lower bounds

We first prove the lower bound for σn:

σn

(

SBω
p,θ, V, Lq

)

� ω
(

1/n
)

.(28)

Because of the inequality ‖ . ‖∞ ≥ c‖ . ‖p for 1 ≤ p < ∞, it is sufficient to prove
(28) for the case p = ∞. For a positive integer k, denote by B(k) the space of all
trigonometric polynomials f of the form

f =

2k−1
∑

s=0

λk,svk,s,

and for 1 ≤ η ≤ ∞, denote by B(k)η the subspace in Lη, which consists of all

f ∈ B(k). For SB(k)∞ the unit ball in B(k)∞, by (8) we have ω(2−k)SB(k)∞ ⊂
aSBω

∞,θ with some a > 0. Hence

σn(SBω
∞,θ, V, Lq) � ω(2−k)σn(SB(k)∞, V, Lq).(29)

Let X be a normed space and Y a subspace of X, W ⊂ X, and let Φ be a
family in X. If P : X −→ Y is a linear projection such that ‖P (f)‖ ≤ ‖f‖ for
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every f ∈ X, then σn(W,Φ,X) ≥ σn(W,P (Φ), Y ). Applying this inequality to
the linear projection

P (k, f) =

2k−1
∑

s=0

λk,svk,s

in the space Lq, gives

σn(SB(k)∞, V, Lq) ≥ σn(SB(k)∞, V ′, B(k)q
)

,(30)

where V ′ = P (k, V ) (see [4]). From (29) and (30) we have

σn(SBω
∞,θ, V, Lq) � ω(2−k)σn(SB(k)∞, V ′, B(k)q

)

.(31)

Let us give a lower bound for σn(SB(k)∞, V ′, B(k)q).

Define k = k(n) from the conditions

n � 2k � dim B(k) > 2n.(32)

From (8) we have

‖f‖B(k)∞ � ‖J(f)‖
l2k
∞

, ‖f‖B(k)q
� 2−k/q

∥

∥J(f)
∥

∥

l2k
q

,(33)

where J is the positive homogeneous continuous mapping from B(k)q into l2
k

∞ ,
given by

J(f) :=
{

λk,s

}2k−1

s=0
for f =

2k−1
∑

s=0

λk,svk,s.

Clearly, J(V ′) = E ′ and J
(

B(k)q
)

= l2
k

q , where E ′ is the canonical basis in l2
k

q

(see [4]).

Also, if S is an algorithm of n-term approximation with regard to V ′ in B(k)q,

then J ◦S will be an algorithm of n-term approximation with regard to E ′ in l2
k

q .
Therefore, by (32), (33) and Lemma 2, we obtain

σn

(

SB(k)∞, V ′, B(k)q
)

� 2−k/qσn

(

B2k

∞ , E ′, l2
k

q

)

≥ 2−k/q(m − n − 1)1/q � 1.(34)

where m � dim B(k) � 2k. From (34) and (31) we obtain (28).

Because of inequalities between αn, τn, τ ′
n, βn, an, and δn (see [6]), it is enough

to prove an(SBω
p,θ, Lq) � ω

(

1/n
)

. It can be proved in the same way as the proof

of the lower bound for σn(SBω
p,θ, V, Lq), but by using Lemma 1 and Lemma 3.

Thus, we have completed the proof of Theorem 1.
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