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ON NON-LINEAR APPROXIMATIONS OF
PERIODIC FUNCTIONS OF BESOV CLASSES
USING WAVELET DECOMPOSITIONS

MAI XUAN THAO

ABSTRACT. In the present paper, we extend results of Dinh Dung [5] on non-
linear n-term Lq-approximation and non-linear widths to the Besov class SB;;
where 1 < p, ¢ < 00, 0 < 0 < o0, and w is a given function of modulus of
smoothness type.

1. INTRODUCTION

Recently it has been of great interest in non-linear n-term approximations.
Among many papers on this topic we would like to mention [6], [7], [8] and [10]
which are related to our paper. For brief surveys in non-linear n-term approxi-
mations and relevant problems the reader can see [4], [6].

Let X be a quasi-normed linear space and ® = {¢1}72; a family of elements
in X. Denote by M, (®) the set of all linear combinations ¢ of n free terms of

the form
= arer,
ke@

where () is a set of natural numbers having n elements. We also put My(®) = {0}.
Obviously, M, (®) is a non-linear set. The approximation to an element f € X
by elements of M, (®) is called the n-term approximation to f with regard to the
family ®.

The error of this approximation is measured by

1 n(f, ®,X):= inf — o]
0 nn(£.0.X) = it |f gl

Let W be a subset in X. Then the worst case error of n-term approximation
to the elements in W with regard to the family @, is given by

(2) on(W,®, X) := sup o,(f, , X).
feEW
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An algorithm of n-term approximation with regard to ® can be represented as
a mapping S from W into M, (®). If S is continuous, then the algorithm is
called continuous. Denote by F(X) the set of all bounded ® such that for any
finite-dimetional subspace L C X, the set ® N L is finite. We will restrict the
approximation by elements of M, (®) only to those using continuous algorithms
and in addition only for families ® from F(X).

The n-term approximation with these restrictions leads to the non-linear n-
width 7,,(W, X)) which is given by

(3) Ta(W, X) = inf sup |[f = S(f);
S few

where the infimum is taken over all continuous mappings from W into M,,(P)
and all families ® € F(X).

The non-linear n-width 7),(W, X) is defined similarly to 7,,(W, X), but the
infimum is taken over all continuous mappings S from W into a finite-dimensional
subset of M, (®) or equivalently, over all continuous mappings S from W into
M, (®) and all finite families ® in X.

Let I be the normed space of all bounded sequences of numbers
x = {x}72, equipped with the norm
7]l := sup |zl
1<k<oo
Denote by M,, the subset in I, of all x € I, for which z; = 0, k ¢ Q). Consider
the mapping Rg from the metric space M, into M, (®) which is defined as follows

Ro(z) =) ppy
ke@
ife={ap}p2, and z, =0, k € Q.

Notice that M, (®) = Re(M,) and if the family & is bounded, then Ry is a
continuous mapping. Any algorithm S of n-term approximation to f with regard
to @, can be treated as a composition S = Rg o G for some mapping G from W
into M,,. Therefore, if G is required to be continuous, then the algorithm S will
also be continuous. These preliminary remarks are a basis for the notion of the
non-linear n-width «, (W, X) which is given by

(4) an(W, X) := %?é;gg |f = Ra(G(f)),

where the infimum is taken over all continuous mappings G from W into M, and
all bounded families ® in X.

The non-linear widths 7,,, 7,,, oy, were introduced by Dinh Dung [5]. There are
other non-linear n-widths which are based on continuous algorithms of non-linear
approximations, but different from n-term approximation. They are the Alexan-
droff n-width a, (W, X), the non-linear manifold n-width 6, (W, X), introduced
by DeVore, Howard and Micchelli [2], the non-linear n-width 3, (W, X) (see [5]
for its definition). All these non-linear n-widths are different. However, they
possess some common properties and are closely related (see [6] for details).
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We now give a definition of Besov spaces. Let 1 < ¢ < oo and T := [—m, 7] be
the torus. Denote by L, = L,(T) the normed space of functions on T, equipped
with the usual p-integral norm. Let

w(f.1)g = sup [|AL 7|,
|h|<t

be the [-th modulus of smoothness of f, where the [-th difference Aﬁl f is defined
inductively by
A}, = AGAL
starting from
ARf = f(-+h/2) = (- = D/2).

The class M S of functions w of modulus of smoothness type is defined as follows.
It consists of all non-negative w on [0, 00) such that

(i) w(0) = 0.

(i) wt) <w(t)ift <t

(iil) w(kt) < klw(t) for k =1,2,3,...

(iv) w satisfies Condition Z;, that is, there exist a positive number a < [ and
positive constant C such that

wt)t™* > Cw(h)h™, 0<t<h.

(v) w satisfies Condition BS, that is, there exist a positive number b and
positive constant C' such that

wt)t b < Cwh)h™®, 0<t<h<1.

Letwe MS;, 1 <p<oo,0< 60 < oo. Denote by By the space of all functions
f € L, for which the Besov semi-quasi norm
[o¢]

(Of {wz(ﬁt)p/w(t)}edt/t)l/g for 6 < oo
Sup {wl(fat)p/w(t)} for 6 = oo

t>0

(5) |f‘B;’!9 =

is finite.

The Besov quasi-norm is defined by

(6) 1P, o= 1l + 1 Fl5e,.
For 1 < p < oo, the definition of By does not depend on [, it means for a given
w, (5) and (6) determine equivalent quasi-norms for all [ such that w € M S; (see
[4]). Denote by SB;, the unit ball of the Besov space By.

The trigometric polynomial

.omt . 3mt
1 2m—1 sin 7 sin T
Vin(t) = — Z Dy(t) = —=—~—
2 L, /t
k=m 3m?2sin (5)
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is called the de la Vallée Poussin kernel of order m, where D,,(t) = Y. e*is
|k|<m
the Dirichlet kernel of order m.

We let
2rs
ok

be the integer translates of the dyadic scaling functions

vkﬁ::vk(.— ), s:O,l,...,Qk—l

vo:=1, wvp:=Vo_;; k=12,...
Each function f € Ly has a wavelet decomposition

oo 2k—1

(7) f = Z Z )\k,svk,s

k=0 s=0
with the convergence in L,, where \;, ¢ are certain coefficient functionals of f (see
[4] for details).

Let Vj, be the span of the functions v, 4, s = 0,1,... , 251 _1. Then the family
{Vk}zo:() forms a multiresolution of L, with the following properties:

MR1. Vi, C Vp, for k < K.
MR2. | Vi is dense in L.

keZ
MR3. For k=0,1,... dim Vj, = 2" and the functions vy s := vg(. — 27ms/2"),
s = 0,1,...,281 — 1, form a Riesz basis for Vj, it means there are positive

constants C, and C’(’I such that

2k_1

C o}, < || 3 et~ )], < )],
s=0

for all {as}ikzgl € lgk (see [4]).

Let us give a wavelet decomposition and discrete characterization for the Besov
space By, of functions on T. Let 1 < p < 00 and 0 <0 < oo. A function f € L,
belongs to the Besov space on B}y if f has a wavelet decomposition (7) and in
addition the quasi-norm of the Besov space By given in (6) is equivalent to the
discrete quasi-norm

oo

- 1/0
®) 14115, = (kzo (1w}, /2 7w(27))°)
(the sum is changed to the supremum when 6 = co).

For the space B; g» 7 > 0, a proof of the equivalence of quasi-norms and a
contruction of continuous coefficient functionals A\j s were given in [5]. In the
general case they can be obtained similarly.
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For n-term approximation of the functions from SBy,, we take the family of
wavelets

Vi={v,s:s=0,1,....,2"~1; k=0,1,2,... }.

Denote by 7, any one of the non-linear n-widths 7, 7,,, ap, Bn, a, and d,. We
use the notations a := max{a,0}; A< Bif A< Band B < A; and A < B if
A < ¢B with ¢ an absolute constant. We say that w satisfies Condition R(p, q) if
w(t)t (l/p_l/q)+ satisfies Condition BS.

The main result of the present paper is the following

Theorem 1. Let 1 < p, ¢ < o0, 0 < § < 00 and w satisfy Condition R(p,q).
Then we have

(9) 0n(SBy g, V, Lg) < 1 (SByg, Lg) < w(1/n).
The case w(t) = t%, o > 0, of Theorem 1 was proved in [5]. To prove Theorem

1 we develop further the method of [5]. However, because the smoothness of the
class B;;’(, is complicated, we have to overcome certain difficulties.

2. AUXILIARY RESULTS

In this section we give necessary auxiliaries for proving Theorem 1. For 0 <
p < oo, denote by I;)" the space of all sequence z = {xk}Zzl of numbers, equipped
with the quasi-norm

Il = el = (3 bur)”

(the sum is changed to max when p = 00).
m
Let £ = {ek};nzl be the canonical basis in [}". It means that x = kzl xep for
T = {xk}Zzl S lg”. We let the set {k:j };n:l be ordered so that
o e T I o = I . B

The greedy algorithm G,, for the n-term approximation with regard to £ is defined
by

n
Gp(x) = Zxkjekj.
j=1
Clearly, G, is not continuous. However, the mapping

n
C Z:l (xkj - ‘mkn-‘rl ‘Sign mkj)ekja for p<q
G, (x) =<',
2 TkCk for p>gq,
k=1

defines a continuous algorithm of n-term approximation.
Denote by B)" the unit ball in [;".
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Lemma 1. Let 0 < p,q < 0co. Then we have for any positive integer n < m

sup ||z — Gn(a:)Hlm < sup ||z — Gg(a:)Hlm < A, 4(m,n),
$€B;" q wEB;” q

where
A ) nl/a=1/p for p<yq
m,n) =
Pa (m —n)/=YP for p>gq.
Lemma 1 and the following two lemmas were proved in [7].

Lemma 2. Let 0 < g < o0 and L be a s-dimensional linear subspace in lg*
(s <m). Then we have for any positive integer n < s,

on(BRNL,EIL) =1
and for any positive integer n < s — 1,
on(BENLEL) > (m—n—1)Y1.

Lemma 3. Let 0 < ¢ < 0o andn < s < m. Let L be a s-dimensional linear

subspace in Ij* and P : " — L is a linear projector in lj*. Then we have
an (B2 N L) > [P~ (m = n)1/2.

3. UPPER BOUNDS

To prove the upper bound of 0,(SB¥,,V, L,), we explicitly construct a finite

p,0”
subset V* of V' and a positive homogeneous mapping G* : ;J ¢ — M, such
that
(10) sup ||£ = Sa(h), < w(i/n),

fesBz,
where S := Ry+oG*. This means that the algorithm S™* of n-term approximation
with regard to V is asymptotically optimal for o,.

Because | . |y, < C|. HB;Q (for 0 < 6 < 00), the space B}, can be considered
as a subspace of the largest space By . Hence, it is sufficient to construct Sy
for H := SBy ..

For each function

2k—1

(11) g = Z A5V, s
s=0

belonging to Vi, we have by MR3

(12) lgllg = 274 {as}],-

Using the equivalence of quasi-norms (8) for H, from (7) we find that a function
f € L, belongs to H if f can be decomposed into the functions fj by a series

(13) = 1r
k=0
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where the functions

2k_1

fr = E Ak,sUk,s
s=0

are from Vj and satisfy the condition

(14) | fellp < 2—k/PH{Ak,s}||l§k <Cw2™®), k=0,1,2,...

(see [4]).
For a non-negative number n, let {n;} be a sequence of non-negative integers
such that

(15) an <n.
k=0

2F—1
Let € = {es}iial be the canonical basis in lgk. Fora= ) ases € lgk, we let the
s=0

set {s; }31;61 be ordered so that
lasy| > |as, | > -+ > ‘asnk71| 22 ‘GSQk_l"
Then, the greedy algorithm G, for the nj-term approximation with regard to &£

1S

ng—1

(16) G a) == ) as,es;.
j=0

For any positive integer n; < 2¥ and all a € ng, by Lemma 1 we have
(17) Ha - Gnk(a)ngk < Ap,q(2k’nk)a

where

A (Qk nk) = nlle/q_l/p for p=4q
D,q ’ (2]€ _ nk)l/q_l/p for p > q-

Observe that the greedy algorithm G, in lgk corresponds to the greedy algorithm
G, of ny-term approximation in Vi which is given by

ng—1

(18) Gglk (g) = Z aS]'vk,Sj
=0

for a function represented as in (11). Because of the norm equivalence (12) for
each function g € Vi, we have

(19) lg = G (@)l = 27 {as} = Gun ({as}) [l
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For each function f € H represented as in (13), from (19) we obtain
e = Gl = 27 (s} = G (Db
< ORI} = Gy (V5D s

< ot (p=1/a) yo-ky A (2% ),

where
* )‘k78 * ok
(20) )‘k,s = mk/p—a@_k) and {)‘k,s} S Bp .
Because w satisfies Condition R(p, q), there exist C1 > 0 and ¢ > 0 such that
for k > K

@) w1 < o)) ()=

Let us now select a sequence {nk};‘;o satisfying the condition (15). For sim-
plicity we consider the case p < ¢ (the other cases can be treated similarly). Fix
a number € so that 0 <& < §/(1/p — 1/q). For a given natural number n, let the
integer r be defined from the conditions 2"t? < n < 273, Then an appropriate
selection of {nk}iozo is given by

2k for k<r
22 = -
(22) "tk { [anQ_E(k_r)] for k>,

2¢ -1

where a = and [t] denotes the integer part of ¢. Then we have

o0
>k <
k=0 k

This means that (15) is satisfied. We take a positive constant A so that

l+e I/p—1/q+9
0

T

o
2k 275(]671”) — (97t _q an < n
+ > an ( ) + 5+

=n.
26 —1 7~
=0 k=r+1

n
2

> A >
and put k* = [\r].
We construct a mapping Sy, : H — M, (V) as follows

G, (fr) for k<K

Sk(f) = {0 for k> k.

Notice that for & < r, we have Sk(f) = fr and therefore,
(23) 1fi = Sk(f)llg = 0.

Next, for r < k < k*, from (20) we have

(24) 1= Su()], < C2 WP 1a) (2 k) A, 4 (25, ),
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and for k > k*, we have
(25) £ = Sk, = Iilly < 028 (P17) 2k,
Put

Sa(f) =D Su(f) for f=" fi
k=0 k=0
Then by (21), (23), (24) and (25) we get

[ee]
26)  [[f=SiNll, < Do e =Sk, < Crw(@) < C*w(1/n).
k=r+1
Put
G*(f) = A{Gh, (fe) }pepe for f=> fr€H.
a k<k*
Then G* is a positive homogeneous mapping H into M, and S}, = Ry+ o G*,
where V* := {vps : s =0,1,...,28 — 1; k < k*}. From (26) we obtain (10).
This also proves the upper bound of o, (SB;(,, V, Lq).
We now prove the upper bound

(27) T (SByg, Lg) < w(1/n).
Using inequalities between «,, 7, 7,, On, Bn, and a, (see [6]), we prove only

for one of them, namely for «,,. If in (26), G/, are replaced by Gf;k, then S, is

ng,
a continuous algorithm of n-term approximation, which satisfy (14). Hence, we

prove the upper bound of a, (S By, Lq) and we receive (27). The upper bounds
of (9) in Theorem 1 are proved.

4. LOWER BOUNDS

We first prove the lower bound for o,,:
(28) Jn(SBZ‘;g,V,Lq) > w(l/n).

Because of the inequality ||.|loc > ¢ .||, for 1 < p < o0, it is sufficient to prove
(28) for the case p = co. For a positive integer k, denote by B(k) the space of all
trigonometric polynomials f of the form

2k 1

f= Z )\k,svk,Sa
s=0

and for 1 < 7 < oo, denote by B(k), the subspace in L,, which consists of all
f € B(k). For SB(k)s the unit ball in B(k)w, by (8) we have w(27%)SB(k)o C
aSBg, 5 with some a > 0. Hence

(29) 0u(SBE, 0, V. Lg) > w(2M)0u(SB (k). Vi Ly).

Let X be a normed space and Y a subspace of X, W C X, and let ® be a
family in X. If P : X — Y is a linear projection such that ||P(f)|| < ||f] for
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every f € X, then o,(W,®,X) > 0,(W,P(®),Y). Applying this inequality to
the linear projection

2k—1

P(k7 f) = Z /\k,svk,s
s=0

in the space L, gives

(30) O—TL(SB(k)Ooav’ Lq) Z UH(SB(k)OoavlvB(k)q)v
where V' = P(k, V) (see [4]). From (29) and (30) we have
(31) on(SB, 9, V,Lg) > w(27¥)0n(SB(k)os, V', B(k)g).

Let us give a lower bound for ¢, (SB(k)oc, V', B(k)q)-
Define k = k(n) from the conditions

(32) n = 2% < dim B(k) > 2n.
From (8) we have

(33) 1w = NIzt £ 1500, = 27T g

where J is the positive homogeneous continuous mapping from B(k), into lgz,
given by
2k—1
for f= Y ApsUks-
s=0
Clearly, J(V') = & and J(B(k)q) = lgk, where £ is the canonical basis in lgk
(see [4]).
Also, if S is an algorithm of n-term approximation with regard to V' in B(k),,

1

T = s}y

then Jo S will be an algorithm of n-term approximation with regard to £ in lgk.
Therefore, by (32), (33) and Lemma 2, we obtain

70 (SB(k)oo, V', B(k)g) = 2740, (B2, €' 12")
(34) > 27 R (m —n - 1)V > 1.

where m = dim B(k) =< 2*. From (34) and (31) we obtain (28).

Because of inequalities between ay,, 7, 7)., Bn, an, and d,, (see [6]), it is enough
to prove an(SB;J@, Ly) > w(l/n). It can be proved in the same way as the proof
of the lower bound for ¢,,(SBY,,V, Ly), but by using Lemma 1 and Lemma 3.

p,0?
Thus, we have completed the proof of Theorem 1.
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