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SUPPLY-DEMAND THEOREMS

FOR FINITE PROBABILISTIC AUTOMATA

PHAM TRA AN

Abstract. In this paper, we show that there are supply-demand theorems
for finite probabilistic automata, but here the notion of state is understood in
a rather general sense. It is notion of hyperstate.

1. Introduction

In [4, 5] we have shown that there are supply-demand theorems for the finite
automata, for the automata with a time-variant structure and for the Petri nets.
They describe a nice relation between state growth speed of an automaton (a sup-
ply) and (non-equivalent) word growth speed of the language which is accepted
by this automaton (a demand). Applying the supply-demand theorems for dif-
ferent processing systems we get again the well-known necessary conditions, but
now on an united point of view, for the classes of languages accepted by finite
automata, finite automata with a time-variant structure, ϕ(t)-automata with a
time-variant structure, Petri nets and Petri nets with a time-variant structure.

In this paper we show that there are also the supply-demand theorems for
finite probabilistic automata, but here the notion of state is understood in a
rather general sense. It is the notion of hyperstate.

The definitions of finite probabilistic automaton and language acceptable by
it are recalled in Section 2. Section 3 deals with the notion of hyperstate, the
supply-demand theorem and the growth speed theorem of a finite probabilistic
automaton. Finally, in Section 4 some other supply-demand theorems for a finite
probabilistic automaton are considered.

2. Preliminaries

We recall some notions. A finite probabilistic automaton (FPA) is given by a
list
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A = (I, S, π0,M,F ),

where

I is the input alphabet;

S is the finite set of states, S = {s1, · · · , sn};

π0 is the initial state distribution vector;

F is the set of final states, F ⊆ S.

For a ∈ I, M(a) is a stochastic matrix of order n, whose component mij(a) is
the transition probability of A from the state si to the state sj when the imput
symbol is a.

Let I∗ be the set of all words over the alphabet I. For each u = a1 · · · ak ∈ I∗

we define
{

M(Λ) = E,

M(u) = M(a1) · · ·M(ak).

E is the unity matrix of order n. Let ηF denote the n-dimensional colum vector
whose i-th component is equal to 1 if si ∈ F , and to 0 if si /∈ F . We define the
function pA : I∗ → [0, 1] as follows. For any u ∈ I∗, we set

pA(u) = π0M(u)ηF .

Let λ be a real number, 0 ≤ λ < 1. The set of words

L(A,λ) = {u ∈ I∗ | pA(u) > λ}

is called the FPA-language (or stochastic language) over alphabet I, defined by
the probabilistic automaton A and the cut point λ.

A set L ⊆ I∗ is called FPA-language if there are a finite probabilistic automa-
ton A and a cut point λ (0 ≤ λ < 1) such that

L = L(A,λ).

The set of all FPA-languages is denoted by L(FPA).

3. Hyperstate and supply-demand Theorem

for finite probabilistic automata

Let I be a nonempty finite alphabet and L ⊆ I∗. For any finite set Ω ⊂ I∗,
|Ω| = N < +∞, we define the relation RΩ (mod L) in I∗ as follows:

uRΩv (modL) ⇔ ∀ω ∈ Ω : uω ∈ L ↔ vω ∈ L, ∀u, v ∈ I∗.

It is easy to show that the relation RΩ (mod L) is reflexive, symmetric and tran-
sitive. Therefore, it is an equivalent relation in I∗ and we define

GL(Ω) = RankRΩ (modL).

GL(Ω) is also the number of non-equivalent words that are needed distinguish
during representating L by an automaton (a demand). Therefore GL(Ω) is called
a R-representative complexity of language L on Ω.
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First we notice a simple property of GL(Ω):

1 ≤ GL(Ω) ≤ 2|Ω| = 2N , ∀Ω ⊆ I∗.

Now we estimate GL(Ω) for some languages L and for some sets Ω.

Example 1. Let |I| = k ≥ 2 and c 6∈ I. We define

L1 = {τ1cτ2c · · · cτncτ0 | ∀ i : τi ∈ I∗; ∃τi = τ0}.

We choose Ω = {τ1, τ2, · · · , τN |τi ∈ I∗}. Now each subset A = {τi1 , τi2 , · · · , τik} ⊆
Ω is associated with a word

uA = τi1cτi2c · · · cτikc,

It is easy to see that

∀ω ∈ Ω : (uAω ∈ L1 ↔ ω ∈ A).

Therefore

GL1
(Ω) = 2|Ω| = 2N .

Example 2. Let I = {a} and

L2 = {ak | vk = 1; k = 1, 2, ...},

where v1v2 · · · vk · · · is the dictionary ordering of all words over the alphabet
{0, 1} and l(vi) = 1, i = 1, 2, ..., i.e.

v1v2 · · · vk · · · = 0.1.00.01.10.11.000.001. · · ·

and v1 = 0, v2 = 1, v3 = 0, ..., v9 = 1, v10 = 1, · · · . Therefore

L2 = {a2, a6, a7, a9, a10, · · · }.

We choose Ω = {a1, a2, a3, · · · , aN}, N < +∞. For each subset

A = {ai1 , ai2 , · · · , aik} ⊆ Ω,

we define an associated vector ξA and an associated word uA as follows: ξA =
(ξ1, · · · , ξN ) with ξi = 1 if ai ∈ A, and ξi = 0 if ai /∈ A, i = 1, · · · , N . Since
v1v2 · · · vk · · · is the dictionary ordering of all words over the alphabet {0, 1}, there
is an integer h such that ξA = (vh+1, vh+2, · · · , vh+N ). Then we set uA = ah.

For example if we choose Ω = {a1, a2, a3} and A = {a1, a2} then ξA = (1, 1, 0)
and (1, 1, 0) = (v29, v30, v31) and uA = a28.

Now we can verify that

∀ω ∈ Ω : (uAω ∈ L2 ↔ ω ∈ A).

For instance, in our above example, if we choose

ω = a1 ∈ A then uAω = a28a1 = a29 ∈ L2,

ω = a3 6∈ A then uAω = a28a3 = a31 6∈ L2.

Therefore GL2
(Ω) = 2|Ω| = 2N .

Let A = (I, S, π0,M,F ) be a finite probabilistic automaton with |S| = n,
L = L(A,λ), 0 ≤ λ < 1 and Ω = {ω1, · · · , ωN} ⊂ I∗, N < +∞.
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According to the definition of RΩ (mod L), for any u, v ∈ I∗ we have

uRΩv (mod L) ⇔ ∀ω ∈ Ω : uω ∈ L ↔ vω ∈ L,

uRΩv (mod L) ⇔ ∀ω ∈ Ω : pA(uω) > λ ↔ pA(vω) > λ,

uRΩv (mod L) ⇔ ∀ω ∈ Ω : π0M(u)M(ω)ηF > λ ↔ π0M(v)M(ω)ηF > λ.

For each word u ∈ I∗, we define a corresponding point α(u) by

α(u) = π0M(u) = (xu
1 , · · · , xu

n) ∈ Rn,

and for each word ω ∈ Ω, we define a corresponding vector β(ω) by

β(ω) = M(ω)ηF = (aω
1 , · · · , aω

n)T .

Therefore

uω ∈ L ⇔ aω
1 xu

1 + · · · + aω
nxu

n > λ.

Now in Euclidean space Rn, we consider N (n−1)-dimentional hyperplanes given
by equations:

aω
1 x1 + · · · + aω

nxn = λ, ω ∈ Ω.(1)

It is easy to see that two words u, v ∈ I∗ are equivalent by relation RΩ (modL)
if and only if two their corresponding points α(u) = (xu

1 , · · · , xu
n) and α(v) =

(xv
1, · · · , xv

n) lie in the same connected domain in Rn determined by N hyper-
planes (1). Thus, the finite probabilistic automaton A use the connected do-
mains determined by N hyperplanes (1) to remember the non-equivalent words
of language L = L(A,λ). Therefore we have the following definition:

Definition 1. Each connected domain determined by the hyperplanes (1) is
called a R-hyperstate on Ω of the finite probabilistic automaton A. The number
of R-hyperstates on Ω of A is called the R-growth funtion on Ω of A and denoted
by gA(Ω).

There is a nice relation between the R-growth function on Ω of a finite prob-
abilistic automaton (a supply) and the R-representative complexity on Ω of the
language accepted by this automaton (a demand). These relations are called the

supply-demand theorems.

Theorem 1. (Supply-demand theorem for FPA). Let A be a finite probabilistic

automaton, L = L(A,λ), 0 ≤ λ < 1. Then for any finite set Ω ⊂ I∗ we have

GL(Ω) ≤ gA(Ω).

Proof. Let A = (I, S, π0,M,F ), |S| = n and L = L(A,λ), 0 ≤ λ < 1. We shall
prove that

GL(Ω) ≤ gA(Ω), ∀Ω ⊂ I∗; |Ω| = N.

To prove this we assume the contrary, i.e. ∃Ω, |Ω| = N : GL(Ω) > gA(Ω). Then,
there are u, v ∈ I∗ such that uRΩv (mod L), but two their corresponding points
α(u) = (xu

1 , · · · , xu
n) and α(v) = (xv

1, · · · , xv
n) lie in the same connected domain

in Rn determined by N hyperplanes (1). It means that ∀ω ∈ Ω:
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π0M(u)M(ω)ηF > λ ↔ π0M(v)M(ω)ηF > λ,

pA(uω) > λ ↔ pA(vω) > λ,

uω ∈ L ↔ vω ∈ L,

We obtain uRΩv (mod L). This conflicts with the hypothesis uRΩv (mod L).
Therefore

GL(Ω) ≤ gA(Ω), ∀Ω ⊂ I∗; |Ω| = N < +∞.

Theorem 2. (Growth speed theorem for FPA). If A is a finite probabilistic au-

tomaton with n states and Ω is any finite set of words over input alphabet, then

gA(Ω) = O(Pn(|Ω|)),

where Pn is some polynominal of degree n.

Thus, the R-growth function on any finite set of the words of any FPA is
bounded by a certain polynominal. This is an essential limitation of the FPA.
We shall use this limitation to present languages not acceptable by any FPA.

We shall need the following lemma which is a sharpening of P. D. Dieu’s lemma
in [7].

Lemma 1. Let ξ(n,N) denote the maximal number of connected domains deter-

mined by N (n − 1)-dimensional hyperplanes in Rn. Then

ξ(n,N) = C0
N + C1

N + · · · + Cn
N ,

where Ck
N = 0, ∀ k > N .

Proof. If n = 1 then

ξ(1, N) = N + 1 = C0
N + C1

N .

If n ≥ 2 then we distinguish two cases:

If N = 2, then

ξ(n, 2) = 4 = 1 + 2 + 1

= C0
2 + C1

2 + C2
2 = C0

2 + C1
2 + C2

2 + C3
2 + · · · + Cn

2

= C0
N + C1

n + · · · + Cn
N .

If N > 2, we shall prove by induction on the number N . We consider N (n−1)-
dimensional hyperplanes H1,H2, · · · ,HN−1,HN . The first (N − 1) hyperplanes
H1,H2, · · · ,HN−1 can determine in Rn at most ξ(n,N − 1) connected domains
by the inductive assumption. We denote these domains by D1,D2, · · · ,Dr, r ≤
ξ(n,N − 1). Now the hyperplane HN can be considered as a space Rn−1. The
maximal number of connected domains in HN determined by the hyperplanes
H1,H2, · · · ,HN−1 is equal to the maximal number of connected domains in HN

determined by the intersections of HN with H1,H2, · · · ,HN−1. It is ξ(n−1, N−1)
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by induction assumption. Every of these domains in HN lies entirely in some Di

and divices Di at most by two connected domains in Rn. Therefore we have

ξ(n,N) = ξ(n,N − 1) + ξ(n − 1, N − 1).

By induction, we have

ξ(n,N − 1) = C0
N−1 + C1

N−1 + · · · + Cn
N−1,

ξ(n − 1, N − 1) = C0
N−1 + C1

N−1 = · · · + Cn−1
N−1.

It follows that

ξ(n,N) = (C0
N−1) + (C1

N−1 + C0
N−1) + · · · + (Cn

N−1 + Cn−1
N−1).

Applying the Pascal’s equality Ck
N + Ck−1

N = Ck
N+1 and remarking that C0

N−1 =

C0
N = 1 we obtain

ξ(n,N) = C0
N + C1

N + · · · + Cn
N .

Now we prove the growth speed theorem for FPA.

Proof of Theorem 2. Let A = (I, S, π0,M,F ) be a FPA with |S| = n and Ω ⊂ I∗,
|Ω| = N < +∞. According to definition 1, we have gA(Ω) ≤ ξ(n,N). By Lemma
1 we have

ξ(n,N) = C0
N + C1

N + · · · + Cn
N .

Therefore

gA(Ω) ≤ C0
N + C1

N + · · · + Cn
N = Pn(N).

It follows that

gA(Ω) = O(Pn(N)).

Corollary 1. (Necessary condition for L(FPA)). Let L ⊆ I∗ and L ∈ L(FPA).
There exists a contant integer n such that for any set Ω ⊂ I∗, |Ω| = N < +∞,

we have

GL(Ω) = O(Nn).

Proof. Since L ∈ L(FPA) there exists a FPA A with n states and a cut point
λ, 0 ≤ λ < 1, such that L = L(A,λ). Applying Theorem 1 and Theorem 2 we
obtain

GL(Ω) ≤ gA(Ω) = O(Pn(N)).

It follows that

GL(Ω) = O(Nn).
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Example 3. We consider the following languages

L1 = {τ1cτ2c · · · cτncτ0 | ∀ i : τi ∈ I∗; ∃ τi = τ0}.

L2 = {ak | vk = 1; k = 1, 2, ...},

where v1v2 · · · vk · · · is dictionary ordering of all words over alphabet {0, 1} and
l(vi) = 1, i ≥ 1. By choosing the adequate sets Ω, |Ω| = N < +∞, we have
shown in Example 1 and Example 2 that

GL1
(Ω) = 2|Ω| = 2N > O(Nn),

GL2
(Ω) = 2|Ω| = 2N > O(Nn).

According to the Corollary 1, we obtain L1, L2 6∈ L(FPA).

4. Some other supply-demand Theorems for FPA

In this part we consider other equivalent relations in I∗.

Let L ⊆ I∗, Ω ⊂ I∗, |Ω| = N < +∞ and u, v, u1, v1, u2, v2 ∈ I∗. We define the
relations LΩ (mod L), BΩ(modL) and PΩ(mod L) as follows:

uLΩv (modL) ⇔ ∀ω ∈ Ω : (ωu ∈ L ↔ ωv ∈ L),

uBΩv (mod L) ⇔ ∀ω, τ ∈ Ω : (ωuτ ∈ L ↔ ωvτ ∈ L),

(u1, v1)PΩ(u2, v2)(mod L) ⇔ ∀ω ∈ Ω : (u1ωv1 ∈ L ↔ u2ωv2 ∈ L).

It is easy to verify that LΩ(mod L), BΩ(mod L) and PΩ(mod L) are also equivalent
relations in I∗. So we define

HL(Ω) = Rank LΩ (mod L),

IL(Ω) = Rank BΩ (mod L),

KL(Ω) = Rank PΩ (mod L).

HL(Ω), IL(Ω), KL(Ω) are called L-representative complexity, B-representative

complexity, P -representative complexity of language L on the set Ω, respectively.

Let A = (I, S, π0,M,F ) be a FPA with

|S| = n, L = L(A,λ), 0 ≤ λ < 1,

Ω ⊂ I∗, Ω = {ω1, · · · , ωN}, N < +∞.

We consider the following cases:

(1) Case of LΩ (mod L)

For u, v ∈ I∗, we have

uLΩv (mod L) ⇔ ∀ω ∈ Ω : ωu ∈ L ↔ ωv ∈ L,

uLΩv (mod L) ⇔ ∀ω ∈ Ω : pA(ωu) > λ ↔ pA(ωv) > λ,

uLΩv (mod L) ⇔ ∀ω ∈ Ω : π0M(ω)M(u)ηF > λ ↔ π0M(ω)M(v)ηF > λ.

For each word u ∈ I∗, we define a corresponding point γ(u) by

γ(u) = M(u)ηF = (xu
1 , · · · , xu

n)T ∈ Rn,
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and for each word ω ∈ Ω, we define a corresponding vector ζ(ω) by

ζ(ω) = π0M(ω) = (bω
1 , · · · , bω

n).

Therefore

ωu ∈ L ⇔ bω
1 xu

1 + · · · + bω
nxu

n > λ.

Now in Euclidean space Rn we consider N (n−1)-dimentional hyperplanes given
by the equations

bω
1 x1 + · · · + bω

nxn = λ, ω ∈ Ω.(2)

Definition 2. Each connected domain determined by the hyperplanes (2) is
called a L-hyperstate on Ω of the finite probabilistic automaton A. The number
of L-hyperstates on Ω of A is called the L-growth function on Ω of A and denoted
by hA(Ω).

(2) Case of BΩ (modL)

For u, v ∈ I∗, we have

uBΩv (mod L) ⇔ ∀ω, τ ∈ Ω : ωuτ ∈ L ↔ ωvτ ∈ L,

uBΩv (mod L) ⇔ ∀ω, τ ∈ Ω : pA(ωuτ) > λ ↔ pA(ωvτ) > λ,

uBΩv (mod L) ⇔ ∀ω, τ ∈ Ω : π0M(ω)M(u)M(τ)ηF > λ

↔ π0M(ω)M(v)M(τ)ηF > λ.

For each word u ∈ I∗, we define a corresponding point ξ(u) by

ξ(u) = (xu
11, · · · , xu

n1, x
u
12, · · · , xu

n2, · · · , xu
1n, · · · , xu

nn) ∈ Rn2

,

with M(u) = (xij)n×n and for each two words ω, τ ∈ Ω, we define two corre-
sponding vectors:

α(ω) = π0M(ω) = (aω
1 , · · · , aω

n) and β(ω) = M(τ)ηF = (bτ
1 , · · · , bτ

n)T .

We can see that:

ωuτ ∈ L ⇔
n

∑

i,j=1

aω
i bτ

j xij > λ.

Now in Euclidean space Rn2

we consider N2 (n2 − 1)-dimentional hyperplanes
given by the equations:

n
∑

i,j=1

aω
i bτ

j xij = λ, ω, τ ∈ Ω.(3)

Definition 3. Each connected domain determined by the hyperplanes (3) is
called a B-hyperstate on Ω of the finite probabilistic automaton A. The number
of B-hyperstates on Ω of A is called the B-growth function on Ω of A and denoted
by iA(Ω).

(3) Case of PΩ(modL)

For u1, v1, u2, v2 ∈ I∗, we have
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(u1, v1)PΩ(u2, v2) (mod L) ⇔ ∀ω ∈ Ω : u1ωv1 ∈ L ↔ u2ωv2 ∈ L,

(u1, v1)PΩ(u2, v2) (mod L) ⇔ ∀ω ∈ Ω : pA(u1ωv1) > λ ↔ pA(u2ωv2) > λ,

(u1, v1)PΩ(u2, v2) (mod L) ⇔ ∀ω ∈ Ω : π0M(u1)M(ω)M(v1)ηF > λ

↔ π0M(u2)M(ω)M(v2)ηF > λ.

For each pair of words (u, v) ∈ I∗ × I∗, we define a pair of corresponding points
(α(u), β(v)) as follows:

α(u) = π0M(u) = (xu
1 , · · · , xu

n)T , β(v) = M(v)ηF = (yv
1 , · · · , yv

n)T ,

and for each word ω ∈ Ω, we define a corresponding vector θ(ω) by

θ(ω) = (cω
11, · · · , cω

n1, · · · , cω
1n, · · · , cω

nn),

with M(ω) = (cω
ij)n×n.

We can see that

uωv ∈ L ⇔

n
∑

i,j=1

cω
ijx

u
i yv

j > λ.

Now in Euclidean space Rn2

we consider N (n2 − 1)-dimentional hyperplanes
given by the equations

uωv ∈ L ⇔
n

∑

i,j=1

cω
ijx

u
i yv

j = λ, ω ∈ Ω.(4)

Definition 4. Each connected domain determined by the hyperplanes (4) is
called a P -hyperstate on Ω of the finite probabilistic automaton A. The number
of P -hyperstates on Ω of A is called the P -growth function on Ω of A and denoted
by kA(Ω).

Theorem 3. (Other supply-demand theorem for FPA). Let A be a finite proba-

bilistic automaton, L = L(A,λ), 0 ≤ λ < 1. Then for any finite set of words Ω
over input alphabet, we have

a) HL(Ω) ≤ hA(Ω),

b) IL(Ω) ≤ iA(Ω),

c) KL(Ω) ≤ kA(Ω).

Proof. The proof is analogous to that of Theorem 1.

Theorem 4. (Other growth speed theorem for FPA). If A is a finite probabilistic

automaton with n states and Ω is any finite set of words over input alphabet,

|Ω| = N < +∞, then

a) hA(Ω) = O(Pn(N)),

b) iA(Ω) = O(Pn2(N2)),

c) kA(Ω) = O(Pn2(N)),

where Pn is some polynominal of degree n.
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Proof. The proof is analogous to that of Theorem 2.

Corollary 2. (Other necessary conditions for FPA). Let L ⊆ I∗ and L ∈ L(FPA).
There exists a constant integer n such that for any set Ω ⊂ I∗, |Ω| = N < +∞,

we have:

a) HL(Ω) = O(Nn),

b) IL(Ω) = O(N2n2

),

c) KL(Ω) = O(Nn2

).

Proof. The proof is analogous to that of Corollary 1.

Now by Corollary 2, we continue to give other examples of languages which do
not belong to the class L(FPA).

Example 4. Let |I| = k ≥ 2 and c /∈ I. We define

L4 = {τ0cτ1c · · · cτn | ∀ i : τi ∈ I∗; ∃ τi = τ0}.

We choose

Ω = {τ1, τ2, · · · , τN | τi ∈ I∗}, N < +∞.

Each subset A = {τi1 , τi2 , · · · , τik} ⊆ Ω is associated with a word

uA = cτi1cτi2c · · · cτik.

It is easy to see that

∀ω ∈ Ω : (ωuA ∈ L4 ↔ ω ∈ A).

Therefore

HL4
(Ω) = 2|Ω| = 2N > O(Nn).

According to Corollary 2, it follows that L4 /∈ L(FPA).

Example 5. Let |I| = k ≥ 2 and c /∈ I. We define

L5 = {τ0cτ1c · · · cτncτ ,
0 | ∀ i : τi ∈ I∗; (∃ τi = τ0)Λ(∃τj = τ ,

0)}.

We choose

Ω = {τ1, τ2, · · · , τN | τi ∈ I∗}, N < +∞.

Each subset A = {τi1 , τi2 , · · · , τik} ⊆ Ω is associated with a word

uA = cτi1cτi2c · · · cτikc.

It is easy to verify that

∀ω, τ ∈ Ω : ωuAτ ∈ L5 ↔ ((ω ∈ A)Λ(τ ∈ A)).

Therefore

IL5
(Ω) = 2|Ω| = 2N > O(N2n2

).

According to Corollary 2, it follows that L5 /∈ L(FPA).
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Example 6. Let |I| = k ≥ 2 and b, c 6∈ I. We define

L6 = {τ1b · · · bτnbτ0cτ
,
1c · · · cτ

,
m | ∀ j : τi, τ

,
j ∈ I∗; (∃ aui = τ0)Λ(∃τ ,

j = τ0)}.

We choose

Ω = {τ1, τ2, · · · , τN | τi ∈ I∗}, N < +∞.

Each subset A = {τi1 , τi2 , · · · , τik} ⊆ Ω is associated with a pair of words (uA, vA)
as follows:

uA = τi1bτi2b · · · bτikb,

vA = cτi1cτi2c · · · cτik.

We can verify that

∀ω ∈ Ω : (uAωvA ∈ L6 ↔ ω ∈ A).

Therefore

KL6
(Ω) = 2|Ω| = 2N > O(Nn2

).

According to Corollary 2, it follows that L6 /∈ L(FPA).
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