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SUPPLY-DEMAND THEOREMS
FOR FINITE PROBABILISTIC AUTOMATA

PHAM TRA AN

ABSTRACT. In this paper, we show that there are supply-demand theorems
for finite probabilistic automata, but here the notion of state is understood in
a rather general sense. It is notion of hyperstate.

1. INTRODUCTION

In [4, 5] we have shown that there are supply-demand theorems for the finite
automata, for the automata with a time-variant structure and for the Petri nets.
They describe a nice relation between state growth speed of an automaton (a sup-
ply) and (non-equivalent) word growth speed of the language which is accepted
by this automaton (a demand). Applying the supply-demand theorems for dif-
ferent processing systems we get again the well-known necessary conditions, but
now on an united point of view, for the classes of languages accepted by finite
automata, finite automata with a time-variant structure, (t)-automata with a
time-variant structure, Petri nets and Petri nets with a time-variant structure.

In this paper we show that there are also the supply-demand theorems for
finite probabilistic automata, but here the notion of state is understood in a
rather general sense. It is the notion of hyperstate.

The definitions of finite probabilistic automaton and language acceptable by
it are recalled in Section 2. Section 3 deals with the notion of hyperstate, the
supply-demand theorem and the growth speed theorem of a finite probabilistic
automaton. Finally, in Section 4 some other supply-demand theorems for a finite
probabilistic automaton are considered.

2. PRELIMINARIES

We recall some notions. A finite probabilistic automaton (FPA) is given by a
list
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A= (I,S,m, M, F),
where
I is the input alphabet;
S is the finite set of states, S = {s1, -+ ,sn};
g is the initial state distribution vector;
F'is the set of final states, F C S.

For a € I, M(a) is a stochastic matrix of order n, whose component m;;(a) is
the transition probability of A from the state s; to the state s; when the imput
symbol is a.

Let I* be the set of all words over the alphabet I. For each u =a;---ax € I'*
we define

M(A)=FE,
M(u) = M(aqy)--- M(ag).

E is the unity matrix of order n. Let nr denote the n-dimensional colum vector
whose i-th component is equal to 1 if s; € F, and to 0 if s; ¢ F. We define the
function p4 : I* — [0, 1] as follows. For any u € I*, we set

pa(u) = moM(u)np.
Let A\ be a real number, 0 < A < 1. The set of words

L(AN) ={ue " |pa(u) > A}

is called the F'PA-language (or stochastic language) over alphabet I, defined by
the probabilistic automaton A and the cut point A.

A set L C I* is called F'PA-language if there are a finite probabilistic automa-
ton A and a cut point A (0 < X\ < 1) such that

L =L(A,\).
The set of all F'PA-languages is denoted by L(FPA).

3. HYPERSTATE AND SUPPLY-DEMAND THEOREM
FOR FINITE PROBABILISTIC AUTOMATA

Let I be a nonempty finite alphabet and L C I*. For any finite set {2 C I*,
|2 = N < 400, we define the relation Rq (mod L) in I* as follows:
uRqu(modL) & VweQ:uw e L —vwe L, Vuvel.

It is easy to show that the relation Rq (mod L) is reflexive, symmetric and tran-
sitive. Therefore, it is an equivalent relation in I* and we define

GL(Q?) = Rank Rq (mod L).
G () is also the number of non-equivalent words that are needed distinguish

during representating L by an automaton (a demand). Therefore G, (2) is called
a R-representative complexity of language L on ).
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First we notice a simple property of Gr(Q):
1<Gr() <2 =2N vqcr.
Now we estimate G1,(2) for some languages L and for some sets ).
Example 1. Let |I| =k > 2 and ¢ ¢ I. We define
Ly ={mcmnc---crery |[Vi:m € Iy 31, =19}

We choose Q = {71, 72, ,7~5|7 € I*}. Now each subset A = {7, 73,, -+ , 75, } C
) is associated with a word

UA = T CT;pC" - CTILC,
It is easy to see that
Yw e Q: (uaw € L1 < w € A).
Therefore
Gr, (Q) =21% = 2N,
Example 2. Let I = {a} and
Ly={d"|v,=1; k=1,2,..},

where vivg -« v --- is the dictionary ordering of all words over the alphabet
{0,1} and I(v;) = 1,i=1,2,..., i.e.

v1ve - - g - - - = 0.1.00.01.10.11.000.001. - - -

and vy =0,vo=1,v3=0, ..., vg =1, v19 = 1, - - - . Therefore
2 6 7 9 10
Ly ={a*,a’,a",a’,a™", - }.
We choose 2 = {a',a? a3, -- ,aN}, N < 4o00. For each subset

A= {ail,ai2, e 7aik} CQ,
we define an associated vector &4 and an associated word uy4 as follows: &4 =
(&, &6n) with & =1ifa" € Ayand § =0ifa* ¢ A, i =1,--- ,N. Since
v1vg - - - vk - - - is the dictionary ordering of all words over the alphabet {0, 1}, there
is an integer h such that 4 = (Vp41,Vhg2, - Vhen). Then we set uy = a”.

For example if we choose 2 = {a',a?,a®} and A = {a',a?} then &4 = (1,1,0)

and (1,1,0) = (vag, v30,v31) and ug = a?®.

Now we can verify that
VweQ: (ugw € Ly — w € A).
For instance, in our above example, if we choose
w=a'€A then wusw=a*®a'=0a* € Ly,
w=a>¢ A then wusw=aa®=0d% ¢ Lo.
Therefore G, () = 219 = 2N,

Let A = (1,S,m, M,F) be a finite probabilistic automaton with |S| = n,
L=LAN),0<A<land Q={wy, - ,wny} C I*, N < +o0.
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According to the definition of Rq (mod L), for any u,v € I* we have
uRqu(mod L) & Vw e Q:uw € L < ww € L,
uRqu (mod L) & Vw € Q:pa(uw) > X < pa(vw) > A,
uRqu (mod L) & Vw € Q: moM(u)M(w)np > X — moM(v) M (w)nrp > A

For each word u € I'*, we define a corresponding point «(u) by

a(u) =moM(u) = («f,--- ,z;) € R",

rn

and for each word w € 2, we define a corresponding vector 3(w) by
Bw) = M(w)np = (af, -, ag)".

Therefore
w € L& afzi 4+ - +arz, > A\

Now in Euclidean space R", we consider N (n—1)-dimentional hyperplanes given
by equations:

(1) afzi+ -+ apry, =N, we

It is easy to see that two words w,v € I'* are equivalent by relation Rg (mod L)
if and only if two their corresponding points a(u) = (zf,--- ,z%) and a(v) =
(xf,---,zp) lie in the same connected domain in R"™ determined by N hyper-
planes (1). Thus, the finite probabilistic automaton A use the connected do-
mains determined by N hyperplanes (1) to remember the non-equivalent words

of language L = L(A, ). Therefore we have the following definition:

Definition 1. Each connected domain determined by the hyperplanes (1) is
called a R-hyperstate on ) of the finite probabilistic automaton A. The number
of R-hyperstates on {2 of A is called the R-growth funtion on Q) of A and denoted

by ga(Q).
There is a nice relation between the R-growth function on €2 of a finite prob-
abilistic automaton (a supply) and the R-representative complexity on €2 of the

language accepted by this automaton (a demand). These relations are called the
supply-demand theorems.

Theorem 1. (Supply-demand theorem for FPA). Let A be a finite probabilistic
automaton, L = L(A,\), 0 < X < 1. Then for any finite set Q C I* we have

GL() < ga().

Proof. Let A = (1,S,m9, M,F), |S| =n and L = L(A,\), 0 < XA < 1. We shall
prove that

GrL(Q2) <ga(), VQcCI |Q =N.

To prove this we assume the contrary, i.e. 3Q, |Q] = N : GL(Q) > ga(2). Then,
there are u,v € I* such that uRqv (mod L), but two their corresponding points
a(u) = (2, - ,2%) and a(v) = (2f,--- ,z}) lie in the same connected domain

in R"™ determined by N hyperplanes (1). It means that Vw € :
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oM (u) M (w)np > X < moM (v)M (w)np > A,
pa(uw) > X = palvw) > A,
uw € L < vw € L,

We obtain uRgv (mod L). This conflicts with the hypothesis uRqv (mod L).
Therefore

GrL(Q) <ga(), vVQCI* |2 =N < +oo.
]
Theorem 2. (Growth speed theorem for FPA). If A is a finite probabilistic au-

tomaton with n states and ) is any finite set of words over input alphabet, then
94(Q) = O(Fo (1)),

where P, is some polynominal of degree n.

Thus, the R-growth function on any finite set of the words of any FPA is
bounded by a certain polynominal. This is an essential limitation of the FPA.
We shall use this limitation to present languages not acceptable by any FPA.

We shall need the following lemma which is a sharpening of P. D. Dieu’s lemma
in [7].

Lemma 1. Let £(n, N) denote the mazimal number of connected domains deter-
mined by N (n — 1)-dimensional hyperplanes in R™. Then

E(n,N)=CR +CN + -+ CR,
where C’EzO,Vk>N.

Proof. If n =1 then
(L, N)=N+1=C} +Cy.

If n > 2 then we distinguish two cases:
If N =2, then

£n,2) =4=1+2+1
=C3+Cy+C5=C0+Cy+C5+C3+---+Cf
=CY+Cp+-- +Cy.

If N > 2, we shall prove by induction on the number N. We consider N (n—1)-
dimensional hyperplanes Hy, Hy, -+ ,Hy_1, Hy. The first (N — 1) hyperplanes
Hy,Hy,--- ,Hy_1 can determine in R"™ at most £(n, N — 1) connected domains
by the inductive assumption. We denote these domains by Dy, Do, -+, D,, r <
&(n, N —1). Now the hyperplane Hy can be considered as a space R"~!. The
maximal number of connected domains in Hpy determined by the hyperplanes
Hy{,Hy,--- ,Hy_1 is equal to the maximal number of connected domains in Hy
determined by the intersections of Hy with Hy, Ho, -+ , Hy_1. It is{(n—1, N—1)
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by induction assumption. Every of these domains in Hy lies entirely in some D;
and divices D; at most by two connected domains in R". Therefore we have

En,N)=¢&(n,N —1)+&n—1,N —1).
By induction, we have
§(n, N —1) =Cl_1 +COn_y + -+ CR_y,
En—1L,N-1)=C{_ 1 +Cp_1=---+C L.
It follows that
£(n, N) = (CR—1) + (Cx—1 + CR-1) + -+ (CRoy + CRTY).
Applying the Pascal’s equality C% + C’f{f_l =C¥ 41 and remarking that Y =
C% =1 we obtain

E,N)=C% +CxN +---+C%.

Now we prove the growth speed theorem for FPA.

Proof of Theorem 2. Let A= (I,S,m, M, F) be a FPA with |S| =n and 2 C I*,
|| = N < 400. According to definition 1, we have g4(2) < {(n, N). By Lemma
1 we have

§(n,N)=CR +Cxn+ -+ C}.
Therefore
94(Q) < CY +Ch+ -+ CR = Py(N).
It follows that

O

Corollary 1. (Necessary condition for L(FPA)). Let L C I* and L € L(FPA).
There exists a contant integer n such that for any set Q C I*, |2 = N < 400,
we have

GL(Q) = O(N™).

Proof. Since L € L(FPA) there exists a FPA A with n states and a cut point
A, 0 < X\ <1, such that L = L(A,\). Applying Theorem 1 and Theorem 2 we
obtain

It follows that
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Example 3. We consider the following languages
Ly ={rnicrc---crperg | Vi € I 31 = 190}
Ly={d"|v,=1; k=121,

where v1vg - - - v - - - is dictionary ordering of all words over alphabet {0,1} and

l(v;) = 1, @ > 1. By choosing the adequate sets €, |Q] = N < 400, we have
shown in Example 1 and Example 2 that

Gr,(Q) = 2% =2V > O(N™),
G, () = 2% =2V > o(N™).
According to the Corollary 1, we obtain Ly, Ly & L(FPA).

4. SOME OTHER SUPPLY-DEMAND THEOREMS FOR FPA

In this part we consider other equivalent relations in I*.

Let LCI*, QC I*, | =N < +oo and u,v,u;,v1,u2,v2 € I*. We define the
relations Lg (mod L), Bg(mod L) and Pg(mod L) as follows:

uLgu(modL) & VweQ: (wu €L - wvel),
uBou(mod L) & Vw, 7€ Q: (wur € L < wut € L),
(u1,v1)Pa(ug,ve)(mod L) & Vw € Q: (uqwvy € L > ugwvs € L).
It is easy to verify that Lg(mod L), Bo(mod L) and P (mod L) are also equivalent
relations in I*. So we define
Hp(2) = Rank Lq (mod L),
I1,(©2) = Rank Bq (mod L),
K1, (©) = Rank Py (mod L).

Hp(Q), I(Q), K(Q) are called L-representative complezity, B-representative
complexity, P-representative complexity of language L on the set (), respectively.

Let A= (I,S,m, M, F) be a FPA with
|S|=mn, L=L(AX), 0<X<I1,
Qcr, Q={w, - ,wn}, N <+o0.
We consider the following cases:
(1) Case of Lo (mod L)
For u,v € I'*, we have
ulgv(modL) & VweQ:wue L« wvelL,
uLgu(mod L) & Vw € Q: pa(wu) > X\ < pa(wv) > A,
uLgu (mod L) & Vw e Q: moM(w)M(u)np > A — moM (w)M (v)nrp > .
For each word u € I*, we define a corresponding point ~y(u) by

V(U) = M(U)UF = (xit? T 7$Z)T € Rna
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and for each word w € 2, we define a corresponding vector ((w) by
((w) = moM(w) = (BT, -+, b5).
Therefore
wu € L& bYal + - +brxy > A
Now in Euclidean space R™ we consider N (n — 1)-dimentional hyperplanes given
by the equations
(2) oy + -+ bhx, =X we

Definition 2. Each connected domain determined by the hyperplanes (2) is
called a L-hyperstate on ) of the finite probabilistic automaton A. The number
of L-hyperstates on () of A is called the L-growth function on £ of A and denoted
by ha(£2).
(2) Case of Bg (mod L)
For u,v € I'**, we have
uBqu(mod L) & Vw, 7€ Q:wur € L < wur € L,
uBou (mod L) & Vw, 7 € Q: pa(wur) > X — pa(wor) > A,
uBov (mod L) & Vw, 7 € Q: mogM (w)M (u)M (T)np > A
— oM (w)M )M (T)np > A.
For each word u € I*, we define a corresponding point &(u) by
2
§(u) = (xllth"' 7‘%%17111{27"' 71‘%27"' 7xlltn7"' 71‘%71) €R" )

with M(u) = (2ij)nxn and for each two words w,7 € Q, we define two corre-
sponding vectors:

a(w) =mM(w) = (af,--- ,a5) and  Bw) = M(r)nr = (b, ,0p)".

»r'n

We can see that:
n
wur € L & Z a;’bixi; > A
1,j=1

Now in Euclidean space R™ we consider N2 (n? — 1)-dimentional hyperplanes
given by the equations:

n
(3) D afbiag =\, w,Te
ij=1
Definition 3. Each connected domain determined by the hyperplanes (3) is

called a B-hyperstate on £ of the finite probabilistic automaton A. The number
of B-hyperstates on 2 of A is called the B-growth function on € of A and denoted

by i4(€).
(3) Case of Po(modL)
For uq,v1,us,v9 € I*, we have
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(uy,v1)Pa(ug,v2) (mod L) & Vw € Q: ujwvy € L « ugwuvy € L,
(u1,v1)Pao(ug,v2) (mod L) & Vw € Q: pa(uiwur) > A < pa(uswua) > A,
(u1,v1)Pa(ug,v2) (mod L) & Vw € Q : moM (ug) M (w)M (vi)np > A

— oM (u2) M (w) M (v2)np > A

For each pair of words (u,v) € I* x I, we define a pair of corresponding points
(a(u), B(v)) as follows:

a(u) =mM(u) = (21, ,ap)",  Bv) = M(v)nr = (47, )",
and for each word w € 2, we define a corresponding vector 6(w) by
O(w) = (C?l?"' s Oty 5 Clpy »Cﬁn)a
with M (w) = (¢f)nxn-

We can see that

P
P

uvaL@Zc‘fJ riy; > A
i,j=1

Now in Euclidean space R™ we consider N (n? — 1)-dimentional hyperplanes
given by the equations

ijLi Y
i,7=1

(4) uwveL@Zc“’“v—)\ w e Q.

Definition 4. Each connected domain determined by the hyperplanes (4) is
called a P-hyperstate on §2 of the finite probabilistic automaton A. The number
of P-hyperstates on §2 of A is called the P-growth function on € of A and denoted
by k4(Q2).

Theorem 3. (Other supply-demand theorem for FPA). Let A be a finite proba-
bilistic automaton, L = L(A,\), 0 < X\ < 1. Then for any finite set of words §2
over input alphabet, we have

a) Hp(Q) < ha(Q),
b) IL(Q) < ia(Q),
c) K(Q) < ka().

Proof. The proof is analogous to that of Theorem 1. O

Theorem 4. (Other growth speed theorem for FPA). If A is a finite probabilistic
automaton with n states and Q is any finite set of words over input alphabet,
2] = N < 400, then

a) ha(Q2) = O(Pu(NV)),
b) ia(92) = O(P2(N?)),
c) ka(€)) = O(P,2(N)),
where P, is some polynominal of degree n.
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Proof. The proof is analogous to that of Theorem 2. O

Corollary 2. (Other necessary conditions for FPA). Let L C I* and L € L(FPA).
There exists a constant integer n such that for any set Q@ C I*, |Q] = N < 400,
we have:

a) HL(Q2) = O(N"),
b)  I(Q) = O(N*),
o) Ki(®) = O(N™)

Proof. The proof is analogous to that of Corollary 1. U

Now by Corollary 2, we continue to give other examples of languages which do
not belong to the class L(FPA).

Example 4. Let |[I| =k > 2 and ¢ ¢ I. We define
Ly={mernc---cr,|Vi:m € I*; 31 =1}
We choose
Q={r,m, -, v |1 €'}, N <+oo.
Each subset A = {7, Ti,, -+, 7i, } C 2 is associated with a word
UA = CT§,CTi,C* - - CTij.

It is easy to see that

VweQ : (wug € Ly - we A).
Therefore

Hp,(Q) = 2@ =2V > O(N™).
According to Corollary 2, it follows that L4 ¢ L(FPA).
Example 5. Let |I| =k > 2 and ¢ ¢ I. We define

Ls = {rocric---crmpery | Vi € 1M (31 = 10)A(I15 = 7)) }
We choose
Q={n,n, -, n|mn€l'}, N<+oo.
Each subset A = {7, Ti,, -+, 7i, } C 2 is associated with a word
UA = CT;,CT;,C" -~ CTLLC.
It is easy to verify that
Vw, 7€ Q : wuat € Ly < ((w € A)A(T € A)).

Therefore

I.(Q) = 2% = 2N > o).
According to Corollary 2, it follows that Ls ¢ L(F'PA).
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Example 6. Let |I| =k > 2 and b,c ¢ I. We define

Le = {mb---brpbrocric---ct;, | V] : i, T; € I*; 3au; = 19)A(3T: = 710)}.

J
We choose
Q={r,m, -, v |1 €'}, N < +oo.
Each subset A = {7;,,7,, -+ , 7, } C Q is associated with a pair of words (ua,v4)
as follows:

ug = T, bTib- - - bTigh,
VA = CTj, CTjyC "+ - CTi.
We can verify that
Vw e Q : (ugwvg € Lg > w € A).
Therefore
K, (Q) = 212 =2V 5 o(N™).
According to Corollary 2, it follows that Lg ¢ L(FPA).
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