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NEW INEQUALITIES FOR CSISZÁR DIVERGENCE AND

APPLICATIONS

S. S. DRAGOMIR

Abstract. In this paper we point out some new inequalities for Csiszár f -
divergence and apply them for particular instances of distances between two
probability distributions.

1. Introduction

One of the important issues in many applications of Probability Theory is find-
ing an appropriate measure of distance (or difference or discrimination) between
two probability distributions. A number of divergence measures for this purpose
have been proposed and extensively studied by Jeffreys [1], Kullback and Leibler
[2], Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea
and Rao [7], Rao [8], Lin [9], Csiszár [10], Ali and Silvey [12], Vajda [13], Shioya
and Da-te [40] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology
[8], genetics [14], finance, economics, and political science [15], [16], [17], biology
[18], the analysis of contingency tables [19], approximation of probability distrib-
utions [20], [21], signal processing [22], [23] and pattern recognition [24], [25]. A
number of these measures of distance are specific cases of Csiszár f -divergence
and so further exploration of this concept will have a flow on effect to other
measures of distance and to areas in which they are applied.

Assume that a set χ and the σ-finite measure µ are given. Consider the set of
all probability densities on µ to be

Ω :=

{

p|p : χ → R, p(x) ≥ 0,

∫

χ

p(x)dµ(x) = 1

}

.

The Kullback-Leibler divergence [2] is well known among the information diver-
gences. It is defined as:

DKL(p, q) :=

∫

χ

p(x) log
[p(x)

q(x)

]

dµ(x), p, q ∈ Ω,(1.1)

where log is to base 2.
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In Information Theory and Statistics, various divergences are applied in addi-
tion to the Kullback-Leibler divergence. These are the: variation distance Dv,
Hellinger distance DH [1], χ2-divergence Dχ2, α-divergence Dα, Bhattacharyya

distance DB [2], Harmonic distance DHa, Jeffreys distance DJ [1], triangular

discrimination D∆ [35], etc... They are defined as follows:

Dv (p, q) :=

∫

χ

|p (x) − q (x)| dµ (x) , p, q ∈ Ω;(1.2)

DH (p, q) :=

∫

χ

[

√

p (x) −
√

q (x)
]2

dµ (x) , p, q ∈ Ω;(1.3)

Dχ2 (p, q) :=

∫

χ

p (x)

[

(

q (x)

p (x)

)2

− 1

]

dµ (x) , p, q ∈ Ω;(1.4)

Dα (p, q) :=
4

1 − α2

[

1 −
∫

χ

[p (x)]
1−α

2 [q (x)]
1+α

2 dµ (x)

]

, p, q ∈ Ω;(1.5)

DB (p, q) :=

∫

χ

√

p (x) q (x)dµ (x) , p, q ∈ Ω;(1.6)

DHa (p, q) :=

∫

χ

2p (x) q (x)

p (x) + q (x)
dµ (x) , p, q ∈ Ω;(1.7)

DJ (p, q) :=

∫

χ

[p (x) − q (x)] ln

[

p (x)

q (x)

]

dµ (x) , p, q ∈ Ω;(1.8)

D∆ (p, q) :=

∫

χ

[p (x) − q (x)]2

p (x) + q (x)
dµ (x) , p, q ∈ Ω.(1.9)

For other divergence measures, see the paper [5] by Kapur or the book on line [6]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszár f−divergence is defined as follows [10]

If (p, q) :=

∫

χ

p (x) f

[

q (x)

p (x)

]

dµ (x) , p, q ∈ Ω,(1.10)

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived. All the above distances (1.1) − (1.9), are particular instances of Csiszár
f−divergence. There are also many others which are not in this class (see for
example [5] or [6]). For the basic properties of Csiszár f -divergence see [7]-[10].

2. The results

We start with the following result.

Theorem 1. Let φ : [0,∞) → R be a convex mapping on the interval [r,R] ⊂
[0,∞) with r ≤ 1 ≤ R. If p, q ∈ Ω and r ≤ p (y)

q (y)
≤ R for all y ∈ χ, then we have
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the inequality

Iφ (p, q) ≤ R − 1

R − r
· φ (r) +

1 − r

R − r
· φ (R) .(2.1)

Proof. As φ is convex on [r,R], we may write that

φ (tr + (1 − t) R) ≤ tφ (r) + (1 − t) φ (R)(2.2)

for all t ∈ [0, 1].

Choose t =
R − x

R − r
, x ∈ [r,R]. Then 1 − t =

x − r

R − r
and from (2.2) we deduce

(see also [46, p. 98])

φ (x) ≤ R − x

R − r
· φ (r) +

x − r

R − r
· φ (R)(2.3)

for all x ∈ [r,R], as a simple calculation shows that
R − x

R − r
· r +

x − r

R − r
· R = x.

Put in (2.3) x =
p (y)

q (y)
, y ∈ χ, to get

φ

(

p (y)

q (y)

)

≤
R − p (y)

q (y)

R − r
· φ (r) +

p (y)

q (y)
− r

R − r
· φ (R)(2.4)

for all y ∈ χ.

If we multiply (2.4) by q (y) ≥ 0, integrate on χ and take into account that
∫

χ

p (y) dµ (y) =

∫

χ

q (y) dµ (y) = 1

then by (2.4) we obtain (2.1).

The following result also holds.

Theorem 2. Let φ : [0,∞) → R be differentiable convex on [r,R] and p, q be as

in Theorem 1. Then we have the inequality:

0 ≤ R − 1

R − r
· φ (r) +

1 − r

R − r
· φ (R) − Iφ (p, q)(2.5)

≤ φ′ (R) − φ′ (r)

R − r
·
[

(R − 1) (1 − r) − Dχ2 (p, q)
]

≤ 1

4
(R − r)

[

φ′ (R) − φ′ (r)
]

,

where Dχ2 (·, ·) is the chi-square divergence.

Proof. Since the mapping φ is differentiable convex, we can write

φ (u) − φ (v) ≥ φ′ (v) (u − v)(2.6)

for all u, v ∈ (r,R).



126 S. S. DRAGOMIR

Now, assume that α, β ≥ 0 and α + β > 0. Then, by (2.6), we have

φ

(

αa + βb

α + β

)

− φ (a) ≥ φ′ (a)

(

αa + βb

α + β
− a

)

(2.7)

=
β

α + β
· φ′ (a) (b − a)

and

φ

(

αa + βb

α + β

)

− φ (b) ≥ φ′ (b)

(

αa + βb

α + β
− b

)

(2.8)

= − α

α + β
· φ′ (b) (b − a) .

Now, if we multiply (2.7) by α and (2.8) by β and add the obtained results, we
get

(α + β) φ

(

αa + βb

α + β

)

− αφ (a) − βφ (b) ≥ αβ

α + β
(b − a)

(

φ′ (a) − φ′ (b)
)

which is equivalent to:

0 ≤ αφ (a) + βφ (b)

α + β
− φ

(

αa + βb

α + β

)

(2.9)

≤ αβ

(α + β)2
(

φ′ (b) − φ′ (a)
)

(b − a) .

Now, if in (2.9) we choose α = R − x, β = x − r, a = r, b = R, then we obtain

0 ≤ (R − x)φ (r) + (x − r)φ (R)

R − r
− φ (x)(2.10)

≤ (R − x) (x − r)

R − r

(

φ′ (R) − φ′ (r)
)

.

If in (2.10), we choose x = p(y)
q(y) and then multiply with q (y) we get

(Rq (y) − p (y))φ (r) + (p (y) − rq (y))φ (R)

R − r
− q (y)φ

(

p (y)

q (y)

)

(2.11)

≤ (Rq (y) − p (y)) (p (y) − rq (y))

(R − r) q (y)

(

φ′ (R) − φ′ (r)
)

for all y ∈ χ.

If we integrate (2.11) on χ and take into consideration that
∫

χ

p (y) dµ (y) =

∫

χ

q (y) dµ (y) = 1,

we get

(R − 1) φ (r) + (1 − r)φ (R)

R − r
− Iφ (p, q)(2.12)

≤ (φ′ (R) − φ′ (r))

R − r

∫

χ

(Rq (y) − p (y)) (p (y) − rq (y))

q (y)
dµ (y) .
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However,

0 ≤
∫

χ

(Rq (y) − p (y)) (p (y) − rq (y))

q (y)
dµ (y)

= R −
∫

χ

p2 (y)

q (y)
dµ (y) − rR + r = R + r − rR − 1 − Dχ2 (p, q)

= (R − 1) (1 − r) − Dχ2 (p, q) .

As

(R − 1) (1 − r) ≤ 1

4
(R − r)2 and Dχ2 (p, q) ≥ 0,

the last inequality is obvious.

The following results also holds.

Theorem 3. Assume that the function Φ : [0,∞) → R is twice differentiable on

[r,R] and

m ≤ Φ′′ (t) ≤ M for all t ∈ [r,R] .(2.13)

If the probability distributions p, q ∈ Ω satisfy the conditions of Theorem 1, then

we have the inequality:

1

2
m
[

(R − 1) (1 − r) − Dχ2 (p, q)
]

≤ R − 1

R − r
· Φ (r) +

1 − r

R − r
· Φ (R) − IΦ (p, q)

(2.14)

≤ 1

2
M
[

(R − 1) (1 − r) − Dχ2 (p, q)
]

.

Proof. Define the function Φm : [0,∞) → R, Φm (t) = Φ (t)− 1

2
mt2. Then Φm is

twice differentiable and Φ′′

m (t) = Φ′′ (t)−m ≥ 0, t ∈ [r,R], which shows that Φm

is convex on [r,R].

If we write the inequality (2.1) for the convex mapping Φm, we obtain

IΦ−
1

2
m(·)2 (p, q) ≤ R − 1

R − r

[

Φ (r) − 1

2
mr2

]

+
1 − r

R − r

[

Φ (R) − 1

2
mR2

]

.(2.15)

However,

IΦ−
1

2
m(·)2 (p, q) = IΦ (p, q) − 1

2
m

[
∫

χ

p2 (y)

q (y)
dµ (y) − 1 + 1

]

= IΦ (p, q) − 1

2
mDχ2 (p, q) − 1

2
m

and then, by (2.15), we can get

R − 1

R − r
· Φ (r) +

1 − r

R − r
· Φ (R) − IΦ (p, q)(2.16)

≥ 1

2
mR2 · (1 − r)

R − r
+

1

2
mr2 · (R − 1)

R − r
− 1

2
mDχ2 (p, q) − 1

2
m
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Nonetheless, the right hand side of (2.16) is

1

2
m
[

(R − 1) (1 − r) − Dχ2 (p, q)
]

and the first inequality in (2.14) is obtained.

The second inequality follows by a similar argument applied for the mapping
Φm (t) := 1

2Mt2 − Φ (t). We omit the details.

Corollary 1. With the assumptions in Theorem 3, and if m ≥ 0, then

0 ≤ 1

2
m
[

(R − 1) (1 − r) − Dχ2 (p, q)
]

(2.17)

≤ R − 1

R − r
· Φ (r) +

1 − r

R − r
· Φ (R) − Iφ (p, q) .

Proof. We only have to prove the fact that

Dχ2 (p, q) ≤ (R − 1) (1 − r) ,(2.18)

which follows by the fact that (see the proof of Theorem 2)

0 ≤
∫

χ

(Rq (y) − p (y)) (p (y) − rq (y))

q (y)
dµ (y)

= (R − 1) (1 − r) − Dχ2 (p, q) .

3. Applications for particular divergences

Before we point out some applications of the above results, we would like to
recall the following special means:

L (α, β) :=







β if α = β;
β − α

ln β − ln α
if β 6= α, α, β > 0 (logarithmic mean)

and

I (α, β) :=











β if α = β;

1

e

(

ββ

αα

)

1

β−α

if β 6= α, (identric mean).

1. Kullback-Leibler Divergence. Consider the convex mapping φ : (0,∞) → R,
φ (t) = t ln t. Then

Iφ (p, q) =

∫

χ

p (x) ln

[

p (x)

q (x)

]

dµ (x) = D (p, q) ,

where D (p, q) is the Kullback-Leibler distance.



CSISZÁR DIVERGENCE 129

Proposition 1. Let p, q ∈ Ω with the property that:

r ≤ p (y)

q (y)
≤ R for all y ∈ χ.(3.1)

Then we have the inequality

D (p, q) ≤ ln I (r,R) − G2 (r,R)

L (r,R)
+ 1,(3.2)

where I (·, ·) is the identric mean, L (·, ·) is the logarithmic mean and G (·, ·) is

the usual geometric mean.

Proof. We apply Theorem 1 for φ (t) = t ln t to get

D (p, q) ≤ R − 1

R − r
r ln r +

1 − r

R − r
R ln R

=
R ln R − r ln r

R − r
− rR · ln R − ln r

R − r

= ln I (r,R) + 1 − G2 (r,R)

L (r,R)

and the inequality (3.2) is proved.

Proposition 2. With the assumptions of Proposition 1, we have

0 ≤ ln I (r,R) − G2 (r,R)

L (r,R)
+ 1 − D (p, q)(3.3)

≤ (R − 1) (1 − r) − Dχ2 (p, q)

L (r,R)
·

The proof follows by Theorem 2 applied for φ (t) = t ln t, and taking into
account that

φ′ (R) − φ′ (r)

R − r
=

1

L (r,R)
.

Using Theorem 3, we may be able to improve the inequality (3.3) as follows.

Proposition 3. Let p, q ∈ Ω satisfy the condition (3.1). Then we have the in-

equality:

1

2R

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

≤ ln I (r,R) − G2 (r,R)

L (r,R)
+ 1 − D (p, q)(3.4)

≤ 1

2r

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

.

Proof. We have φ′′ (t) =
1

t
, t ∈ [r,R] and then

1

R
≤ φ′′ (t) ≤ 1

r
, t ∈ [r,R] .

Applying Theorem 3 for φ (t) = t ln t, we obtain (3.4).
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Now, assume that φ (t) = − ln t, which is a convex mapping as well.

We have

Iφ (p, q) = −
∫

χ

q (y) ln

[

p (y)

q (y)

]

dµ (y)

=

∫

χ

q (y) ln

[

q (y)

p (y)

]

dµ (y) = D (q, p) .

Using Theorem 1, we may state the following proposition.

Proposition 4. Let p, q ∈ Ω with the property that (3.1) holds. Then we have

the inequality:

D (q, p) ≤ ln I

(

1

r
,

1

R

)

− 1

L (r,R)
+ 1.(3.5)

Proof. Applying the inequality (2.1) for φ (t) = − ln t, we may write that

D (q, p) ≤ (R − 1) (− ln r) + (1 − r) (− ln R)

R − r

=
r ln R − R ln r

R − r
− lnR − ln r

R − r
=

rR

(

1

R
ln R − 1

r
ln r

)

R − r
− 1

L (r,R)

=

1

r
ln

1

r
− 1

R
ln

1

R
1

r
− 1

R

− 1

L (r,R)
= ln I

(

1

r
,

1

R

)

+ 1 − 1

L (r,R)

and the inequality (3.5) is proved.

Proposition 5. Let p, q be as in Proposition 1. Then

0 ≤ ln I

(

1

r
,

1

R

)

− 1

L (r,R)
+ 1 − D (q, p)(3.6)

≤ 1

G2 (r,R)

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

.

The proof follows by Theorem 2 applied for the function φ (t) = − ln t, and
taking into account that

φ′ (R) − φ′ (r)

R − r
=

1

rR
=

1

G2 (r,R)
.

The inequality (3.6) can be improved as follows.

Proposition 6. Let p, q be as in Proposition 1. Then

1

2R2

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

≤ ln I

(

1

r
,

1

R

)

− 1

L (r,R)
+ 1 − D (q, p)

(3.7)

≤ 1

2r2

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

.
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The proof is obvious by Theorem 3, taking into account that φ′′ (t) =
1

t2
and

1

R2
≤ φ′′ (t) ≤ 1

r2
for all t ∈ [r,R].

2. Hellinger discrimination. Consider the convex mapping φ : [0,∞) → R,

φ (t) =
1

2

(√
t − 1

)2
. Then

Iφ (p, q) =
1

2

∫

χ

q (x)

(
√

p (x)

q (x)
− 1

)2

dµ (x)

=
1

2

∫

χ

(

√

p (x) −
√

q (x)
)2

dµ (x) = h2 (p, q) ,

where h2 (p, q) is the Hellinger discrimination.

Proposition 7. With the assumptions of Proposition 1, we have

h2 (p, q) ≤

(√
R − 1

)

(1 −√
r)

√
R +

√
r

.(3.8)

Proof. We apply Theorem 1 for φ (t) =
1

2

(√
t − 1

)2
to get

h2 (p, q) ≤
(R − 1)

1

2
(
√

r − 1)
2
+ (1 − r)

1

2

(√
R − 1

)2

R − r

=

1

2

(√
R − 1

)

(
√

r − 1)

R − r

[(√
R + 1

)

(

1 −
√

r
)

+
(

1 +
√

r
)

(√
R − 1

)]

=

(√
R − 1

)

(
√

r − 1)
(√

R −√
r
)

R − r

=

(√
R − 1

)

(1 −√
r)

√
R +

√
r

,

and the inequality (3.8) is proved.

Using Theorem 2, we may state the following proposition as well.

Proposition 8. With the assumptions of Proposition 1, we have

0 ≤

(√
R − 1

)

(1 −√
r)

√
R +

√
r

− h2 (p, q)(3.9)

≤ 1

4 (r − R) A
(√

r,
√

R
)

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

,

where A (·, ·) is the arithmetic mean.
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The proof is obvious by Theorem 2 applied for φ (t) =
1

2

(√
t − 1

)2
, taking into

account that φ′ (t) =
1

2
− 1

2
√

t
, and

φ′ (R) − φ′ (r)

R − r
=

√
R −√

r

2
√

rR (R − r)
=

1

2
√

rR
(√

R +
√

r
) .

Finally, by the use of Theorem 3, we may state:

Proposition 9. Assume that p, q ∈ Ω are as in Proposition 1. Then

1

8
√

R3

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

≤

(√
R − 1

)

(1 −√
r)

√
R +

√
r

− h2 (p, q)

(3.10)

≤ 1

8
√

r3

[

(R − 1) (1 − r) − Dχ2 (p, q)
]

.

The proof follows by Theorem 3 applied for the mapping φ (t) = 1
2

(√
t − 1

)2

for which φ′′ (t) =
1

4
√

t3
and, obviously,

1

4
√

R3
≤ φ′′ (t) ≤ 1

4
√

r3
for all t ∈ [r,R] .
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