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NEW INEQUALITIES FOR CSISZAR DIVERGENCE AND
APPLICATIONS

S. S. DRAGOMIR

ABSTRACT. In this paper we point out some new inequalities for Csiszar f-
divergence and apply them for particular instances of distances between two
probability distributions.

1. INTRODUCTION

One of the important issues in many applications of Probability Theory is find-
ing an appropriate measure of distance (or difference or discrimination) between
two probability distributions. A number of divergence measures for this purpose
have been proposed and extensively studied by Jeffreys [1], Kullback and Leibler
[2], Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea
and Rao [7], Rao [8], Lin [9], Csiszér [10], Ali and Silvey [12], Vajda [13], Shioya
and Da-te [40] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology
[8], genetics [14], finance, economics, and political science [15], [16], [17], biology
[18], the analysis of contingency tables [19], approximation of probability distrib-
utions [20], [21], signal processing [22], [23] and pattern recognition [24], [25]. A
number of these measures of distance are specific cases of Csiszar f-divergence
and so further exploration of this concept will have a flow on effect to other
measures of distance and to areas in which they are applied.

Assume that a set x and the o-finite measure p are given. Consider the set of
all probability densities on u to be

= {plos x — R, pla) 20, / pla)dn(e) =1}

The Kullback-Leibler divergence [2] is well known among the information diver-
gences. It is defined as:

p(z
(1) Dicrlpa) = [ ple)1og [0 ]au(e), g e
X q(x)
where log is to base 2.
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In Information Theory and Statistics, various divergences are applied in addi-
tion to the Kullback-Leibler divergence. These are the: wvariation distance D,
Hellinger distance Dy [1], x*-divergence D, 2, a-divergence Do, Bhattacharyya

distance Dp [2], Harmonic distance Dy, Jeffreys distance Dy [1], triangular
discrimination Da [35], etc... They are defined as follows:
(1.2 0= [ @ -a@ 4@, paeo

(13) DHuxm;:A[v¢Gﬁ—vGGﬂ du(e), pa e

(14) Dﬁm@:émmkﬁgf—qwu»zwem

19 Dalra)= g 1= [ @] F @) da@)]. paco
(L6) zhm@:L¢RE%me,nwa;

10 D)= [ 2040, paeo,

08 D= b -a@in B8l di@), paco

p(x) — g ()]
1.9 Da (p,q ::/—d,ux , D,q €.
19 Paed)= | g #W
For other divergence measures, see the paper [5] by Kapur or the book on line [6]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszéar f—divergence is defined as follows [10]

(1.10) Iy (p,q) = /p(ﬂﬁ)f [q(x)] dp(z), p,q €,

X p(x)
where f is convex on (0,00). It is assumed that f (u) is zero and strictly convex
at v = 1. By appropriately defining this convex function, various divergences are
derived. All the above distances (1.1) — (1.9), are particular instances of Csiszar
f—divergence. There are also many others which are not in this class (see for
example [5] or [6]). For the basic properties of Csiszdr f-divergence see [7]-[10].

2. THE RESULTS

We start with the following result.

Theorem 1. Let ¢ : [0,00) — R be a convex mapping on the interval [r,R] C

[0,00) withr <1< R. pr,qucmdr<p(y)

< R for all y € x, then we have
q(y)
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the inequality

(21) I (p.a) < o p(r) +

1—r
R—r

¢ (R).

Proof. As ¢ is convex on [r, R], we may write that
(2.2) Gtr+(L—t)R) <t (r)+ (1 1) o (R)
for all t € [0, 1].

Choose t = ];_ J:, xz € [r,R]. Then 1 —t = 2_ " and from (2.2) we deduce
—r —r
(see also [46, p.98])
R—=x xT—r
2. < . .
(23 @) < B2 o+ 220 o (m)
R— _
for all x € [r, R], as a simple calculation shows that Ly + T R—u.
R—r R—r
Put in (2.3) z = M, Y € X, to get
q(y)
p(y) R_péyi Péyi_r
q\y q\y
2.4 < . A B (R
(24 o (H0) < 19 o)+ LY — o)

for all y € x.
If we multiply (2.4) by ¢ (y) > 0, integrate on y and take into account that

p(y)dp (y) :/Q(Z/)du(y) =1

X X
then by (2.4) we obtain (2.1). O

The following result also holds.

Theorem 2. Let ¢ : [0,00) — R be differentiable convex on [r, R] and p,q be as
in Theorem 1. Then we have the inequality:

(25 0 2 60+ 2 6 (B)~ I, (p,0)
< PO [r- 1))~ D2 (0]
< T R-) ¢ (R) — (r)],

where D,z (-,-) is the chi-square divergence.

Proof. Since the mapping ¢ is differentiable convex, we can write
(2.6) ¢ (u) — ¢ (v) = ¢ (v) (u—v)

for all u,v € (r, R).



126 S. S. DRAGOMIR

Now, assume that «, 3 > 0 and o+ 3 > 0. Then, by (2.6), we have

(2.7) ¢<aZi§b> —¢(a) > ¢ (a) <a§igb_a>
:afﬁ ¢’ (a) (b—a)

and

(2.8) ¢<O‘aaigb> — ¢ (b) > ¢ (b) <a§igb—b>
:_aiﬂ-gb/(b)(b—a)-

Now, if we multiply (2.7) by a and (2.8) by  and add the obtained results, we
get

aa + b
(@00 (22

which is equivalent to:

)—amw—ﬁmw>

ad(a) + G0 (b) _, (aa-+ b
S AR O IC)

Now, if in (2.9) we choose « = R —x, f =2 —r,a =r, b= R, then we obtain

(R — l‘) (1‘ — T) / /
< — - R) — .
< r——— (F(R) —¢'(r)
If in (2.10), we choose x p—g and then multiply with ¢ (y) we get

)
(2.11) (Rg(y) —pW)o(r)+ @y —rqy) ¢ (R) —q(y)qb(’ﬂ)

for all y € x.
If we integrate (2.11) on x and take into consideration that

Ap ) dpt (y / yduly) =1,

R+ -9

(¢ (R)—¢'(r) [ (Ra(y)—p(y)(p(y) —rq(y))
= R—r /x q(y) ).

we get

(2.12)
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However,
(Bq(y) —p W) (p(y) —rq(y))
0<L <) dp (y)
=R - P* () -7 r= r—rR—1—D.,
=R /Xq(y)d,u(y) R+ R+ R—1—-D,2(p,q)
=(R-1)(1—-7r)=Dy>(p,q)-
As
(R—1)(1—1) < %(R—T)Q and D (p.q) >0,
the last inequality is obvious. U

The following results also holds.

Theorem 3. Assume that the function ® : [0,00) — R is twice differentiable on
[r, R] and

(2.13) m<®" ()< M forallte[r,R].

If the probability distributions p,q € ) satisfy the conditions of Theorem 1, then
we have the inequality:

(2.14)

sm(R—1)(1—7) = Dy (n,0)] <

- ®(R) = Iz (p,q)

< IM[(R-1)(1-r) - D p.g).

1
Proof. Define the function ®,, : [0,00) — R, ®,, (t) = ® (t) — §mt2. Then @, is

twice differentiable and ®! (t) = ®” (t) —m > 0, t € [r, R], which shows that ®,,
is convex on [r, R].

If we write the inequality (2.1) for the convex mapping ®,,, we obtain

R—-1 1 5 1—r 1 9
However,
_ 1 P’ (y)
Ty 00) = To () — 30 | [ B -1+

1 1
= I (p,q) — smD,2 (p,q) — 5m

2 2
and then, by (2.15), we can get
R—-1 1—1r
2.1 - - — I
(216) T e() @ (R) L ()
1 1-r) 1 (R—1) 1 1
> “mR?. S — ZmD _ =
2 gml o Ty Ry TP ) gm
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Nonetheless, the right hand side of (2.16) is

1

Sm [(R=1)(1=7) = D2 (p,)]

and the first inequality in (2.14) is obtained.

The second inequality follows by a similar argument applied for the mapping

D, (t) = 2 Mt? — @ (). We omit the details. O
Corollary 1. With the assumptions in Theorem 3, and if m > 0, then
1
(2.17) 0< 3™ [(R—1)(1—7)— D,2 (p,q)]
R—-1 1—1r
< - (r) + @ (R) = Iy (p,q) -

R—r R—r
Proof. We only have to prove the fact that
(2.18) Dy2(p.q) <(R=1)(1—r),
which follows by the fact that (see the proof of Theorem 2)
0 </ (Ra(y) —p(y) (0 (y) —ra(y)) ,
X

1) ()

=(R—-1)(1-7)—Dy(p,q).

3. APPLICATIONS FOR PARTICULAR DIVERGENCES

Before we point out some applications of the above results, we would like to
recall the following special means:

3 if o=/
Llaf)i=9_8=0 4 5.0 a.5>0 (logarithmic mean)
Ing—lna
and
& 1 if a=p;
Ia.8) := é (%Z) o if B # «a, (identric mean).

1. Kullback-Leibler Divergence. Consider the convex mapping ¢ : (0,00) — R,
¢ (t) =tInt. Then

Iy (p,q) = /Xp(ﬂﬁ) In [%} du(x) = D (p,q),

where D (p, q) is the Kullback-Leibler distance.
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Proposition 1. Let p,q € QQ with the property that:
p(y)

(3.1) r<—2=<<R forall ye€yx.
q(y)
Then we have the inequality
G?(r,R)
2 D <InI - —1—=+1
(3.2) (p,q) <Inl(r,R) IR "

where I (-,-) is the identric mean, L (-,-) is the logarithmic mean and G (-,-) is
the usual geometric mean.

Proof. We apply Theorem 1 for ¢ (t) = tlnt to get

R-1 1—7r

<
D(p.q) s p— rinr+ z—RInR

_ RInR—rlnr _ InR—1Inr
N R—r " R—r
G? (r,R)
=Inl 1—-—"
nl(r,R)+ L0 R)

and the inequality (3.2) is proved. O

Proposition 2. With the assumptions of Proposition 1, we have

G%(r,R)
(3.3) OSIDI(T,R)—W—Fl—D(p,q)
CB=HA =) =D (pa)
- L(r,R)

The proof follows by Theorem 2 applied for ¢ (f) = tInt, and taking into
account that

¢ (R)—¢'(r) 1

R—r - L(r,R)

Using Theorem 3, we may be able to improve the inequality (3.3) as follows.

Proposition 3. Let p,q € Q satisfy the condition (3.1). Then we have the in-
equality:

G?(r, R)
L(r,R)

<o [(R=1)(1 -7~ Dy (pa)].

(3.4) [(R—1)(1=7)—D,2(p,q)] <Inl(r,R)— +1—-D(p,q)

2R

1
Proof. We have ¢" (t) = o t € [r, R] and then

<¢' )<t
-

, terR].

I=v ]l

Applying Theorem 3 for ¢ (t) = tInt, we obtain (3.4). O
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Now, assume that ¢ (t) = —Int, which is a convex mapping as well.
We have
p(y)}
1 = — In|—=|d
6 (P, q) /Xq(y) n [q(y) 1 (y)
= [awm |22 dut) = D).
X p(y)

Using Theorem 1, we may state the following proposition.

Proposition 4. Let p,q € Q with the property that (3.1) holds. Then we have
the inequality:

11 1
. D <ImI|l-,=|———+1.
(3 5) (q7p) — n <T7 R) L(T‘, R) +
Proof. Applying the inequality (2.1) for ¢ (t) = —Int, we may write that
(R—1)(=Inr)+ (1 —7r)(—InR)

D <
(¢:p) < 7,

1
rlnR—Rlnr_lnR—lnr_TR<§ 1

R—r R—r R—r L(r,R)

InR — 1lnr>
r

R rR__ v _ (L), ,__1

1 Ion  V\FR)T T TR

R

and the inequality (3.5) is proved. O
Proposition 5. Let p,q be as in Proposition 1. Then

11 1
3.6 0<Inl|({-,=)————<+1-D
(36) <if (1) - o 1o D)
1

< @R [(R—=1)(1—7) = Dy (p,q)] -

The proof follows by Theorem 2 applied for the function ¢ (¢) = —Int, and
taking into account that

¢ (R)—¢(r) 1 1
R—r rR  G?2(r,R)’
The inequality (3.6) can be improved as follows.
Proposition 6. Let p,q be as in Proposition 1. Then

(3.7)

s [(R=0 (=) =D .0)] <t (1.3) ~ 7o +1- Dlar)
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1
The proof is obvious by Theorem 3, taking into account that ¢” (t) = 2 and
1 1
o5 <¢"(t) < 2 for all t € [r, R].
2. Hellinger discrimination. Consider the convex mapping ¢ : [0,00) — R,

6(t) = = (Vi—1)% Then

2
I¢(p>Q):%/Q($)< qugg —1) du (z)
=5 [ (VoG- Vi) du() =1 0.0,

where h? (p, q) is the Hellinger discrimination.

Proposition 7. With the assumptions of Proposition 1, we have

(VE-1) - vm)
VR4 /1 '

(3.8) h? (p,q) <

Proof. We apply Theorem 1 for ¢ (t) = % (ﬁ — 1)2 to get
h? (p,q) < S % Ve Dj:_(i - T)% <\/§_ 1)2
1
LOVE-1) (v -
2RI ) B 1 v (VR 1))
)i (A1)
N R—r
(VE-1) - vm)
a VR+r
and the inequality (3.8) is proved. O

Using Theorem 2, we may state the following proposition as well.
Proposition 8. With the assumptions of Proposition 1, we have
(VE-1)a-v)
(3.9) 0< Ny
1

R-1)(1—7)—=D.2(p,q)],
§4(T_R)A<\/?_A7\/§) [( ) (1 —7) = Dy (p,q)]

where A (-,+) is the arithmetic mean.

- h2 (pv q)
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The proof is obvious by Theorem 2 applied for ¢ (t) = (\/E — 1)2, taking into

1 1
account that ¢’ () = = — ——=, and

N =

S (R)—¢'(r) _ VR—VF _ .
R—r WrR(R=1)  27R (VE+ V)

Finally, by the use of Theorem 3, we may state:

Proposition 9. Assume that p,q € Q are as in Proposition 1. Then
(3.10)

(VE-1) (1= vr)
VR +\/r
< 8—;_3 [(R—1)(1— 1)~ Dy (n.9)]

8—\/1? [(R—=1)(1=7) = Dy (p,q)] <

- h2 (p7 Q)

The proof follows by Theorem 3 applied for the mapping ¢ (t) = % (\/f — 1)2
1
for which ¢” (t) = —= and, obviously,

413

1
< for all t € [r, R].
4/ 73 Ir. A
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