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TWO COINCIDENCE THEOREMS OF VIETORIS MAPS

LIANG-JU CHU AND CHING-YAN LIN

Abstract. In 1959, Nikaidô established a remarkable coincidence theorem in
a compact Hausdorff topological space, which generalizes and gives a unified
treatment to the results of Gale regarding the existence of economic equi-
librium and theorems in game problems. The main purpose of the present
paper is to deduce several generalized key results based on this very powerful
result together with some KKM property. Indeed, we shall simplify and refor-
mulate a few coincidence theorems on acyclic multifunctions as well as some
Gòrniewicz-type fixed point theorems. Beyond the realm of monotonicity nor
metrizability, the results derived here generalize and unify various earlier ones
from classic optimization theory. In the sequel, we shall deduce two versions of
Nikaidô’s coincidence theorem about Vietoris maps from different approaches.

1. Introduction and preliminaries

An acyclic space is a nonempty compact Hausdorff path connected topological
space whose n-th homology group is zero for each n = 1, 2, 3, . . . . Homology,
taken over any fixed field of coefficients, is in terms of either Vietoris or Čech
cycles, as in Begle [1, 2, 3]. For example, any nonempty compact convex set
and any compact contractible space are acyclic. A function τ from M to N
is called a Vietoris map if τ is onto and the inverse image τ−1(q) is acyclic
for each q ∈ N . In this paper we will establish two coincidence theorems on
Vietoris maps from different approaches together with fixed point theorems and
several corollaries for acyclic multifunctions. Beyond the realm of monotonicity
and convexity on operators, the results derived here generalize and unify various
earlier ones from classical optimization theory, as will be indicated below. For this
purpose, we shall adopt a technical result from Nikaidô [15]. Indeed, a remarkable
coincidence theorem, due to Nikaidô, is proved by using a result of Begle [1, 2, 3]
plus the outline of Knaster-Kuratowski-Mazurkiewicz’ proof of Brouwer’s fixed
point theorem [12].

Nikaidô’s Coincidence Theorem [15, Theorem 3]. Let M be a compact Haus-
dorff topological space, N a finite-dimensional compact convex set, and σ and τ
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continuous functions from M to N . If τ is a Vietoris map, then there exists some
p ∈ M such that σ(p) = τ(p).

In particular, when T = τ−1 and f = σ, Nikaidô’s coincidence theorem implies

Gòrniewicz’s Fixed Point Theorem [10]. Let P be an n-simplex in a topologi-
cal vector space X and Y any compact Hausdorff topological space. If T : P −→ Y
is an acyclic multifunction and f : Y −→ P is a continuous function, then
f ◦ T : P −→ P has a fixed point.

Accordingly, there exist x ∈ P and y ∈ T (x) such that x = f(y). Such a pair
(x, y) is called a coincidence for T and f . For multifunctions T : X −→ Y and
S : Y −→ X, we define the coincidence for T and S to be a pair (x, y) ∈ X × Y
with y ∈ T (x) and x ∈ S(y).

We digress briefly now to list a little notation and review some definitions.
Suppose that C and D are subsets of topological spaces X and Y , respectively.
In this paper, we shall use LC spaces to indicate the class of locally convex
Hausdorff topological vector spaces. A multifunction T from C to D, written as
T : C −→ D, is simply a function which assigns each point x of C to a (possibly
empty) subset T (x) of D. The domain, range, graph and inverse of T are defined,
respectively, by

D(T ) := {x ∈ C; T (x) 6= ∅},

R(T ) := {y ∈ D; y ∈ T (x) for some x ∈ D(T )},

G(T ) := {(x, y) ∈ C × D; y ∈ T (x)},

and

G(T−1) := {(y, x) ∈ D × C; (x, y) ∈ G(T )}.

A multifunction T : C −→ D is upper semicontinuous at x provided for each open
set V containing T (x), there exists an open set U containing x such that T (y)
is contained in V whenever y is in U . We shall say T is upper semicontinuous
(u.s.c.) provided T is u.s.c. at each x. The multifunctions T will be called acyclic
provided T is u.s.c. and T (x) is acyclic for each x. It is known from a Künneth
theorem (see Massey [14]) that the cartesian product of two acyclic multifunctions
is acyclic. We say that T is closed if the graph of T is closed in C × D. It is
also known that any u.s.c. compact-valued multifunction T : C −→ D is closed.
Conversely, if T is closed and D is compact, then T is also u.s.c.. When R(T )
is contained in some compact subset of D, we say T is compact; in other words,
clR(T ) is compact in D. Therefore, any compact closed multifunction is u.s.c.. It
is clear that T is compact whenever D is compact. As well, when C is compact,
any u.s.c. compact-valued multifunction T is compact. Further, T is said to have
the local intersection property if, for each x ∈ C with T (x) 6= φ, there exists an
open neighborhood N(x) of x such that

⋂

z∈N(x)

T (z) 6= φ.
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The following proposition provides a relation between Vietoris maps and acyclic
multifunctions.

Proposition 1.1. Let M and N be nonempty subsets of Hausdorff topological
spaces X and Y , respectively, and let τ be a continuous Vietoris map from M to
N . If M is compact, then the multifunction τ−1 : N −→ M is acyclic.

Proof. . Let T = τ−1. Since τ is a Vietoris map, T (q) = τ−1(q) is nonempty and
acyclic for each q ∈ N . Notice that

G(τ) = {(y, x) ∈ M × N ; τ(y) = x} = {(y, x) ∈ M × τ(M); τ(y) = x}

is a closed subset of M × τ(M), as τ is continuous. It follows that

G(T ) = G(τ−1) = {(x, y) ∈ N × M ; y ∈ τ−1x} = {(x, y) ∈ N × M ; τ(y) = x}

is also closed. This shows that T is a closed multifunction. Since R(T ) is con-
tained in the compact set M , it follows that T is u.s.c., and hence T is an acyclic
multifunction.

For a subset C of X, the closure and the convex hull of C will be denoted by clC
and coC, respectively. For such a pair (T,C) and a function φ : C × C × D −→
R ∪ {+∞}, we shall also consider an auxiliary problem, called the generalized
variational inequality problem:

GV I(T,C, φ) : Find x ∈ C and y ∈ T (x) such that φ(x, x, y) ≥ 0, ∀ x ∈ C.

In particular, if φ(z, x, y) := 〈z − x, y〉, ∀ (z, x, y) ∈ C × C × D, the problem
GV I(T,C, φ) reduces to the usual variational inequality V I(T,C). Furthermore,
when X is a reflexive Banach space, with dual X∗, and T is the subdifferential
of a convex function f : X −→ R ∪ {+∞}; i.e.,

T (x) = ∂f(x) := {y ∈ X∗; f(z) − f(x) ≥ 〈z − x, y〉, ∀z ∈ X},

it is easy to see that (x, y) solves V I(T,C) only if x solves the abstract convex
programming problem min{f(x); x ∈ C}.

Finally, we expose a general continuous selection theorem. A locally selection-
able multifunction T : C −→ D is a multifunction such that for each x ∈ C there
exist an open neighborhood Ux of x and a continuous mapping fx : C −→ D with

fx(y) ∈ T (y), ∀ y ∈ Ux ∩ C.

In virtue of partition of unity, we follow mainly an idea from Wu and Shen [18]
to establish a unified continuous selection theorem as follows.

Proposition 1.2. Let S : C −→ D be a multifunction, where C is a nonempty
subset of a Hausdorff topological space X, and D is a nonempty convex subset of
a topological vector space Y . If K is a compact subset of C and any one of the
following properties holds, then there exists a continuous selection f from S on
K; that is, f(x) ∈ S(x), ∀ x ∈ K.

(I) There exists a multifunction A : K −→ D satisfying

(i) A(x) is nonempty and coA(x) ⊂ S(x) for each x ∈ K,
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(ii) A is locally selectionable.

(II) There exists a multifunction A : K −→ D satisfying

(i) A(x) is nonempty and coA(x) ⊂ S(x) for each x ∈ K,

(ii) A has the local intersection property.

(III) There exists a multifunction A : K −→ D satisfying

(i) A(x) is nonempty and coA(x) ⊂ S(x) for each x ∈ K,

(ii) A−1(y) is open for each y ∈ D.

Proof. (I) Since A is locally selectionable, for any x ∈ K ⊂ C, there exist an
open neighborhood Ux of x and a continuous mapping fx : K −→ D such that

fx(y) ∈ A(y), ∀ y ∈ Ux ∩ K.

Since {Ux; x ∈ K} forms an open covering of the compact set K, there is a
finite subcover {Ux1

, Ux2
, · · · , Uxn

} of K. Thus, there is a partition of unity
subordinated to this subcover; that is, there are continuous functions ϕk : K −→
[0, 1], k = 1, 2, ..., n, such that

(i) for each k, ϕk(y) = 0, ∀ y /∈ Uxk
,

(ii)
n∑

k=1

ϕk(y) = 1, ∀ y ∈ K.

Define a mapping f : K −→ Y by

f(y) :=

n∑

k=1

ϕk(y)fxk
(y), ∀ y ∈ K.

Then, f is clearly continuous. Note that for y ∈ K with ϕk(y) 6= 0, the condition
(i) yields y ∈ Uxk

, and hence fxk
(y) ∈ A(y). It follows that

f(y) =
n∑

k=1

ϕk(y)fxk
(y) ∈

n∑

k=1

ϕk(y)A(y) ⊂ coA(y) ⊂ S(y), ∀ y ∈ K.

This shows that f is a continuous selection from S on K.

(II) Since A has the local intersection property, for each x ∈ K, there exists
an open neighborhood N(x) of x such that

F (x) :=
⋂

z∈N(x)

A(z) 6= ∅.

Since K is compact, there is a finite open cover {N(xi); i ∈ I} of K and a
partition of unity subordinated to this cover, say {fi; i ∈ I}, such that

(i) fi(x) = 0, ∀ x /∈ N(xi) for each i ∈ I,

(ii)
∑
i∈I

fi(x) = 1, ∀ x ∈ K.

Now, we choose any yi ∈ F (xi) for each i ∈ I, and define f : K −→ Y by

f(x) :=
∑

i∈I

fi(x)yi, ∀ x ∈ K.
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Then f is clearly continuous. Moreover, for each x ∈ K and each i ∈ I, if
fi(x) 6= 0, then x ∈ N(xi). It follows that yi ∈ F (xi) ⊂ A(x), and hence

f(x) ∈ co{yi; fi(x) 6= 0} ⊂ coA(x) ⊂ S(x), ∀ x ∈ K.

This yields that f is a continuous selection from S on K.

(III) Since A−1(y) is open for each y ∈ D, then for each x ∈ C with A(x) 6= ∅,
we can choose a y ∈ A(x) and let N(x) = A−1(y). Then N(x) is an open
neighborhood of x and y ∈

⋂
z∈N(x)

A(z). Hence, A has the local intersection

property, and applying Part (II) the proof is complete.

As an application of Nikaidô’s Coincidence Theorem, a new coincidence theo-
rem is obtained as follows. This result will be further extended; see Theorem 2.5
and Theorem 3.5.

Theorem 1.1. Let C be a nonempty compact subset of a Hausdorff topological
space X and D a nonempty convex subset of a topological vector space Y . If
S : C −→ D is a multifunction satisfying any one of conditions (II)∼(III) in
Proposition 1.2 with K = C, and T : D −→ C is an acyclic multifunction, then
there is a coincidence for S and T ; that is, there is some (x̄, ȳ) ∈ C × D such
that ȳ ∈ S(x̄) and x̄ ∈ T (ȳ).

Proof. Following the proof of Proposition 1.2, we have a finite subset {yi; i ∈ I}
of D and a continuous selection f from S. Let N := co{yi; i ∈ I}. Then N is a
finite-dimensional compact convex subset of D. Since T is u.s.c., the image T (N)
is compact. Thus, the closed subset

M := (T (N) × N) ∩ G(T−1)

of the compact set T (N) × N is also compact. Let σ and τ be two maps from
M into N defined by σ(x, y) := f(x) and τ(x, y) := y. Then they are continuous
and τ is a Vietoris map, since

τ−1(y) = {(x, y) ∈ M ; τ(x, y) = y} = T (y) × {y}

is an acyclic set for each y ∈ N . Applying Nikaidô’s coincidence theorem, we have
some (x̄, ȳ) ∈ M ⊂ C × D such that σ(x̄, ȳ) = τ(x̄, ȳ). It follows that x̄ ∈ T (ȳ)
and ȳ = σ(x̄, ȳ) = f(x̄) ∈ S(x̄).

2. The first version of Nikaidô’s cioncidence theorem

We begin with a technical result regarding the existence of Fan-type elements
[7, 8]. The versatile tool to prove it is adapted from Nikaidô [15], where there is
a consequence of the Lefschetz fixed point theorem. For the literature, see also
[3, 4, 5, 7, 8, 11, 13, 16, 17].

Lemma 2.1. Let C be a nonempty compact convex subset of a LC space X,
D a subset of a Hausdorff topological space Y , and T : C −→ D an acyclic
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multifunction. Suppose that

F (z, x) = {y ∈ T (x); ϕ1(z, y) ≥ ϕ2(x, y)}, ∀ z, x ∈ C,

where ϕ1, ϕ2 : C × D −→ R ∪ {+∞} are functions satisfying

(i) ϕ1(x, y) ≥ ϕ2(x, y), ∀ (x, y) ∈ G(T ),

(ii) for each y ∈ D the map x 7→ ϕ1(x, y) is quasiconvex on C,

(iii) for each x ∈ C the map y 7→ ϕ1(x, y) is continuous on D,

(iv) the function ϕ2 is lower semicontinuous (l.s.c.) on C × D.

Then there exists a Fan-type element x̄ ∈ C such that
⋂

z∈C

F (z, x̄) 6= ∅.

Proof. First, we observe that G(T ) is compact, as it is a closed subset of the
compact set C×T (C). Let α and β be the natural projections of the graph G(T )
of T onto C and T (C), respectively. That is, for any p := (x, y) ∈ G(T ) we have
α(p) := x and β(p) := y. Thus for all z ∈ C the sets

A(z) := {p ∈ G(T ); ϕ1(z, β(p)) ≥ ϕ2(p)}

are each nonempty and compact. To complete the proof we need to show that
⋂

{A(z); z ∈ C} 6= ∅.(1)

For this, it will suffice to show just that
⋂

{A(zi); i ∈ I} 6= ∅,(2)

for any nonempty finite subset {zi; i ∈ I} of C. Assume on the contrary that
there is a finite subset {zi; i ∈ I} of C such that

⋂
{A(zi); i ∈ I} = ∅.

Then for each p ∈ G(T ),

fI(p) := min{ϕ1(zi, β(p)); i ∈ I} < ϕ2(p).

More specifically, since ϕ2−fI is l.s.c. on the compact set G(T ), for each p ∈ G(T )
there exists some j ∈ I such that

ϕ1(zj , β(p)) = fI(p) < ε + fI(p) ≤ ϕ2(p),(3)

where ε is a positive number given by

ε := inf{ϕ2(p) − fI(p); p ∈ G(T )} > 0.

Let

θi(p) := max{0, ε + fI(p) − ϕ1(zi, β(p))}.
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It follows from (3) that the formula

θ(p) :=

∑
i∈I

θi(p)zi

∑
i∈I

θi(p)

specifies a well-defined continuous function from G(T ) to the set S := co{zi; i ∈
I}. Also, the projection α maps L := G(T ) ∩ (S × T (C)) into S continuously,
with α−1(x) = {x} × T (x), an acyclic subset of L for each x ∈ S ⊂ C. Therefore
Nikaidô’s coincidence theorem yields some p̄ := (x̄, ȳ) ∈ L such that θ(p̄) = α(p̄).
Let J := {i ∈ I; θi(p̄) > 0}. Then J is nonempty by (3). Since for any i ∈ J we
have θi(p̄) > 0, it follows that

ε + fI(p̄) − ϕ1(zi, β(p̄)) > 0.

Thus, by the definition of ε, we have

ϕ2(p̄) − fI(p̄) ≥ ε > ϕ1(zi, β(p̄)) − fI(p̄), ∀ i ∈ J.

From this, we deduce

ϕ2(p̄) > ϕ1(zi, β(p̄)), ∀ i ∈ J.(4)

Notice that the summation in θ(p̄) can be taken just over J . It follows that

x̄ = α(p̄) = θ(p̄) ∈ co{zi; i ∈ J} ⊂ C.

Since the function ϕ1(·, ȳ) is quasiconvex on C, by (4) we then have

ϕ1(x̄, ȳ) ≤ max{ϕ1(zi, ȳ); i ∈ J} < ϕ2(p̄) ≤ ϕ1(x̄, ȳ).

This contradiction yields (2), and hence the proof is complete.

Remark that for a function φ : C × C × D −→ R ∪ {+∞}, we may consider
the sets

F (z, x) = {y ∈ T (x); φ(z, x, y) ≥ 0}, ∀ z, x ∈ C.

By an argument analogous to the above technical lemma, there exists a Fan-type
element x̄ ∈ C such that

⋂

z∈C

F (z, x̄) 6= ∅.

Thus, we can obtain an existence theorem of solutions to GV I(T,C, φ) as follows.

Theorem 2.1. Let C be a nonempty compact convex subset of a LC space X,
D a subset of a Hausdorff topological space Y , and T : C −→ D an acyclic
multifunction. Suppose that φ : C×C×D −→ R∪{+∞} is a function satisfying

(i) φ(x, x, y) ≥ 0, ∀ (x, y) ∈ G(T ),

(ii) for each (x, y) ∈ G(T ), the map z 7→ φ(z, x, y) is quasiconvex,

(iii) for each z ∈ C, the map (x, y) 7→ φ(z, x, y) is continuous.

Then there is a solution to GV I(T,C, φ).
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Now, we will prove a reverse form of Gòrniewicz-type fixed point theorem.
Indeed, the theorem unifies and relaxes almost all of the well-known fixed point
theorems.

Theorem 2.2. Let C be a nonempty compact convex subset of a LC space X,
and D a nonempty subset of a Hausdorff topological space Y . If f : C −→ D is
a continuous function, and T : D −→ C is an acyclic multifunction, then there
exists a fixed point to the composite T ◦ f .

Proof. Since X is locally convex, there is a local base β for X consisting of closed
symmetric convex neighborhoods of 0 in X. For U ∈ β, we define

FU := {z ∈ C; z ∈ T ◦ f(z) + U}.

It is clear that z ∈ C is a fixed point of T ◦ f if and only if

z ∈
⋂

{FU ; U ∈ β}.(5)

Since C is compact, it will suffice to show that the sets FU are closed and satisfy
the finite intersection property. Note that for any finite collection {U1, U2, . . . , Un}
from β, there is a U ∈ β such that FU ⊂ FUk

, ∀ k = 1, 2, . . . , n. Therefore, it will
suffice just to show that each FU is both closed and nonempty.

Assume on the contrary that FU is empty for some U ∈ β. We then have

x − y /∈ U, ∀ (x, y) ∈ G(T ◦ f).

Hence, the Minkowski functional

µU(x) := inf{λ > 0; x ∈ λU}

is continuous and satisfies

µU(x − y) ≥ 1, ∀ (x, y) ∈ G(T ◦ f).(6)

It follows that the functional αU : C −→ R, defined by

αU (x) := min{µU (x − y); y ∈ T ◦ f(x)}, ∀ x ∈ C,

satisfies that αU (x) ≥ 1, ∀ x ∈ C. Applying Lemma 2.1 to (T ◦ f,X,X,C,C)
in place of (T,X, Y,C,D) with ϕ1(x, y) = µU (x − y), and ϕ2(x, y) = αU (x), we
obtain some x̄ ∈ C and ȳ ∈ T ◦ f(x̄) such that

µU (x − ȳ) ≥ αU (x̄), ∀ x ∈ C.

Since ȳ ∈ T ◦ f(x̄) ⊂ C, we deduce a contradiction:

0 = µU (ȳ − ȳ) ≥ αU (x̄) ≥ 1.

This implies that all the sets FU are nonempty. It remains to show that each FU

is closed. Define ∆ := {(x, x); x ∈ C}, and let TU : C −→ C be the multifunction
given by

TU (x) := T ◦ f(x) + U, ∀ x ∈ C.

Observe that FU = p(∆ ∩G(TU )), where p denotes the projection of C ×C onto
the first coordinate. Notice that T ◦ f is u.s.c.. Since C is compact, the graph
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G(TU ) is closed and hence compact in the compact set C × C. It follows that
each FU is compact and hence closed. Thus, the proof is complete.

Using the above technical result, we can establish several consequences. By
taking C = D and f(x) = x, ∀ x ∈ C, we first obtain a rather generalized fixed
point theorem. Indeed, many well-known results can be considered as our conse-
quences such as Brouwer’s fixed point theorem, Kakutani’s fixed point theorem,
Browder’s fixed point theorem, and Fan-Glicksberg’s fixed point theorem.

Corollary 2.1. If C is a nonempty compact convex subset of a LC space X, then
any acyclic multifunction T from C into itself has a fixed point.

As an application, we can extend a new coincidence theorem [6, Theorem 2.1]
to the case that the image S(x) need not be convex and the lower section S−1(y)
is not necessarily open.

Theorem 2.3. Let C be a nonempty compact convex subset of a LC space X
and D a nonempty convex subset of a Hausdorff topological vector space Y . If
S : C −→ D is a multifunction satisfying any one of conditions (I)∼(III) in
Proposition 1.2 with K = C, and T : D −→ C is an acyclic multifunction, then
there is a coincidence for S and T ; that is, there is some (x̄, ȳ) ∈ C × D such
that ȳ ∈ S(x̄) and x̄ ∈ T (ȳ).

Proof. Following the proof of Proposition 1.2, the multifunction S admits a con-
tinuous selection f . Thus, by Theorem 2.2, there exists a fixed point x to T ◦ f .
Let y = f(x). Then x ∈ T ◦ f(x) = T (y) and y = f(x) ∈ S(x). This completes
the proof.

We remark that Theorem 2.2 is a particular case of Corollary 2.1, as well as
Corollary 2.2, since the composite T ◦ f is an acyclic multifunction from C to
itself. By Proposition 1.1, we can use Theorem 2.2 to establish a general form
of Nikaidô’s coincidence theorem. Therefore, all the above theorems are equiv-
alent logically to Nikaidô’s coincidence theorem in any locally convex Hausdorff
topological vector space.

Theorem 2.4. (The first version of Nikaidô’s coincidence theorem) Let M be a
nonempty compact convex subset of a LC space X, N a nonempty subset of a
Hausdorff topological space Y , and σ and τ continuous functions from M to N .
If τ is a Vietoris map, then there exists some p ∈ M such that σ(p) = τ(p).

Proof. Let C = M , D = N , and define T = τ−1 and f = σ. By Proposition
1.1, T is an acyclic multifunction. Applying Theorem 2.2, we have a fixed point
p to the composite T ◦ f ; that is, p ∈ T ◦ f(p) = τ−1(σ(p)). It follows that
σ(p) = τ(p).

3. The second version of Nikaidô’s coincidence theorem

A multifunction S : C −→ X is called a KKM mapping if coA ⊂ S(A) for each
finite subset A of C. In [7, 8], Fan proved the following celebrated lemma, which
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asserts that, given any convex set C in X and a closed-valued KKM mapping
S : C −→ X, if S(x) is compact for at least one x ∈ C, then

⋂
x∈C S(x) 6= ∅. This

lemma generalizes a classical finite-dimensional result of Knaster, Kuratowski,
and Mazurkiewicz. Since then, many results in the direction have been obtained;
see for example [5, 7, 13, 16, 17]. Following [5], we generalized the above property
to the following form : if S, T : C −→ D are two multifunctions such that
T (coA) ⊂ S(A) for each finite subset A of C, then we call S a generalized KKM
mapping with respect to (w.r.t.) T . We say that T : C −→ D has the KKM
property, if S : C −→ Y is a generalized KKM mapping w.r.t. T , then the family
{clS(x); x ∈ C} has the finite intersection property. We shall denote

KKM(C,D) = {T ; T : C −→ D has the KKM property}.

Using this terminology, we have the following basic property.

Lemma 3.1. Let C be a nonempty convex subset of a LC space X, and let Y,Z
be two topological spaces.

(1) If T ∈ KKM(C,C) is compact and closed, then T has a fixed point.

(2) If T : C −→ Y is an acyclic multifunction, then T ∈ KKM(C, Y ).

(3) If T ∈ KKM(C, Y ) and f is continuous from Y to Z, then f ◦ T ∈
KKM(C,Z).

Proof. Part (1) is a result of [5, Theorem 2]. Part (2) is a consequence of [17,
Corollary 2]. To prove (3), we let S : C −→ Z be a generalized KKM mapping
w.r.t. f ◦ T . Then for any finite subset {x1, x2, ..., xn} of C, we have

f ◦ T (co{x1, x2, . . . , xn}) ⊂
n⋃

i=1

S(xi).

Hence

T (co{x1, x2, . . . , xn}) ⊂
n⋃

i=1

f−1S(xi).

It follows that f−1 ◦ S is a generalized KKM mapping w.r.t. T . Since T ∈
KKM(C, Y ), the family {cl(f−1 ◦ S(x)); x ∈ C} has the finite intersection
property, and hence {clS(x); x ∈ C} has the finite intersection property.

To establish our main results, we begin with a generalized fixed point theorem
of Gòrniewicz-type equipped with the KKM property.

Theorem 3.1. Let C be a nonempty convex subset of a LC space X and D a
nonempty subset of a topological space Y . If T ∈ KKM(C,D) is a compact
closed multifunction and f : D −→ C is a continuous function, then f ◦ T :
C −→ C has a fixed point.

Proof. By Lemma 3.1(3), f ◦ T ∈ KKM(C,C). Since T is compact and closed,
f ◦ T is also compact and closed. It follows from Lemma 3.1(1) that f ◦ T has a
fixed point.
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Corollary 3.1. (Generalized Gòrniewicz Fixed Point Theorem) Let C be a non-
empty convex subset of a LC space X and D a nonempty subset of a topological
space Y . If T : C −→ D is a compact acyclic multifunction and f : D −→ C is
a continuous function, then f ◦ T : C −→ C has a fixed point.

Corollary 3.2. If C is a nonempty compact convex subset of a LC space X, then
any acyclic multifunction T from C to itself has a fixed point.

In virtue of the property of continuous selections, we have a general coincidence
theorem for KKM mappings.

Theorem 3.2. Let C be a nonempty subset of a Hausdorff topological space
X and D a nonempty convex subset of a LC space Y . If S : C −→ D is a
multifunction satisfying any one of conditions (I)∼(III) in Proposition 1.2 with
K = clT (D), and T ∈ KKM(D,C) is a compact closed multifunction, then there
exists a coincidence for S and T .

Proof. Since T is compact, the set clT (D) is a compact subset of C. By Proposi-
tion 1.2, the restriction of the multifunction S to the compact set clT (D) admits
a continuous selection f . Thus, by Theorem 3.1, there exists a fixed point x to
f ◦ T . Let x = f(y) for some y ∈ T (x). Then x = f(y) ∈ coA(y) ⊂ S(y). This
completes the proof.

Comparing with Theorem 2.4, the following version requires convexity of N
and local convexity on Y , but M need not to be convex and X need not to be
locally convex.

Theorem 3.3. (The second version of Nikaidô’s coincidence theorem) Let M be
a nonempty compact subset of a Hausdorff topological space X, N a nonempty
convex subset of a LC space Y , and σ and τ be continuous functions from M to
N . If τ is a Vietoris map, then there exists some p ∈ M such that σ(p) = τ(p).

Proof. Let C = N,D = M , and define T = τ−1. By Proposition 1.1, T is an
acyclic multifunction. Since M is compact, T is compact. Applying Corollary
3.1, we have a fixed point p to the composite f ◦ T ; that is, p ∈ f ◦ T (p). Let
q ∈ T (p) such that p = f(q). It follows that σ(q) = f(q) = p = τ(q).
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