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EXISTENCE OF ABSTRACT SOLUTIONS OF
INTEGRO-DIFFERENTIAL OPERATOR EQUATIONS

A. E. HAMZA AND G. MURAZ

ABSTRACT. We consider the integro-differential operator equations having the
form

éamm@—amm%HM*Mﬂ:f@ tER,

where the free term f belongs to a closed subspace M of L™ (R, X), A is the
generator of a Cp-semigroup of operators defined on a Banach space X, p

is a bounded Borel measure on R and «,(,a; € C, i = 1,2,...,n. Certain
conditions will be imposed to guarantee the existence of solutions in the class
M.

1. INTRODUCTION

Many authors, e.g, Zhikov-Levitan [14] and Baskakov [6] gave criteria for al-
most periodicity (a.p.) of solutions of operator differential equations having the
form

(1.1) u'(t) — Au(t) = f(t), teR

where f is (a.p.) from R to a Banach space X and A is the generator of a
Co-semigroup. Others, like Staffans [16], gave criteria for almost periodicity (S-
asymptotically almost periodic (S-a.a.p.)) of solutions of convolution equations
having the form

(1.2) e olt) = f(t) t€R

where f is a complex a.p (S-a.a.p.) and p is a bounded Borel measure on R. Here

o o(t) /gf)t—s du(s), teR.

A continuous function from R to a Banach space X is called (a.p.) if the set
of translates {f, : w € R} is relatively compact in Cp(R, X) (Cp(R,X) is the
space of all continuous bounded functions from R to X). It is well-known that
an a.p. function is uniformly continuous bounded, i.e. belongs to Cy (R, X), see
[1], [10], [14]. The space of all almost periodic functions is denoted by AP(R, X).
A function f is said to be S-a.a.p. if f = p+q, where p is a.p. and ¢ € L*(R, X)
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such that ‘1|im |f(t)]| = 0. The space of all S-a.a.p. functions is denoted by
t|—oo

S —AAPR, X).

Throughout the paper, X is a complex Banach space with the norm || ||. As
usual L>(R, X') denotes the Banach space of all essentially bounded measurable
functions with the norm

[[flloo = ess supl| f(#)]]
teR

A function f is called measurable if there exists a sequence of simple functions
{fn} such that f, — f a.e. with respect to the Lebesgue measure m. By a

n
simple function it is meant a function of the form > x;x4,, z; € X and x4, is
i=1
the characteristic function of the Lebesgue measurable set A; with finite mea-
sure. Finally, M denotes a closed subspace of L (R, X) satisfying the following

conditions:

(P1) M is invariant under translations, i.e. Vf € M Vs € R (fs € M), where
fo(t) = f(t+s).

(P2) M contains the constant functions.

(P3) M is invariant under multiplication by characters, i.e. Vf € MY\ € R
(A f € M), where A(t) = e,

(P4) Aue M VA € B(X) Vue M, where B(X) is the space of all linear
bounded operators on X.

We can see that many spaces like AP(R, X), AAP(R, X), S-AAP(R, X), AA(R, X),

AAAR, X), S-AAA(R, X) and W (R, X) satisfy conditions (P1)-(P4), for defin-

itions and properties see [11], [12], [1-16].

For a function u € L*(R, X), we set

Inj(w) ={f € L'(R) : fxuec M}
and denote the M-spectrum of u by
oar(w) = Z(Iu(w) = {y € R: f(7) =0 Yf € Ly (u)},

where

() = / F(tye 0t dt.
R

In the case M = {0}, 0p(u) = o(u) is the well-known Beurling spectrum.

When M = AP(R,C), L. H. Loomis [15] proved that if u € Cyu(R,C) and
o ap(r,c)(u) (the set of all non-almost periodicity of u) is at most countable, then
u € AP(R,C). B. Basit generalized this theorem in [5] to a class of bounded
uniformly continuous vector-valued functions defined on R with certain properties
satisfied by many known classes.

Some properties of the M-spectrum, was shown by A. E. Hamza and G. Muraz
[12]. In that paper the following result [12, Theorem 4.2.2] was proved.
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Theorem 1.1. If u is uniformly continuous, bounded, such that opr(u) is at
most countable, and for every A\ € opr(u) the function e u(t) is ergodic, then
u e M.

This theorem plays an essential role in proving the existence of solutions in
some classes M C L*°(R, X) for abstract functional equations defined on R, with
free terms in M. See the results obtained by A. E. Hamza [11] concerning the
equations (1.1) and (1.2). We recall a function u € L*°(R, X) is called ergodic if
there exists x € X such that

T

||1/T/(us —2)ds|lec = 0.

0

lim
T—o0

The space of all ergodic functions is denoted by E(R, X). It is known that, see
[12],

AP(R,X) C AAP(R,X) Cc W(R,X) C E(R, X).

This paper is devoted to the integro-differential operator equation
n .
(L3) > e (t) — adu(t) + Buxult) = f(t) teER,
i=1

where the free term f € M [ Cu(R, X), A is the generator of a Cy-semigroup of
linear bounded operators (T'(t));>o defined on X and «, 3,a; € C. We set

sp(A, p) = {)\ ER:aA - (Zar(i)\)r + ﬁﬂ()\))l has no bounded inverse on X}.
r=1

Here, i(A) = [pe ™ dpu(t). Our aim is to show that if sp(A,pu) is at most
countable, then every solution u of equation (1.3) belongs to M, provided that
the function e~™u(t) is ergodic for every A\ € sp(A,p). In this case, u is said
totally ergodic (see ref. on [10]) and the generated Banach space is denoted by
TE(R, X).

When o, =--- =as = =0and a; = a =1, we have isp(A4, u) = sp(A)NiR,
where sp(A) is the usual spectrum of A, and we get the following result [11,
Theorem II.3.6]:

Theorem 1.2. Suppose that sp(A) (iR is at most countable. If u is a solution of
equation (1.1) such that the function e Nu(t) is ergodic for every X € sp(A) iR,
then u e M.

When a,, = -+ =a; =a=0and § =1, we have sp(A, u) = Z(p) and we get
the following result [11, Theorem I1.4.1]:

Theorem 1.3. If Z(yu) = {a € R : ji(a) = 0} is at most countable, then every
solution u € Cyp(R, X) of equation (1.2) belongs to M, provided that the function
e y(t) is ergodic for every a € Z ().
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When a,, = -+ = a3 =0 and a = 3 = 0, the solution u of (1.3) is given by

t
ult) = / £(s) ds,
0

we obtain Theorem (3.4) in [12]. When f is a.p., Kadets [13] proved that the

integral w is a.p. when its range is weakly relatively compact in X and Levitan

[14] proved that w is a.p. if Tlim fTT u(t + s)ds exists uniformly on R. Basit
— 00

[4] extended Levitan’s result for recurrent functions. C.Datry and G. Muraz [10]
extended the result of Levitan to Banach G-modules.
2. THE INTEGRO-DIFFERENTIAL OPERATOR EQUATIONS
In the sequel we suppose that M is a closed subspace of L>(R, X)) satisfying
(P1)-(P4).
Consider the integro-differential operator equation

(2.1) > i (t) — aAu(t) + B u(t) = f(t), teR,
=1

where the free term f € M [ Cu(R, X), A is the generator of a Cy-semigroup of
linear bounded operators (7'(t)):>0 defined on X and «, 3, ; € C. We need the
following lemmas in proving the main result

Lemma 2.1. Let A be a closed operator defined on D(A) C X. Suppose that
u € Cy(R, X) such that its range R(u) is a subset of D(A). Set v =u* 1, where
€ LYR). If Au € Cy(R, X), then R(v) C D(A) and Av = Au *1).

Proof. At first, suppose that 1 is a continuous function with compact support
[T, T]. We have

T
o(t) = / u(t — $)b(s)ds, teR.
7

Hence, v(t) = lim v,(t) Vt € R, where v, (t) = 1/n > u(t — si)1(s;), ({si} is a
n—eo i=1
partition of [T, T] with length 1/n). We have

Avn(t) = 1/n Y Au(t — s;)ib(s;)

=1
which tends to
T
/ Au(t — s)i(s) ds = Au s (t)
G

asn — oo, t € R. Since A is closed, then R(v) C D(A) and Av = Au * 1. Now,
suppose that 1 € L'(R), there exists a sequence {1} of continuous functions
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with compact support such that ||1), —¢|1 — 0 asn — oco. Let v, = u * ¢y,
n € N and v = u * 1, by the first part, R(v,) C D(A) Vn and Av, = Au * )y,
n € N. Since ||u* ¥|oo < ||u|loo]|?|l1, then it is clear that ||v, — v|cc — 0 as
n — oo and ||Av, — Au * 9] — 0 as n — oco. Again, Since A is closed, then
R(v) € D(A) and Av = Au * 1. O

Lemma 2.2. Let A be a closed operator defined on D(A) which is dense in X. If
v € Cyp(R, X), then there exists a bounded sequence of trigonometric polynomials
{vn} such that

(i) v, — v locally, i. e. vy, is uniformly convergent to v on every compat subset
of R
(ii) the range R(v,) of v, is a subset of D(A) for every n.

Proof. We can see that if v € Cy(R, X)), [14], then there exists a bounded sequence

of trigonometric polynomial {u,} such that u, — v locally. Since D(A) is dense

in X, we can approximate u,(t) = > A\inzi by v, = > Xinyi, where {y;} C
i i

D(A). O

Lemma 2.3. Suppose that A is a closed operator defined on D(A) which is dense
in X such that sp(A) # C. If v and Av € Cp(R, X), then there exists a bounded

sequence of trigonometric polynomials {v,} such that
(i) vy, — v locally and R(v,) C D(A).
(il) Av, — Av locally.

Proof. Since both of v and Av belong to Cy(R, X), there exist two bounded
sequences of trigonometric polynomials {u,} and {6,} such that

(1) uy, — v locally and R(u,) C D(A).
(2) 6,, — Av locally and R(6,,) C D(A).

Since sp(A) # C, there exists A € C such that (4 — M\)~! exists as a bounded
operator on X. We have

(1) (A=AX)"10, — (A= X)"'Av = v+ A(A — M) 1w locally .
Also we have
(2) MA = M), — MA = M) 1w locally.

Putting v, = (A — MX)~1(0,, — Mu,,), we get by (1) and (2) that v, — v locally.
Now, we show that Av, — Awv locally. Indeed, we have

Av, = A(A = XI)7Y(0,, — Iuy,)
= [T+ XA =X, — Muy).
Hence Av, — Av locally. O

Lemma 2.4. If v € C,(R, X) is such that its spectrum o(v) is a compact sub-
set of an interval [a,b], then v € C®(R,X) and v*) € Cy(R,X) Vk € N. If
in addition, A is a closed operator such that D(A) is dense in X, sp(A) # C
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and Av € Cp(R, X), then for every € > 0 there exists a bounded sequence of
trigonometric polynomials {v,} such that

(i) o(vp) C [a —€,b+ €.
(i) v,®) — v®) locally, k € Z> 0,
(iii) Av, — Av locally.

Proof. Let € > 0. Choose ¢ € LY(R) () C*(R) such that
(1) ¥ € LY(R) VE.
(2) supp b C [a —e,b+¢].
(3) p=1o0n [a—e/2,b+€/2].

We show now that v * ¢ = v. Indeed, let h € L}(R). Then

(h ¢ —h)(a) = h(a)d(a) — h(a) =0 Va € [a—€/2,a+ €/2].

Thus, supp (h * ¢ — h) N [a,b] = 0, hence o(v * (h* ¢ — h)) = (. This implies
that v+ (hx ¢ —h) =0 Vh € L'(R), i.e. (wx¢—v)xh =0 Vh € L'(R).
Therefore, v * ¢ = v and then v € C®°(R, X) and v*) € Cy(R, X). Since both
v and Av belong to Cy(R, X), by Lemma 2.3 there exists a bounded sequence of
trigonometric polynomials {t,} such that

(1) ¥, — v locally and R(v¢,) C D(A).

(ii) A, — Av locally.
Set vy, = ¥y, * ¢. We can see that o(v,) C [a —e,a +¢€]|. Also, v, — v locally.
We have lim v,®) = lim ¢, * ¢(*) = v x ¢ = v(*) locally. Also we have

Avy, = Atpy % ¢ ¥Yn. Then lim Av, = Av* ¢ = A(v x ¢) = Av locally. U
We denote

n
— : _ Nk . ) .
sp(A, ) {/\ eR {aA (ng ag (A" + Bu(A))I} has no bounded inverse on X}

and
n

Py = [od — (S ewin)* + )1

k=1
where A ¢ sp(A, ).

Theorem 2.1. If u is a solution of equation (2.1), then opr(u) C sp(A, ).
Proof. Let Ao ¢ sp(A, i), where \g € R. Then P, is analytic in a neighbourhood
of Ao, say [Ao — 4a, A\g + 4a]. Fix a function ¢ € L*(R) such that

(i) b e Cg° the space of all infinitely differentiable functions with compact
support.

(i) ¢(A) =1 YA € [N — 20, Ag + 20].
(iii) suppd C (Ao — 4a, Ao + 4a).
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Define the function G : R — B(X) by
G(\) = (A Py
We see that
Py, if e[\ —2a, A+ 2
G()\): Ay 1 E[ 0 «, 0+ a]7
0, if [A—Xo| > 4a

Hence G is infinitely differentiable with compact support. Therefore G is the
Fourier transform of a continuous function F € L'(R, B(X)) (i.e. fR I1E' ()|l px) dt <

00). Let ¢ € L'(R) be such that supp ) C [Ao — a, Ao + o] and w()\o) = 1. Set
v=ux1 and g = f x1). We can see that v is a solution of the equation

Zakv —aAu(t) + Buxv(t) =g(t), teR.

Since v®) € Cy(R,X), Av € Cy(R,X). Since o(v) is a compact subset of
[Ao — a, A\g + af, by Lemma 2.4 there exists a bounded sequence of trigonometric
polynomials {v,,} such that

(1) o(vn) C [Ao — 2, A\g + 20 Vn.
(2) v, — v locally .
(3) Avn — Awv locally .

)

(4

Putting g, = E akvnk) — aAv, + Bu * vy, n € N, we get g, — ¢ locally . Now,

v (k) locally .

we prove that vn = —fR $)gn(t —s)ds, n € N, t € R. Fix n € N, we write
vn, in the form

n
t) = ZP)\kakei)\kt, t e R,
where {A\;} C [Ao — 2a, Ao + 20 and {ar} C X. A simple calculation shows that

Z v () — adun (8) + B x vp(t) = — Z ape Mt
k=1 Pt

n .
Hence g,(t) = — Y arpe! n € N, t € R. We have
k=1

[ Fmie =S [

R
= — Z ei’\’“tF()\k)ak

= _Zei)\ktp)\kak
= —up (), neN, teR.
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Take the limit to obtain that v(t) = — [z F(s)g(t — s)ds ,t € R. Now we show
that v € M. Define the function h : R — M by h(s) = F(s)g—s, (9 € M from
Lemma 4.1.2.in [12], see also [5]). The function A is continuous. Indeed, fix
s0 € R. Let € > 0, there exists 6 > 0 such that for every s € (sg — 4,80+ 9)

9

9
F(s)— F(s < ——— and —s — g— <"

Hence we have

1) — h(so)llso = IF(3)g—s — F(50)g—s0lo0
< | F(5)g-s — F(50)9—slloe + [ F(50)9—s — F(50)gs0 I
E E
< ——9|loc + ===——||F'(s
Ml e ST 1 0 800
=c Vs € (so — 0,80+ 0).

Since [, [|7(5)]loc ds < ||glloc Jg [IF(s)||ds < oo, applying Bochner’ theorem [17,
p 133] we get [, h(s)ds € M. Therefore, v € M, i.e u 1) € M, whence \g ¢
oy (u). O

Now, we prove our main result concerning the integro-differential operator
equation (2.1) which studies the conditions that guarantee the existence of solu-
tions in M. For the case M = AP(R, X) see [6], [14], [16].

Theorem 2.2. Suppose that sp(A, p) is at most countable. If u is a solution of
equation (2.1) such that the function e=*u(t) is ergodic for every A € sp(A,p),
then u € M.

Proof. Let u be a solution satisfying the condition of the Theorem. Hence, by
Theorem 2.1, we get that op/(u) is at most countable. Therefore w € M by
Theorem 1.1. U
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