EXISTENCE OF ABSTRACT SOLUTIONS OF INTEGRO-DIFFERENTIAL OPERATOR EQUATIONS

A. E. HAMZA AND G. MURAZ

Abstract. We consider the integro-differential operator equations having the form $% \mathcal{A}$

$$\sum_{i=1}^{n} \alpha_i u^{(i)}(t) - \alpha A u(t) + \beta \mu * u(t) = f(t) \quad t \in \mathbb{R},$$

where the free term f belongs to a closed subspace M of $L^{\infty}(\mathbb{R}, X)$, A is the generator of a C_0 -semigroup of operators defined on a Banach space X, μ is a bounded Borel measure on \mathbb{R} and $\alpha, \beta, \alpha_i \in \mathbb{C}$, i = 1, 2, ..., n. Certain conditions will be imposed to guarantee the existence of solutions in the class M.

1. INTRODUCTION

Many authors, e.g., Zhikov-Levitan [14] and Baskakov [6] gave criteria for almost periodicity (a.p.) of solutions of operator differential equations having the form

(1.1)
$$u'(t) - Au(t) = f(t), \quad t \in \mathbb{R}$$

where f is (a.p.) from \mathbb{R} to a Banach space X and A is the generator of a C_0 -semigroup. Others, like Staffans [16], gave criteria for almost periodicity (S-asymptotically almost periodic (S-a.a.p.)) of solutions of convolution equations having the form

(1.2)
$$\mu * \phi(t) = f(t) , t \in \mathbb{R}$$

where f is a complex a.p (S-a.a.p.) and μ is a bounded Borel measure on \mathbb{R} . Here

$$\mu * \phi(t) = \int_{\mathbb{R}} \phi(t-s) \, d\mu(s), \quad t \in \mathbb{R}.$$

A continuous function from \mathbb{R} to a Banach space X is called (a.p.) if the set of translates $\{f_w : w \in \mathbb{R}\}$ is relatively compact in $C_b(\mathbb{R}, X)$ ($C_b(\mathbb{R}, X)$ is the space of all continuous bounded functions from \mathbb{R} to X). It is well-known that an a.p. function is uniformly continuous bounded, i.e. belongs to $C_{ub}(\mathbb{R}, X)$, see [1], [10], [14]. The space of all almost periodic functions is denoted by $AP(\mathbb{R}, X)$. A function f is said to be S-a.a.p. if f = p + q, where p is a.p. and $q \in L^{\infty}(\mathbb{R}, X)$

Received February 18, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 43A60.

Key words and phrases. Theory of almost periodic functions, harmonic analysis.

such that $\lim_{|t|\to\infty} ||f(t)|| = 0$. The space of all S-a.a.p. functions is denoted by $S - AAP(\mathbb{R}, X)$.

Throughout the paper, X is a complex Banach space with the norm $\| \|$. As usual $L^{\infty}(\mathbb{R}, X)$ denotes the Banach space of all essentially bounded measurable functions with the norm

$$||f||_{\infty} = \operatorname{ess\,sup}_{t \in \mathbb{R}} ||f(t)||.$$

A function f is called measurable if there exists a sequence of simple functions $\{f_n\}$ such that $f_n \to f$ a.e. with respect to the Lebesgue measure m. By a simple function it is meant a function of the form $\sum_{i=1}^n x_i \chi_{A_i}, x_i \in X$ and χ_{A_i} is the characteristic function of the Lebesgue measurable set A_i with finite measure. Finally, M denotes a closed subspace of $L^{\infty}(\mathbb{R}, X)$ satisfying the following conditions:

- (P1) *M* is invariant under translations, i.e. $\forall f \in M \ \forall s \in \mathbb{R} \ (f_s \in M)$, where $f_s(t) = f(t+s)$.
- $(\mathbf{P2})$ M contains the constant functions.
- (P3) M is invariant under multiplication by characters, i.e. $\forall f \in M \forall \lambda \in \mathbb{R}$ $(\check{\lambda} \ f \in M)$, where $\check{\lambda}(t) = e^{i\lambda t}$.
- (P4) $Au \in M \quad \forall A \in B(X) \quad \forall u \in M$, where B(X) is the space of all linear bounded operators on X.

We can see that many spaces like $AP(\mathbb{R}, X)$, $AAP(\mathbb{R}, X)$, S- $AAP(\mathbb{R}, X)$, $AA(\mathbb{R}, X)$, $AAA(\mathbb{R}, X)$, S- $AAA(\mathbb{R}, X)$ and $W(\mathbb{R}, X)$ satisfy conditions (P1)-(P4), for definitions and properties see [11], [12], [1-16].

For a function $u \in L^{\infty}(\mathbb{R}, X)$, we set

$$I_M(u) = \{ f \in L^1(\mathbb{R}) : f * u \in M \}$$

and denote the M-spectrum of u by

$$\sigma_M(u) = Z(I_M(u)) = \{ \gamma \in \mathbb{R} : \hat{f}(\gamma) = 0 \ \forall f \in I_M(u) \},\$$

where

$$\hat{f}(\gamma) = \int_{\mathbb{R}} f(t) e^{-i\gamma t} dt.$$

In the case $M = \{0\}, \sigma_M(u) = \sigma(u)$ is the well-known Beurling spectrum.

When $M = AP(\mathbb{R}, \mathbb{C})$, L. H. Loomis [15] proved that if $u \in C_{ub}(\mathbb{R}, \mathbb{C})$ and $\sigma_{AP(\mathbb{R},\mathbb{C})}(u)$ (the set of all non-almost periodicity of u) is at most countable, then $u \in AP(\mathbb{R},\mathbb{C})$. B. Basit generalized this theorem in [5] to a class of bounded uniformly continuous vector-valued functions defined on \mathbb{R} with certain properties satisfied by many known classes.

Some properties of the M-spectrum, was shown by A. E. Hamza and G. Muraz [12]. In that paper the following result [12, Theorem 4.2.2] was proved.

Theorem 1.1. If u is uniformly continuous, bounded, such that $\sigma_M(u)$ is at most countable, and for every $\lambda \in \sigma_M(u)$ the function $e^{-i\lambda t}u(t)$ is ergodic, then $u \in M$.

This theorem plays an essential role in proving the existence of solutions in some classes $M \subseteq L^{\infty}(\mathbb{R}, X)$ for abstract functional equations defined on \mathbb{R} , with free terms in M. See the results obtained by A. E. Hamza [11] concerning the equations (1.1) and (1.2). We recall a function $u \in L^{\infty}(\mathbb{R}, X)$ is called ergodic if there exists $x \in X$ such that

$$\lim_{T \to \infty} \|1/T \int_{0}^{T} (u_s - x) \, ds\|_{\infty} = 0.$$

The space of all ergodic functions is denoted by $E(\mathbb{R}, X)$. It is known that, see [12],

$$AP(\mathbb{R}, X) \subset AAP(\mathbb{R}, X) \subset W(\mathbb{R}, X) \subset E(\mathbb{R}, X).$$

This paper is devoted to the integro-differential operator equation

(1.3)
$$\sum_{i=1}^{n} \alpha_i u^{(i)}(t) - \alpha A u(t) + \beta \mu * u(t) = f(t) \quad t \in \mathbb{R},$$

where the free term $f \in M \cap C_{ub}(\mathbb{R}, X)$, A is the generator of a C_0 -semigroup of linear bounded operators $(T(t))_{t>0}$ defined on X and $\alpha, \beta, \alpha_i \in \mathbb{C}$. We set

$$sp(A,\mu) = \Big\{\lambda \in \mathbb{R} : \alpha A - \Big(\sum_{r=1}^{n} \alpha_r (i\lambda)^r + \beta \hat{\mu}(\lambda)\Big)I \text{ has no bounded inverse on } X\Big\}.$$

Here, $\hat{\mu}(\lambda) = \int_{\mathbb{R}} e^{-i\lambda t} d\mu(t)$. Our aim is to show that if $sp(A, \mu)$ is at most countable, then every solution u of equation (1.3) belongs to M, provided that the function $e^{-i\lambda t}u(t)$ is ergodic for every $\lambda \in sp(A, \mu)$. In this case, u is said totally ergodic (see ref. on [10]) and the generated Banach space is denoted by $TE(\mathbb{R}, X)$.

When $\alpha_n = \cdots = \alpha_2 = \beta = 0$ and $\alpha_1 = \alpha = 1$, we have $isp(A, \mu) = sp(A) \cap i\mathbb{R}$, where sp(A) is the usual spectrum of A, and we get the following result [11, Theorem II.3.6]:

Theorem 1.2. Suppose that $sp(A) \cap i\mathbb{R}$ is at most countable. If u is a solution of equation (1.1) such that the function $e^{-\lambda t}u(t)$ is ergodic for every $\lambda \in sp(A) \cap i\mathbb{R}$, then $u \in M$.

When $\alpha_n = \cdots = \alpha_1 = \alpha = 0$ and $\beta = 1$, we have $sp(A, \mu) = Z(\mu)$ and we get the following result [11, Theorem II.4.1]:

Theorem 1.3. If $Z(\mu) = \{ \alpha \in \mathbb{R} : \hat{\mu}(\alpha) = 0 \}$ is at most countable, then every solution $u \in C_{ub}(\mathbb{R}, X)$ of equation (1.2) belongs to M, provided that the function $e^{-i\alpha t}u(t)$ is ergodic for every $\alpha \in Z(\mu)$.

When $\alpha_n = \cdots = \alpha_2 = 0$ and $\alpha = \beta = 0$, the solution *u* of (1.3) is given by

$$u(t) = \int_{0}^{t} f(s) \, ds,$$

we obtain Theorem (3.4) in [12]. When f is a.p., Kadets [13] proved that the integral u is a.p. when its range is weakly relatively compact in X and Levitan [14] proved that u is a.p. if $\lim_{T\to\infty} \int_{-T}^{T} u(t+s) ds$ exists uniformly on \mathbb{R} . Basit [4] extended Levitan's result for recurrent functions. C.Datry and G. Muraz [10] extended the result of Levitan to Banach G-modules.

2. The integro-differential operator equations

In the sequel we suppose that M is a closed subspace of $L^{\infty}(\mathbb{R}, X)$ satisfying (P1)-(P4).

Consider the integro-differential operator equation

(2.1)
$$\sum_{i=1}^{n} \alpha_i u^{(i)}(t) - \alpha A u(t) + \beta \mu * u(t) = f(t), \quad t \in \mathbb{R},$$

where the free term $f \in M \cap C_{ub}(\mathbb{R}, X)$, A is the generator of a C_0 -semigroup of linear bounded operators $(T(t))_{t\geq 0}$ defined on X and $\alpha, \beta, \alpha_i \in \mathbb{C}$. We need the following lemmas in proving the main result

Lemma 2.1. Let A be a closed operator defined on $D(A) \subseteq X$. Suppose that $u \in C_b(\mathbb{R}, X)$ such that its range R(u) is a subset of D(A). Set $v = u * \psi$, where $\psi \in L^1(\mathbb{R})$. If $Au \in C_b(\mathbb{R}, X)$, then $R(v) \subseteq D(A)$ and $Av = Au * \psi$.

Proof. At first, suppose that ψ is a continuous function with compact support [-T, T]. We have

$$v(t) = \int_{-T}^{T} u(t-s)\psi(s) \, ds, \quad t \in \mathbb{R}.$$

Hence, $v(t) = \lim_{n \to \infty} v_n(t) \quad \forall t \in \mathbb{R}$, where $v_n(t) = 1/n \sum_{i=1}^n u(t-s_i)\psi(s_i)$, $(\{s_i\}$ is a partition of [-T, T] with length 1/n). We have

$$Av_n(t) = 1/n \sum_{i=1}^n Au(t-s_i)\psi(s_i)$$

which tends to

$$\int_{-T}^{T} Au(t-s)\psi(s) \, ds = Au * \psi(t)$$

as $n \to \infty$, $t \in \mathbb{R}$. Since A is closed, then $R(v) \subseteq D(A)$ and $Av = Au * \psi$. Now, suppose that $\psi \in L^1(\mathbb{R})$, there exists a sequence $\{\psi_n\}$ of continuous functions

with compact support such that $\|\psi_n - \psi\|_1 \to 0$ as $n \to \infty$. Let $v_n = u * \psi_n$, $n \in \mathbb{N}$ and $v = u * \psi$, by the first part, $R(v_n) \subseteq D(A) \forall n$ and $Av_n = Au * \psi_n$, $n \in \mathbb{N}$. Since $\|u * \psi\|_{\infty} \leq \|u\|_{\infty} \|\psi\|_1$, then it is clear that $\|v_n - v\|_{\infty} \to 0$ as $n \to \infty$ and $\|Av_n - Au * \psi\|_{\infty} \to 0$ as $n \to \infty$. Again, Since A is closed, then $R(v) \subseteq D(A)$ and $Av = Au * \psi$.

Lemma 2.2. Let A be a closed operator defined on D(A) which is dense in X. If $v \in C_b(\mathbb{R}, X)$, then there exists a bounded sequence of trigonometric polynomials $\{v_n\}$ such that

(i) $v_n \to v$ locally, i. e. v_n is uniformly convergent to v on every compat subset of \mathbb{R}

(ii) the range $R(v_n)$ of v_n is a subset of D(A) for every n.

Proof. We can see that if $v \in C_b(\mathbb{R}, X)$, [14], then there exists a bounded sequence of trigonometric polynomial $\{u_n\}$ such that $u_n \to v$ locally. Since D(A) is dense in X, we can approximate $u_n(t) = \sum_i \lambda_{i,n} x_i$ by $v_n = \sum_i \lambda_{i,n} y_i$, where $\{y_i\} \subset D(A)$.

Lemma 2.3. Suppose that A is a closed operator defined on D(A) which is dense in X such that $sp(A) \neq \mathbb{C}$. If v and $Av \in C_b(\mathbb{R}, X)$, then there exists a bounded sequence of trigonometric polynomials $\{v_n\}$ such that

- (i) $v_n \to v$ locally and $R(v_n) \subseteq D(A)$.
- (ii) $Av_n \to Av$ locally.

Proof. Since both of v and Av belong to $C_b(\mathbb{R}, X)$, there exist two bounded sequences of trigonometric polynomials $\{u_n\}$ and $\{\theta_n\}$ such that

- (1) $u_n \to v$ locally and $R(u_n) \subset D(A)$.
- (2) $\theta_n \to Av$ locally and $R(\theta_n) \subset D(A)$.

Since $sp(A) \neq \mathbb{C}$, there exists $\lambda \in \mathbb{C}$ such that $(A - \lambda I)^{-1}$ exists as a bounded operator on X. We have

(1)
$$(A - \lambda I)^{-1} \theta_n \to (A - \lambda I)^{-1} Av = v + \lambda (A - \lambda I)^{-1} v$$
 locally.

Also we have

(2)
$$\lambda (A - \lambda I)^{-1} u_n \to \lambda (A - \lambda I)^{-1} v$$
 locally.

Putting $v_n = (A - \lambda I)^{-1}(\theta_n - \lambda u_n)$, we get by (1) and (2) that $v_n \to v$ locally. Now, we show that $Av_n \to Av$ locally. Indeed, we have

$$Av_n = A(A - \lambda I)^{-1}(\theta_n - \lambda u_n)$$

= $[I + \lambda (A - \lambda I)^{-1}](\theta_n - \lambda u_n).$

Hence $Av_n \to Av$ locally.

Lemma 2.4. If $v \in C_b(\mathbb{R}, X)$ is such that its spectrum $\sigma(v)$ is a compact subset of an interval [a, b], then $v \in C^{\infty}(\mathbb{R}, X)$ and $v^{(k)} \in C_b(\mathbb{R}, X) \ \forall k \in \mathbb{N}$. If in addition, A is a closed operator such that D(A) is dense in X, $sp(A) \neq \mathbb{C}$

and $Av \in C_b(\mathbb{R}, X)$, then for every $\varepsilon > 0$ there exists a bounded sequence of trigonometric polynomials $\{v_n\}$ such that

- (i) $\sigma(v_n) \subseteq [a \epsilon, b + \epsilon].$
- (ii) $v_n^{(k)} \to v^{(k)}$ locally, $k \in \mathbb{Z} \ge 0$,
- (iii) $Av_n \to Av$ locally.

Proof. Let $\varepsilon > 0$. Choose $\phi \in L^1(\mathbb{R}) \cap C^{\infty}(\mathbb{R})$ such that

- (1) $\phi^{(k)} \in L^1(\mathbb{R}) \ \forall k.$
- (2) $supp \ \hat{\phi} \subseteq [a \varepsilon, b + \varepsilon].$
- (3) $\hat{\phi} = 1$ on $[a \epsilon/2, b + \epsilon/2]$.

We show now that $v * \phi = v$. Indeed, let $h \in L^1(\mathbb{R})$. Then

$$(h * \phi - \hat{h})(\alpha) = \hat{h}(\alpha)\hat{\phi}(\alpha) - \hat{h}(\alpha) = 0 \quad \forall \alpha \in [a - \epsilon/2, a + \epsilon/2].$$

Thus, $\operatorname{supp}(h * \phi - h) \cap [a, b] = \emptyset$, hence $\sigma(v * (h * \phi - h)) = \emptyset$. This implies that $v * (h * \phi - h) = 0 \quad \forall h \in L^1(\mathbb{R})$, i.e. $(v * \phi - v) * h = 0 \quad \forall h \in L^1(\mathbb{R})$. Therefore, $v * \phi = v$ and then $v \in C^{\infty}(\mathbb{R}, X)$ and $v^{(k)} \in C_b(\mathbb{R}, X)$. Since both v and Av belong to $C_b(\mathbb{R}, X)$, by Lemma 2.3 there exists a bounded sequence of trigonometric polynomials $\{\psi_n\}$ such that

- (i) $\psi_n \to v$ locally and $R(\psi_n) \subseteq D(A)$.
- (ii) $A\psi_n \to Av$ locally.

Set $v_n = \psi_n * \phi$. We can see that $\sigma(v_n) \subseteq [a - \varepsilon, a + \varepsilon]$. Also, $v_n \to v$ locally. We have $\lim_{n \to \infty} v_n^{(k)} = \lim_{n \to \infty} \psi_n * \phi^{(k)} = v * \phi^{(k)} = v^{(k)}$ locally. Also we have $Av_n = A\psi_n * \phi \ \forall n$. Then $\lim_{n \to \infty} Av_n = Av * \phi = A(v * \phi) = Av$ locally. \Box

We denote

$$sp(A,\mu) = \Big\{\lambda \in \mathbb{R} : \Big[\alpha A - \Big(\sum_{k=1}^{n} \alpha_k (i\lambda)^k + \beta \hat{\mu}(\lambda)\Big)I\Big] \text{ has no bounded inverse on } X\Big\}.$$

and

$$P_{\lambda} = \left[\alpha A - \left(\sum_{k=1}^{n} \alpha_{k} (i\lambda)^{k} + \beta \hat{\mu}(\lambda)\right) I\right]^{-1},$$

where $\lambda \notin sp(A, \mu)$.

Theorem 2.1. If u is a solution of equation (2.1), then $\sigma_M(u) \subseteq sp(A, \mu)$.

Proof. Let $\lambda_0 \notin sp(A, \mu)$, where $\lambda_0 \in \mathbb{R}$. Then P_{λ} is analytic in a neighbourhood of λ_0 , say $[\lambda_0 - 4\alpha, \lambda_0 + 4\alpha]$. Fix a function $\phi \in L^1(\mathbb{R})$ such that

(i) $\hat{\phi} \in C_c^{\infty}$ the space of all infinitely differentiable functions with compact support.

- (ii) $\hat{\phi}(\lambda) = 1 \ \forall \lambda \in [\lambda_0 2\alpha, \lambda_0 + 2\alpha].$
- (iii) supp $\hat{\phi} \subseteq (\lambda_0 4\alpha, \lambda_0 + 4\alpha)$.

Define the function $G : \mathbb{R} \to B(X)$ by

$$G(\lambda) = \hat{\phi}(\lambda) P_{\lambda}$$

We see that

$$G(\lambda) = \begin{cases} P_{\lambda}, & \text{if } \lambda \in [\lambda_0 - 2\alpha, \lambda_0 + 2\alpha], \\ 0, & \text{if } |\lambda - \lambda_0| \ge 4\alpha. \end{cases}$$

Hence G is infinitely differentiable with compact support. Therefore, G is the Fourier transform of a continuous function $F \in L^1(\mathbb{R}, B(X))$ (i.e. $\int_{\mathbb{R}} ||F(t)||_{B(X)} dt < \infty$). Let $\psi \in L^1(\mathbb{R})$ be such that $\operatorname{supp} \hat{\psi} \subseteq [\lambda_0 - \alpha, \lambda_0 + \alpha]$ and $\hat{\psi}(\lambda_0) = 1$. Set $v = u * \psi$ and $g = f * \psi$. We can see that v is a solution of the equation

$$\sum_{k=1}^{n} \alpha_k v^{(k)}(t) - \alpha A v(t) + \beta \mu * v(t) = g(t), \quad t \in \mathbb{R}.$$

Since $v^{(k)} \in C_b(\mathbb{R}, X)$, $Av \in C_b(\mathbb{R}, X)$. Since $\sigma(v)$ is a compact subset of $[\lambda_0 - \alpha, \lambda_0 + \alpha]$, by Lemma 2.4 there exists a bounded sequence of trigonometric polynomials $\{v_n\}$ such that

- (1) $\sigma(v_n) \subseteq [\lambda_0 2\alpha, \lambda_0 + 2\alpha] \ \forall n.$
- (2) $v_n \to v$ locally.
- (3) $Av_n \to Av$ locally.
- (4) $v_n^{(k)} \to v^{(k)}$ locally.

Putting $g_n = \sum_{k=1}^n \alpha_k v_n^{(k)} - \alpha A v_n + \beta \mu * v_n$, $n \in \mathbb{N}$, we get $g_n \to g$ locally. Now, we prove that $v_n(t) = -\int_{\mathbb{R}} F(s)g_n(t-s) ds$, $n \in \mathbb{N}$, $t \in \mathbb{R}$. Fix $n \in \mathbb{N}$, we write v_n in the form

$$v_n(t) = \sum_{k=1}^n P_{\lambda_k} a_k e^{i\lambda_k t}, \quad t \in \mathbb{R},$$

where $\{\lambda_k\} \subseteq [\lambda_0 - 2\alpha, \lambda_0 + 2\alpha]$ and $\{a_k\} \subset X$. A simple calculation shows that

$$\sum_{k=1}^{n} \alpha_k v_n^{(k)}(t) - \alpha A v_n(t) + \beta \mu * v_n(t) = -\sum_{k=1}^{n} a_k e^{i\lambda_k t}.$$

Hence $g_n(t) = -\sum_{k=1}^n a_k e^{i\lambda_k t}$, $n \in \mathbb{N}$, $t \in \mathbb{R}$. We have

$$\int_{\mathbb{R}} F(s)g_n(t-s) \, ds = -\sum e^{i\lambda_k t} \int_{\mathbb{R}} F(s)e^{-i\lambda_k s} \, ds \, a_k$$
$$= -\sum e^{i\lambda_k t} \hat{F}(\lambda_k)a_k$$
$$= -\sum e^{i\lambda_k t} P_{\lambda_k}a_k$$
$$= -v_n(t), \qquad n \in \mathbb{N}, \ t \in \mathbb{R}.$$

Take the limit to obtain that $v(t) = -\int_{\mathbb{R}} F(s)g(t-s) ds$, $t \in \mathbb{R}$. Now we show that $v \in M$. Define the function $h : \mathbb{R} \to M$ by $h(s) = F(s)g_{-s}$, $(g \in M$ from Lemma 4.1.2.in [12], see also [5]). The function h is continuous. Indeed, fix $s_0 \in \mathbb{R}$. Let $\epsilon > 0$, there exists $\delta > 0$ such that for every $s \in (s_0 - \delta, s_0 + \delta)$

$$||F(s) - F(s_0)||_{B(X)} < \frac{\varepsilon}{2||g||_{\infty}}$$
 and $||g_{-s} - g_{-s_0}||_{\infty} < \frac{\varepsilon}{2||F(s_0)||_{B(X)}}$

Hence we have

$$\begin{split} \|h(s) - h(s_0)\|_{\infty} &= \|F(s)g_{-s} - F(s_0)g_{-s_0}\|_{\infty} \\ &\leq \|F(s)g_{-s} - F(s_0)g_{-s}\|_{\infty} + \|F(s_0)g_{-s} - F(s_0)g_{-s_0}\|_{\infty} \\ &< \frac{\varepsilon}{2\|g\|_{\infty}} \|g\|_{\infty} + \frac{\varepsilon}{2\|F(s_0)\|_{B(X)}} \|F(s_0)\|_{B(X)} \\ &= \varepsilon \quad \forall s \in (s_0 - \delta, s_0 + \delta). \end{split}$$

Since $\int_{\mathbb{R}} \|h(s)\|_{\infty} ds < \|g\|_{\infty} \int_{\mathbb{R}} \|F(s)\| ds < \infty$, applying Bochner' theorem [17, p 133] we get $\int_{\mathbb{R}} h(s) ds \in M$. Therefore, $v \in M$, i.e $u * \psi \in M$, whence $\lambda_0 \notin \sigma_M(u)$.

Now, we prove our main result concerning the integro-differential operator equation (2.1) which studies the conditions that guarantee the existence of solutions in M. For the case $M = AP(\mathbb{R}, X)$ see [6], [14], [16].

Theorem 2.2. Suppose that $sp(A, \mu)$ is at most countable. If u is a solution of equation (2.1) such that the function $e^{-i\lambda t}u(t)$ is ergodic for every $\lambda \in sp(A, \mu)$, then $u \in M$.

Proof. Let u be a solution satisfying the condition of the Theorem. Hence, by Theorem 2.1, we get that $\sigma_M(u)$ is at most countable. Therefore $u \in M$ by Theorem 1.1.

References

- L. Amerio and G. Prouse, Almost Periodic Functions and Functional Equations, Van Nostrand, 1971.
- [2] B. Basit, Generalizations of two theorems of Kadets on the indefinite integral of abstract almost periodic functions, Math. Notes 9 (1970), 180–184.
- [3] _____, A connection between the almost periodic functions of Levitan and almost automorphic functions, Vestnik Mosk. State Univ. 4 (1971), 11–15.
- [4] _____, Note on a theorem of Levitan for the integral of almost periodic functions, Rend. Inst. di Matem. Univ. Trieste 5 (1973), 9-14.
- [5] _____, Spectral charecterization of abstract functions, Analele stiintifice ale Universitatii AI. I. Guza din Iast XXVIII, S.Ia (1982 f.1).
- [6] A. G. Baskakov, Spectral criteria of almost periodicity of solutions of functional equations, Math. Notes 24(2) (1978), 195–205.
- [7] A. S. Besicovitch, Almost Periodic Functions, Cambridge Press, 1932.
- [8] S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 2039–2043.
- [9] _____, General almost automorphy, Proc. Nat. Acad. Sci. U.S.A 72 (1975), 3815–3818.

- [10] C. Datry and G. Muraz, Analyse harmonique dans les modules de Banach, Part I: Propriètés Générales, Bull. Sci. Math. Paris 119 (1995), 299–337. Part II: presque-périodicités et ergodicités, Bull. Sci. Math. Paris 120 (1996), 493–536.
- [11] A. E. Hamza, Solutions of Functional Equations, Ph. D. Thesis, 1993.
- [12] A. E. Hamza and G. Muraz, Spectral criteria of abstract functions; integral and difference problems, Acta Math. Vietnam. 23 (1998), 171–184.
- [13] M. I. Kadets, The integration of almost periodic functions with values in Banach spaces, Funct. Anal. i Pril. 3 (1969), 228–300.
- [14] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, 1982.
- [15] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math. 72 (1960), 362–368.
- [16] O. J. Staffans, An asymptotically almost periodic solutions of a convolution equation, Trans. Amer. Math. Soc. 266 (1981), 603-616.
- [17] K. Yosida, Functional Analysis, Spriger-Verlag Berlin 1974.
- [18] S. Zaidman, Almost Periodic Functions in Abstract Spaces, Pitman Publ. Inc. London, Research Notes in Math., 1985.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CAIRO UNIVERSITY, GIZA, EGYPT *E-mail address*: ahamza@omantel.net.om

Institut Fourier, UMR 5582, Université de Grenoble I, 38402 Saint-Martin d'Hères, France

E-mail address: gilbert.murazujf-grenoble.fr