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EXISTENCE OF ABSTRACT SOLUTIONS OF

INTEGRO-DIFFERENTIAL OPERATOR EQUATIONS

A. E. HAMZA AND G. MURAZ

Abstract. We consider the integro-differential operator equations having the
form

n
∑

i=1

αiu
(i)(t) − αAu(t) + βµ ∗ u(t) = f(t) t ∈ R,

where the free term f belongs to a closed subspace M of L∞(R, X), A is the
generator of a C0-semigroup of operators defined on a Banach space X, µ

is a bounded Borel measure on R and α, β, αi ∈ C, i = 1, 2, . . . , n. Certain
conditions will be imposed to guarantee the existence of solutions in the class
M .

1. Introduction

Many authors, e.g, Zhikov-Levitan [14] and Baskakov [6] gave criteria for al-
most periodicity (a.p.) of solutions of operator differential equations having the
form

u′(t) −Au(t) = f(t), t ∈ R(1.1)

where f is (a.p.) from R to a Banach space X and A is the generator of a
C0-semigroup. Others, like Staffans [16], gave criteria for almost periodicity (S-
asymptotically almost periodic (S-a.a.p.)) of solutions of convolution equations
having the form

µ ∗ φ(t) = f(t) , t ∈ R(1.2)

where f is a complex a.p (S-a.a.p.) and µ is a bounded Borel measure on R. Here

µ ∗ φ(t) =

∫

R

φ(t− s) dµ(s), t ∈ R.

A continuous function from R to a Banach space X is called (a.p.) if the set
of translates {fw : w ∈ R} is relatively compact in Cb(R,X) (Cb(R,X) is the
space of all continuous bounded functions from R to X). It is well-known that
an a.p. function is uniformly continuous bounded, i.e. belongs to Cub(R,X), see
[1], [10], [14]. The space of all almost periodic functions is denoted by AP (R,X).
A function f is said to be S-a.a.p. if f = p+ q, where p is a.p. and q ∈ L∞(R,X)

Received February 18, 2002.
1991 Mathematics Subject Classification. 43A60.
Key words and phrases. Theory of almost periodic functions, harmonic analysis.



102 A. E. HAMZA AND G. MURAZ

such that lim
|t|→∞

‖f(t)‖ = 0. The space of all S-a.a.p. functions is denoted by

S −AAP (R,X).

Throughout the paper, X is a complex Banach space with the norm ‖ ‖. As
usual L∞(R,X) denotes the Banach space of all essentially bounded measurable
functions with the norm

‖f‖∞ = ess sup
t∈R

‖f(t)‖.

A function f is called measurable if there exists a sequence of simple functions
{fn} such that fn → f a.e. with respect to the Lebesgue measure m. By a

simple function it is meant a function of the form
n
∑

i=1
xiχAi

, xi ∈ X and χAi
is

the characteristic function of the Lebesgue measurable set Ai with finite mea-
sure. Finally, M denotes a closed subspace of L∞(R,X) satisfying the following
conditions:

(P1) M is invariant under translations, i.e. ∀f ∈M ∀s ∈ R (fs ∈M), where

fs(t) = f(t+ s).

(P2) M contains the constant functions.

(P3) M is invariant under multiplication by characters, i.e. ∀f ∈M∀λ ∈ R

(λ̆ f ∈M), where λ̆(t) = eiλt.

(P4) Au ∈M ∀A ∈ B(X) ∀u ∈M , where B(X) is the space of all linear

bounded operators on X.

We can see that many spaces like AP (R,X), AAP (R,X), S-AAP (R,X), AA(R,X),
AAA(R,X), S-AAA(R,X) and W (R,X) satisfy conditions (P1)-(P4), for defin-
itions and properties see [11], [12], [1-16].

For a function u ∈ L∞(R,X), we set

IM (u) = {f ∈ L1(R) : f ∗ u ∈M}

and denote the M -spectrum of u by

σM (u) = Z(IM (u)) = {γ ∈ R : f̂(γ) = 0 ∀f ∈ IM (u)},

where

f̂(γ) =

∫

R

f(t)e−iγt dt.

In the case M = {0}, σM (u) = σ(u) is the well-known Beurling spectrum.

When M = AP (R,C), L. H. Loomis [15] proved that if u ∈ Cub(R,C) and
σAP (R,C)(u) (the set of all non-almost periodicity of u) is at most countable, then
u ∈ AP (R,C). B. Basit generalized this theorem in [5] to a class of bounded
uniformly continuous vector-valued functions defined on R with certain properties
satisfied by many known classes.

Some properties of the M -spectrum, was shown by A. E. Hamza and G. Muraz
[12]. In that paper the following result [12, Theorem 4.2.2] was proved.
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Theorem 1.1. If u is uniformly continuous, bounded, such that σM (u) is at

most countable, and for every λ ∈ σM (u) the function e−iλtu(t) is ergodic, then

u ∈M.

This theorem plays an essential role in proving the existence of solutions in
some classes M ⊆ L∞(R,X) for abstract functional equations defined on R, with
free terms in M . See the results obtained by A. E. Hamza [11] concerning the
equations (1.1) and (1.2). We recall a function u ∈ L∞(R,X) is called ergodic if
there exists x ∈ X such that

lim
T→∞

‖1/T

T
∫

0

(us − x) ds‖∞ = 0.

The space of all ergodic functions is denoted by E(R,X). It is known that, see
[12],

AP (R,X) ⊂ AAP (R,X) ⊂W (R,X) ⊂ E(R,X).

This paper is devoted to the integro-differential operator equation

n
∑

i=1

αiu
(i)(t) − αAu(t) + βµ ∗ u(t) = f(t) t ∈ R,(1.3)

where the free term f ∈M
⋂

Cub(R,X), A is the generator of a C0-semigroup of
linear bounded operators (T (t))t≥0 defined on X and α, β, αi ∈ C. We set

sp(A,µ) =
{

λ ∈ R : αA−
(

n
∑

r=1

αr(iλ)r + βµ̂(λ)
)

I has no bounded inverse on X
}

.

Here, µ̂(λ) =
∫

R
e−iλt dµ(t). Our aim is to show that if sp(A,µ) is at most

countable, then every solution u of equation (1.3) belongs to M , provided that
the function e−iλtu(t) is ergodic for every λ ∈ sp(A,µ). In this case, u is said
totally ergodic (see ref. on [10]) and the generated Banach space is denoted by
TE(R,X).

When αn = · · · = α2 = β = 0 and α1 = α = 1, we have isp(A,µ) = sp(A)∩ iR,
where sp(A) is the usual spectrum of A, and we get the following result [11,
Theorem II.3.6]:

Theorem 1.2. Suppose that sp(A)
⋂

iR is at most countable. If u is a solution of

equation (1.1) such that the function e−λtu(t) is ergodic for every λ ∈ sp(A)
⋂

iR,

then u ∈M .

When αn = · · · = α1 = α = 0 and β = 1, we have sp(A,µ) = Z(µ) and we get
the following result [11, Theorem II.4.1]:

Theorem 1.3. If Z(µ) = {α ∈ R : µ̂(α) = 0} is at most countable, then every

solution u ∈ Cub(R,X) of equation (1.2) belongs to M , provided that the function

e−iαtu(t) is ergodic for every α ∈ Z(µ).
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When αn = · · · = α2 = 0 and α = β = 0, the solution u of (1.3) is given by

u(t) =

t
∫

0

f(s) ds,

we obtain Theorem (3.4) in [12]. When f is a.p., Kadets [13] proved that the
integral u is a.p. when its range is weakly relatively compact in X and Levitan

[14] proved that u is a.p. if lim
T→∞

∫ T

−T
u(t + s) ds exists uniformly on R. Basit

[4] extended Levitan’s result for recurrent functions. C.Datry and G. Muraz [10]
extended the result of Levitan to Banach G-modules.

2. The integro-differential operator equations

In the sequel we suppose that M is a closed subspace of L∞(R,X) satisfying
(P1)-(P4).

Consider the integro-differential operator equation
n

∑

i=1

αiu
(i)(t) − αAu(t) + βµ ∗ u(t) = f(t), t ∈ R,(2.1)

where the free term f ∈M
⋂

Cub(R,X), A is the generator of a C0-semigroup of
linear bounded operators (T (t))t≥0 defined on X and α, β, αi ∈ C. We need the
following lemmas in proving the main result

Lemma 2.1. Let A be a closed operator defined on D(A) ⊆ X. Suppose that

u ∈ Cb(R,X) such that its range R(u) is a subset of D(A). Set v = u ∗ ψ, where

ψ ∈ L1(R). If Au ∈ Cb(R,X), then R(v) ⊆ D(A) and Av = Au ∗ ψ.

Proof. At first, suppose that ψ is a continuous function with compact support
[−T, T ]. We have

v(t) =

T
∫

−T

u(t− s)ψ(s) ds, t ∈ R.

Hence, v(t) = lim
n→∞

vn(t) ∀t ∈ R, where vn(t) = 1/n
n
∑

i=1
u(t− si)ψ(si), ({si} is a

partition of [−T, T ] with length 1/n). We have

Avn(t) = 1/n
n

∑

i=1

Au(t− si)ψ(si)

which tends to
T

∫

−T

Au(t− s)ψ(s) ds = Au ∗ ψ(t)

as n→ ∞, t ∈ R. Since A is closed, then R(v) ⊆ D(A) and Av = Au ∗ ψ. Now,
suppose that ψ ∈ L1(R), there exists a sequence {ψn} of continuous functions
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with compact support such that ‖ψn − ψ‖1 → 0 as n → ∞. Let vn = u ∗ ψn,
n ∈ N and v = u ∗ ψ, by the first part, R(vn) ⊆ D(A) ∀n and Avn = Au ∗ ψn,
n ∈ N. Since ‖u ∗ ψ‖∞ ≤ ‖u‖∞‖ψ‖1, then it is clear that ‖vn − v‖∞ → 0 as
n → ∞ and ‖Avn − Au ∗ ψ‖∞ → 0 as n → ∞. Again, Since A is closed, then
R(v) ⊆ D(A) and Av = Au ∗ ψ.

Lemma 2.2. Let A be a closed operator defined on D(A) which is dense in X. If

v ∈ Cb(R,X), then there exists a bounded sequence of trigonometric polynomials

{vn} such that

(i) vn → v locally, i. e. vn is uniformly convergent to v on every compat subset

of R

(ii) the range R(vn) of vn is a subset of D(A) for every n.

Proof. We can see that if v ∈ Cb(R,X), [14], then there exists a bounded sequence
of trigonometric polynomial {un} such that un → v locally. Since D(A) is dense

in X, we can approximate un(t) =
∑

i

˘λi,nxi by vn =
∑

i

˘λi,nyi, where {yi} ⊂

D(A).

Lemma 2.3. Suppose that A is a closed operator defined on D(A) which is dense

in X such that sp(A) 6= C. If v and Av ∈ Cb(R,X), then there exists a bounded

sequence of trigonometric polynomials {vn} such that

(i) vn → v locally and R(vn) ⊆ D(A).

(ii) Avn → Av locally.

Proof. Since both of v and Av belong to Cb(R,X), there exist two bounded
sequences of trigonometric polynomials {un} and {θn} such that

(1) un → v locally and R(un) ⊂ D(A).

(2) θn → Av locally and R(θn) ⊂ D(A).

Since sp(A) 6= C, there exists λ ∈ C such that (A − λI)−1 exists as a bounded
operator on X. We have

(A− λI)−1θn → (A− λI)−1Av = v + λ(A− λI)−1v locally .(1)

Also we have

λ(A− λI)−1un → λ(A− λI)−1v locally.(2)

Putting vn = (A − λI)−1(θn − λun), we get by (1) and (2) that vn → v locally.
Now, we show that Avn → Av locally. Indeed, we have

Avn = A(A− λI)−1(θn − λun)

= [I + λ(A− λI)−1](θn − λun).

Hence Avn → Av locally.

Lemma 2.4. If v ∈ Cb(R,X) is such that its spectrum σ(v) is a compact sub-

set of an interval [a, b], then v ∈ C∞(R,X) and v(k) ∈ Cb(R,X) ∀k ∈ N. If

in addition, A is a closed operator such that D(A) is dense in X, sp(A) 6= C
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and Av ∈ Cb(R,X), then for every ε > 0 there exists a bounded sequence of

trigonometric polynomials {vn} such that

(i) σ(vn) ⊆ [a− ε, b+ ε].

(ii) vn
(k) → v(k) locally, k ∈ Z≥ 0,

(iii) Avn → Av locally.

Proof. Let ε > 0. Choose φ ∈ L1(R)
⋂

C∞(R) such that

(1) φ(k) ∈ L1(R) ∀k.

(2) supp φ̂ ⊆ [a− ε, b+ ε].

(3) φ̂ = 1 on [a− ε/2, b + ε/2].

We show now that v ∗ φ = v. Indeed, let h ∈ L1(R). Then

(h ∗ φ− h)̂(α) = ĥ(α)φ̂(α) − ĥ(α) = 0 ∀α ∈ [a− ε/2, a+ ε/2].

Thus, supp (h ∗ φ − h)̂
⋂

[a, b] = ∅, hence σ(v ∗ (h ∗ φ − h)) = ∅. This implies
that v ∗ (h ∗ φ − h) = 0 ∀h ∈ L1(R), i.e. (v ∗ φ − v) ∗ h = 0 ∀h ∈ L1(R).

Therefore, v ∗ φ = v and then v ∈ C∞(R,X) and v(k) ∈ Cb(R,X). Since both
v and Av belong to Cb(R,X), by Lemma 2.3 there exists a bounded sequence of
trigonometric polynomials {ψn} such that

(i) ψn → v locally and R(ψn) ⊆ D(A).

(ii) Aψn → Av locally.

Set vn = ψn ∗ φ. We can see that σ(vn) ⊆ [a− ε, a+ ε]. Also, vn → v locally.

We have lim
n→∞

vn
(k) = lim

n→∞
ψn ∗ φ(k) = v ∗ φ(k) = v(k) locally. Also we have

Avn = Aψn ∗ φ ∀n. Then lim
n→∞

Avn = Av ∗ φ = A(v ∗ φ) = Av locally.

We denote

sp(A,µ) =
{

λ ∈ R :
[

αA−
(

n
∑

k=1

αk(iλ)k + βµ̂(λ)
)

I
]

has no bounded inverse on X
}

.

and

Pλ =
[

αA−
(

n
∑

k=1

αk(iλ)k + βµ̂(λ)
)

I
]−1

,

where λ /∈ sp(A,µ).

Theorem 2.1. If u is a solution of equation (2.1), then σM (u) ⊆ sp(A,µ).

Proof. Let λ0 /∈ sp(A,µ), where λ0 ∈ R. Then Pλ is analytic in a neighbourhood
of λ0, say [λ0 − 4α, λ0 + 4α]. Fix a function φ ∈ L1(R) such that

(i) φ̂ ∈ C∞
c the space of all infinitely differentiable functions with compact

support.

(ii) φ̂(λ) = 1 ∀λ ∈ [λ0 − 2α, λ0 + 2α].

(iii) supp φ̂ ⊆ (λ0 − 4α, λ0 + 4α).
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Define the function G : R → B(X) by

G(λ) = φ̂(λ)Pλ.

We see that

G(λ) =

{

Pλ, if λ ∈ [λ0 − 2α, λ0 + 2α],

0, if |λ− λ0| ≥ 4α.

Hence G is infinitely differentiable with compact support. Therefore, G is the
Fourier transform of a continuous function F ∈ L1(R, B(X)) (i.e.

∫

R
‖F (t)‖B(X) dt <

∞). Let ψ ∈ L1(R) be such that supp ψ̂ ⊆ [λ0 − α, λ0 + α] and ψ̂(λ0) = 1. Set
v = u ∗ ψ and g = f ∗ ψ. We can see that v is a solution of the equation

n
∑

k=1

αkv
(k)(t) − αAv(t) + βµ ∗ v(t) = g(t), t ∈ R.

Since v(k) ∈ Cb(R,X), Av ∈ Cb(R,X). Since σ(v) is a compact subset of
[λ0 −α, λ0 +α], by Lemma 2.4 there exists a bounded sequence of trigonometric
polynomials {vn} such that

(1) σ(vn) ⊆ [λ0 − 2α, λ0 + 2α] ∀n.

(2) vn → v locally .

(3) Avn → Av locally .

(4) v
(k)
n → v(k) locally .

Putting gn =
n
∑

k=1

αkv
(k)
n − αAvn + βµ ∗ vn, n ∈ N, we get gn → g locally . Now,

we prove that vn(t) = −
∫

R
F (s)gn(t− s) ds, n ∈ N, t ∈ R. Fix n ∈ N, we write

vn in the form

vn(t) =

n
∑

k=1

Pλk
ake

iλkt, t ∈ R,

where {λk} ⊆ [λ0 − 2α, λ0 + 2α] and {ak} ⊂ X. A simple calculation shows that

n
∑

k=1

αkv
(k)
n (t) − αAvn(t) + βµ ∗ vn(t) = −

n
∑

k=1

ake
iλkt.

Hence gn(t) = −
n
∑

k=1

ake
iλkt, n ∈ N, t ∈ R. We have

∫

R

F (s)gn(t− s) ds = −
∑

eiλkt

∫

R

F (s)e−iλks ds ak

= −
∑

eiλktF̂ (λk)ak

= −
∑

eiλktPλk
ak

= −vn(t), n ∈ N, t ∈ R.
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Take the limit to obtain that v(t) = −
∫

R
F (s)g(t − s) ds , t ∈ R. Now we show

that v ∈ M . Define the function h : R → M by h(s) = F (s)g−s, (g ∈ M from
Lemma 4.1.2.in [12], see also [5]). The function h is continuous. Indeed, fix
s0 ∈ R. Let ε > 0, there exists δ > 0 such that for every s ∈ (s0 − δ, s0 + δ)

‖F (s) − F (s0)‖B(X) <
ε

2‖g‖∞
and ‖g−s − g−s0‖∞ <

ε

2‖F (s0)‖B(X)
·

Hence we have

‖h(s) − h(s0)‖∞ = ‖F (s)g−s − F (s0)g−s0‖∞

≤ ‖F (s)g−s − F (s0)g−s‖∞ + ‖F (s0)g−s − F (s0)g−s0‖∞

<
ε

2‖g‖∞
‖g‖∞ +

ε

2‖F (s0)‖B(X)
‖F (s0)‖B(X)

= ε ∀s ∈ (s0 − δ, s0 + δ).

Since
∫

R
‖h(s)‖∞ ds < ‖g‖∞

∫

R
‖F (s)‖ ds < ∞, applying Bochner’ theorem [17,

p 133] we get
∫

R
h(s) ds ∈ M . Therefore, v ∈ M , i.e u ∗ ψ ∈ M , whence λ0 /∈

σM(u).

Now, we prove our main result concerning the integro-differential operator
equation (2.1) which studies the conditions that guarantee the existence of solu-
tions in M . For the case M = AP (R,X) see [6], [14], [16].

Theorem 2.2. Suppose that sp(A,µ) is at most countable. If u is a solution of

equation (2.1) such that the function e−iλtu(t) is ergodic for every λ ∈ sp(A,µ),
then u ∈M .

Proof. Let u be a solution satisfying the condition of the Theorem. Hence, by
Theorem 2.1, we get that σM (u) is at most countable. Therefore u ∈ M by
Theorem 1.1.
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