
ACTA MATHEMATICA VIETNAMICA 89
Volume 28, Number 1, 2003, pp. 89-100

FIXED POINTS OF SEMIGROUPS OF

LIPSCHITZIAN MAPPINGS

LE ANH DUNG AND DO HONG TAN

Abstract. In this paper we establish three results on fixed points of semi-
groups of Lipschitzian mappings. The first one generalizes Lifschitz’s fixed
point theorem for uniformly Lipschitzian mappings in metric spaces. The sec-
ond one generalizes Kirk’s fixed point theorem for mappings of asymptotically
nonexpansive type. The last one generalizes Lim-Xu’s fixed point theorem for
uniformly Lipschitzian mappings satisfying the Casini-Maluta condition.

1. Introduction

The notion of uniformly Lipschitzian mappings, i.e. mappings satisfying

d(T nx, Tny) ≤ kd(x, y)(1)

for every x, y in a metric space (M,d) and for all n = 1, 2, . . . , was introduced
and investigated in 1973 by Goebel and Kirk [2]. They showed that if C is a
closed convex bounded subset of a Banach space X with the characteristic of
convexity ε0(X) < 1 and T is a uniformly Lipschitzian mapping in C with the
coefficient k in (1) less than γ0 then T has a fixed point in C. Here γ0 denotes the

unique solution of the equation γ
(

1−δX

( 1

γ

))

= 1 with δX being the modulus of

convexity of X. Later, in 1975 Lifschitz generalizes this result in a metric space
setting for uniformly Lipschitzian mappings with k < κ(M) where the Lifschitz
constant of a metric space M is defined by

κ(M) = sup
{

β > 0 | ∃α > 1 : ∀x, y ∈ M, ∀r > 0, d(x, y) < r ⇒

∃z ∈ M : B(x, αr) ∩ B(y, βr) ⊂ B(z, r)
}

.(2)

Here B(x, r) denotes the closed ball centered at x with radius r [6]. Our first
result extends Lifschitz’s result for semigroups of Lipschitzian mappings.

On the other hand, in 1974 Kirk introduced the notion of mappings of asymp-
totically nonexpansive type, i.e. mappings satisfying for each x ∈ C,

lim sup
n

(

sup
y∈C

(‖T nx − T ny‖ − ‖x − y‖)
)

≤ 0

and established a fixed point theorem for mappings of this type [5]. Our second
result extends this result for semigroups of mappings of Lipschitzian type.
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In 1985 Casini and Maluta established an analogous result to Goebel-Kirk’s
fixed theorem for Banach spaces with N(X) < 1 and k < N(X)−1/2, where
N(X) denotes the constant of uniformly normal structure [1]. In 1989 Ishihara
generalizes this result to semigroups of Lipschitzian mappings [4]. Later, in 1995
Lim and Xu proved an analogous result to Casini-Maluta’s theorem in a metric
space setting [7]. Our third result extends Lim-Xu’s theorem to semigroups of
Lipschitzian mappings.

Throughout this paper S denotes a left reversible semigroup, i.e. every pair
of right ideals in S have nonempty intersection. We introduce an order in S by
setting

s ≥ t ⇔ {s} ∪ sS ⊂ {t} ∪ tS.

Being left reversible, S becomes a directed set, i.e. for every s, t ∈ S there is
r ∈ S such that r ≥ {s, t}.

Let C be a set and T = {Ts : s ∈ S} a family of mappings in C. If for every
s, t ∈ S we have TsTt = Tst then T is called a semigroup of mappings in C. In
what follows we establish some results on common fixed points of mappings in
such semigroups.

2. A generalization of Lifschitz’s theorem

Let S and T be as above, for each s ∈ S and x ∈ C we denote Ts = {TsT :
T ∈ T } and Ts(x) = {TsT (x) : T ∈ T }. Now we are able to state our first result.

Theorem 1. Let M be a complete metric space, S a left reversible semigroup,
T = {Ts : s ∈ S} a semigroup of ks-Lipschitzian mappings in M with lim sup

s
ks =

k < κ(M). Suppose there exist s0 ∈ S and x0 ∈ M such that Ts0
(x0) is bounded.

Then there exists a common fixed point for all Ts in T .

Proof. Taking any k′ ∈ (k, κ(M)) there is s1 ∈ S such that ki ≤ k′ for all i ≥ s1.
Choose s2 ∈ S such that s2 ≥ {s0, s1}. For any y ∈ M we define

r(y) = inf
{

ρ > 0 : ∃x ∈ M, ∃i ≥ s2 such that Ti(x) ⊂ B(y, ρ)
}

.

Since Ts0
(x0) ⊂ B(y0, R) for some y0 ∈ M and R < ∞, we have

Ts2
(x0) ⊂ B(y,R + d(y, y0)),

so r(y) is well defined for each y ∈ M .

We show that if r(y) = 0 then Tsy = y, ∀s ∈ S. Indeed, we have r(y) < ε for
every ε > 0. Then by definition of r(y), there are x ∈ M and i ≥ s2 such that

d(Tx, y) < ε, ∀T ∈ Ti

so for every T ∈ Ti we have

d(Ty, y) ≤ d(Ty, T 2x) + d(T 2x, y) ≤ k′d(y, Tx) + d(T 2x, y) ≤ ε(k′ + 1).
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Fix any s ∈ S and choose j ∈ S such that j > {si, i}. Then there are u, v ∈ S
such that j = siu = iv. Now we have

d(Tsy, y) ≤ d(Tsy, Tjy) + d(Tjy, y) = d(Tsy, TsTiTuy) + d(TiTvy, y)

≤ ksd(y, TiTuy) + d(TiTvy, y) ≤ (1 + ks)(1 + k′)ε.

From this we get Tsy = y, ∀s ∈ S.

Now we are going to construct a sequence {yn} in M by induction with an
arbitrary y1. Assume we have got y1, y2, ..., yn with r(yn) > 0. Since k′ < κ(M),
there exists β ∈ (k′, κ(M)). From the definition of κ(M) (see Introduction) there
is α > 1 such that (2) holds. Choose λ < 1 so that

γ = min{αλ, βλ/k′} > 1.

Since λ < 1, by definition of r(yn) there is s ≥ s2 such that

d(yn, Tsyn) > λr(yn).(3)

On the other hand, since γ > 1 there are x1 ∈ M and t ≥ s2 such that

d(yn, Tx1) ≤ γr(yn), ∀T ∈ Tt(4)

Choose u ≥ {st, t} then every T ∈ Tu has the form T = TsTtTi for some i ∈ S.
Thus for every T in Tu we have from (4)

d(Tsyn, Tx1) = d(Tsyn, TsTtTix1) ≤ k′γr(yn)(5)

because s ≥ s1 and TtTi ∈ Tt.

Since u ≥ t ≥ s2, from (3), (4), (5) we get

Tu(x1) ⊂ B(yn, αλr(yn)) ∩ B(Tsyn, βλr(yn)) ⊂ B(z, λr(yn))(6)

for some z ∈ M . Putting yn+1 = z from (6) we obtain

r(yn+1) ≤ λr(yn).(7)

From (4) and (6) we get

d(yn, yn+1) ≤ (α + 1)λr(yn)

which together with (7) shows that {yn} is a Cauchy sequence, hence converges
to some w in M , and r(yn) → 0 as n → ∞. We show that r(w) = 0. Take any
ε > 0 and choose m such that d(ym, w) < ε/2 and r(ym) < ε/2. Then there are
x ∈ M and s ≥ s2 such that d(Tx, ym) < ε/2 for all T ∈ Ts. From this we get
d(Tx,w) < ε for all T ∈ Ts, hence r(w) ≤ ε, i.e. r(w) = 0. Thus Tsw = w for all
s ∈ S and the theorem is proved.

For a Banach space X the Lifschitz characteristic of X is defined as follows

κ0(X) = inf{κ(C) : C is a bounded closed convex subset of X}.

From the above theorem we immediately get the following

Corollary 1. Let C be a bounded closed convex subset of a Banach space X,S a
left reversible semigroup, {Ts : s ∈ S} a semigroup of ks-Lipschitzian mappings
in C with lim sup

s
ks < κ0(X). Then {Ts} has a common fixed point.
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3. A generalization of Kirk’s theorem

Let us begin this section with some lemmas.

Lemma 1. Let S be a left revesible semigroup, {as : s ∈ S} a bounded decreasing
net in R (the real line), {at : t ∈ S′} a subnet of {as}. Then we have

inf{at : t ∈ S′} = inf{as : s ∈ S}.

In particular, for each t ∈ S we have

inf{ats : s ∈ S} = inf{as : s ∈ S}.

Proof. Putting m1 = inf{at : t ∈ S′}, m2 = inf{as : s ∈ S} we have m2 ≤ m1.
For every ε > 0 there is i ∈ S such that ai ≤ m2 + ε. Then for every t ≥ i we
have at ≤ ai ≤ m2 + ε. Choose t ∈ S′ so that t ≥ i, then m1 ≤ at ≤ m2 + ε.
From this m1 ≤ m2, thus m1 = m2. The last assertion follows from the fact that
{ats : s ∈ S} is a subnet of {as : s ∈ S}.

Corollary 2. Let S be as in Lemma 1, {Ts : s ∈ S} a semigroup of mappings
in a Banach space X. Then for x, y ∈ X and t ∈ S we have

lim sup
s

‖Tsx − y‖ = lim sup
s

‖Ttsx − y‖.

Proof. Putting as = sup{‖Tix − y‖ : i ≥ s} and using Lemma 1 we get

lim sup
s

‖Tsx − y‖ = inf
s

(sup{‖Tix − y‖ : i ≥ s}) = inf{as : s ∈ S}

= inf{ats : s ∈ S} = lim sup
s

‖Ttsx − y‖.

Lemma 2. For two bounded positive nets {as : s ∈ S}, {bs : s ∈ S} we have

lim inf
s

(asbs) ≤ lim sup
s

as lim inf
s

bs.

Proof. Put m = lim inf
s

(asbs), m1 = lim sup
s

as, m2 = lim inf
s

bs.

Since m = sup
s

(inf{atbt : t ≥ s}), for every ε > 0 there is s1 such that

inf{atbt : t ≥ s1} > m − ε.(1)

Since m1 = inf
s

(sup{at : t ≥ s}), for the above ε there is s2 such that

sup{at : t ≥ s2} < m1 + ε.(2)

Choosing s3 ≥ {s1, s2}, from (1), (2) for every s ≥ s3 we get

asbs > m − ε, as < m1 + ε.(3)

Since inf{bt : t ≥ s3} ≤ m2, there is i ≥ s3 such that bi < m2 + ε.

From this and (3) we get

m − ε < aibi < (m1 + ε)(m2 + ε).

Letting ε → 0 we get m ≤ m1m2.
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Lemma 3. Let {as : s ∈ S} be a bounded net in R and f : R → R a decreasing
continuous function. Then we have

lim inf
s

f(as) = f(lim sup
s

as).

Proof. We have

lim inf
s

f(as) = sup
s

(inf{f(at) : t ≥ s}).(4)

We shall prove that

inf{f(at) : t ≥ s} = f(sup{at : t ≥ s}).(5)

Put M = sup{at : t ≥ s}, m = inf{f(at) : t ≥ s}. Since at ≤ M for each t, we
have f(at) ≥ f(M) for each t, hence m ≥ f(M). On the other hand, for every
ε > 0 there is i ≥ s such that ai ≥ M − ε, hence m ≤ f(ai) ≤ f(M − ε). Letting
ε → 0 we get m ≤ f(M). Thus (5) is proved.

Similarly, we get sup
s

f(bs) = f(inf
s

bs) for any net {bs : s ∈ S}. From this and

(4), (5) we have (putting bs = sup{at : t ≥ s})

lim inf
s

f(as) = sup
s

f(sup{at : t ≥ s})

= f(inf
s

sup{at : t ≥ s})

= f(lim sup
s

as).

The proof is complete.

Definition. Let C be a subset of a Banach space, S a left reversible semigroup.
A semigroup of mappings in C {Ts : s ∈ S} is called of Lipschitzian type if there
exists a positive net {ks} such that for each x ∈ C we have lim sup

s
cs(x) = 0,

where

cs(x) = max
{

sup
y∈C

(‖Tsx − Tsy‖ − ks‖x − y‖), 0
}

.

Now we are able to state our second result generalizing Theorem 2 in [8].

Theorem 2. Let X be a Banach space with ε0(X) < 1, C a bounded closed
convex subset of X, S a left reversible semigroup and {Ts : s ∈ S} a semigroup of
mappings in C of Lipschitzian type. If each Ts is continuous and lim sup

s
ks < γ0,

then the mappings {Ts} have a common fixed point, where γ0 is defined as in the
introduction.

Proof. Since ε0(X) < 1 we have γ0 > 1 and we may assume that ks ≥ γ1 ∀s ∈ S,
for some γ1 ∈ (1, γ0). Denote k = lim sup

s
ks.

Take x0 ∈ X and put xs = Tsx0, ∀s ∈ S. For each x ∈ C, denote
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r({xs}, x) = lim sup
s

‖xs − x‖,

r({xs}, C) = inf
x∈C

r({xs}, x),

A({xs}, C) = {z ∈ C : r({xs}, z) = r({xs}, C)}.

It is well known that r({xs}, · ) is weakly lower semicontinuous and A({xs}, C)
is nonempty.

Take z1 ∈ A({xs}, C) and put r1 = r({xs}, z1). Using the corollary of Lemma
1 we have (for fixed s ∈ S)

lim sup
t

‖Ttx0 − Tsz1‖ = lim sup
t

‖TsTtx0 − Tsz1‖

≤ lim sup
t

(ks‖Ttx0 − z1‖ + cs(z1)) = ksr1 + cs(z1).(6)

On the other hand, by definition it follows that

lim sup
t

‖Ttx0 − z1‖ = r1 ≤ ksr1 + cs(z1).(7)

By convexity of C, for each s ∈ S we have

r1 ≤ lim sup
t

∥

∥

∥
Ttx0 −

z1 + Tsz1

2

∥

∥

∥
,

hence

r1 ≤ lim inf
s

(

lim sup
t

∥

∥

∥
Ttx0 −

z1 + Tsz1

2

∥

∥

∥

)

.(8)

From (6), (7) for each ε > 0 there is t0 ∈ S such that

sup
{

‖Ttx0 − z1‖ : t ≥ t0
}

≤ ksr1 + cs(z1) + ε,

sup
{

‖Ttx0 − Tsz1‖ : t ≥ t0
}

≤ ksr1 + cs(z1) + ε.

From a property of modulus of convexity we get for t ≥ t0
∥

∥

∥

1

2
(Ttx0 − z1) +

1

2
(Ttx0 − Tsz1)

∥

∥

∥

≤ (ksr1 + cs(z1) + ε)
(

1 − δX

( ‖z1 − Tsz1‖

ksr1 + cs(z1) + ε

))

.(9)

We now show that

‖z1 − Tsz1‖

ksr1 + cs(z1)
< 2.(10)

Indeed, we have

‖z1 − Tsz1‖ ≤ lim sup
t

‖Ttx0 − z1‖ + lim sup
t

‖Ttx0 − Tsz1‖

≤ r1 + ksr1 + cs(z1),(11)
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hence

‖z1 − Tsz1‖

ksr1 + cs(z1)
≤ 1 +

r1

ksr1 + cs(z1)
≤ 1 +

1

ks
≤ 1 +

1

γ1

< 2.

Thus (10) is proved. From this and the continuity of δX on [0, 2), letting ε → 0
in (9) we get

lim sup
t

∥

∥

∥
Ttx0 −

z1 + Tsz1

2

∥

∥

∥
≤ (ksr1 + cs(z1))

(

1 − δX

( ‖z1 − Tsz1‖

ksr1 + cs(z1)

))

.(12)

From (8), (12) and using Lemma 2 we obtain

r1 ≤ lim inf
s

[

(ksr1 + cs(z1)
(

1 − δX

( ‖z1 − Tsz1‖

ksr1 + cs(z1)

))]

≤ lim sup
s

(ksr1 + cs(z1)). lim inf
s

(

1 − δX

( ‖z1 − Tsz1‖

ksr1 + cs(z1)

))

.

By Lemma 3, this implies

r1 ≤ kr1

(

1 − δX

(

lim sup
s

‖z1 − Tsz1‖

ksr1 + cs(z1)

))

.(13)

If r1 = 0, i.e. lim sup
t

‖Ttx0 − z1‖ = 0, from the continuity of Ts for each s ∈ S

we get (using Corollary 2)

lim sup
t

‖Ttx0 − Tsz1‖ = lim sup
t

‖TsTtx0 − Tsz1‖ = 0.

Hence from (11) we obtain ‖z1−Tsz1‖ = 0, i.e. z1 = Tsz1 ∀s ∈ S and the theorem
is proved.

If r1 > 0, then from (13) we have

δX

(

lim sup
s

‖z1 − Tsz1‖

ksr1 + cs(z1)

)

≤ 1 −
1

k
.(14)

We consider two possible cases.

If δX

(

lim sup
s

‖z1 − Tsz1‖

ksr1 + cs(z1)

)

= 0, then

lim sup
s

‖z1 − Tsz1‖

kr1

≤ lim sup
s

‖z1 − Tsz1‖

ksr1 + cs(z1)
≤ ε0(X),

hence

lim sup
s

‖z1 − Tsz1‖ ≤ kε0(X)r1.(15)

Since k < γ0(X) it is easy to show that kε0(X) < 1.

If δX

(

lim sup
s

‖z1 − Tsz1‖

ksr1 + cs(z1)

)

> 0 then lim sup
s

‖z1 − Tsz1‖

ksr1 + cs(z1)
> ε0(X). Since

δX is strictly increasing on [ε0(X), 2), from (14) we get

lim sup
s

‖z1 − Tsz1‖

ksr1 + cs(z1)
≤ δ−1

X

(

1 −
1

k

)

< δ−1
X

(

1 −
1

γ0

)

=
1

γ0

·
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So lim sup
s

‖z1 − Tsz1‖

kr1

<
1

γ0

, hence

lim sup
s

‖z1 − Tsz1‖ <
kr1

γ0

·(16)

Putting η = max
{

kε0(X),
k

γ0

}

< 1, from (15), (16) we get

lim sup
s

‖z1 − Tsz1‖ ≤ ηr1.(17)

Take z2 ∈ A({Tsz1}, C) and put r2 = r({Tsz1}, z2). Then r2 ≤ ηr1.

Continuing this process we obtain a sequence {zn} ⊂ C satisfying

(i) zn+1 ∈ A({Tszn}, C),

(ii) rn = r({Tszn−1}, zn) = r({Tszn−1}, C), with n ≥ 1, z0 = x0,

(iii) lim sup
s

‖Tszn − zn‖ ≤ ηrn.

We have

‖zn+1 − zn‖ ≤ lim sup
t

‖zn+1 − Ttzn‖ + lim sup
t

‖Ttzn − zn‖

≤ rn+1 + ηrn ≤ 2ηrn ≤ ... ≤ 2ηnr1,

hence {zn} is a Cauchy sequence which converges to some z ∈ C.

For each s ∈ S we have

‖Tsz − z‖ ≤ ‖z − zn‖ + ‖zn − TsTtzn‖ + ‖TsTtzn − Tsz‖,

hence

‖Tsz − z‖ ≤ ‖z − zn‖ + lim sup
t

‖zn − TsTtzn‖ + lim sup
t

‖TsTtzn − Tsz‖(18)

Note that

lim sup
t

‖Ttzn − z‖ ≤ lim sup
t

(

‖Ttzn − zn‖ + ‖zn − z‖
)

≤ ηrn + ‖zn − z‖ → 0 as n → ∞.

From the continuity of Ts we also have

lim sup
t

‖TsTtzn − Tsz‖ → 0 as n → ∞.

Taking into account the inequality

lim sup
t

‖zn − TsTtzn‖ = lim sup
t

‖zn − Ttzn‖ ≤ ηrn,

from (18) we finally get Tsz = z for each s ∈ S, and the proof is complete.
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4. A generalization of Lim-Xu’s theorem

First of all we recall some notions presented in [7].

Let (X, d) be a metric space and M a bounded subset of X. Denote

r(x,M) = sup{d(x, y) : y ∈ M} for x ∈ X,

δ(M) = sup{d(x, y) : x, y ∈ M},

R(M) = inf{r(x,M) : x ∈ M}.

A subset of X is said to be admissible if it is an intersection of closed balls.
A(X) denotes the family of all admissible subsets of X. For a bounded subset A
of X, the admissible hull of A, denoted by ad(A), is the intersection of all those
admissible subsets of X which contain A. We have always

r(x, ad(A)) = r(x,A), δ(ad(A)) = δ(A).

The constant of uniformity of normal structure N(X) of X is defined by

N(X) = sup
{R(A)

δ(A)
: A admissible, δ(A) > 0

}

,

and X is said to have uniform normal structure if N(X) < 1.

Let S be a semigroup. We say that S is a totally ordered semigroup if it is
totally ordered with respect to the order defined by

s ≥ t ⇔ {s} ∪ sS ⊂ {t} ∪ tS.

A metric space (X, d) is said to have property (P ) if for every totally ordered
semigroup S and two bounded nets {xs : s ∈ S}, {zs : s ∈ S} in X there exists
z ∈

⋂

s
ad(zt : t ≥ s) such that

lim sup
s

d(xs, z) ≤ lim sup
t

(lim sup
s

d(xs, zt)).

Before stating our last result we need two lemmas.

Lemma 4. Let (X, d) be a complete metric space with N(X) < 1, S a totally
ordered semigroup, {Ks : s ∈ S} a decreasing net of nonempty admissible closed
bounded subset of X. Then

⋂

s
Ks 6= ∅.

Proof. Choose k ∈ (N(X), 1) and for each closed bounded admissible subset C
of X with δ(C) > 0 we denote

A(C) = {x ∈ C : r(x,C) ≤ kδ(C)}.

Then A(C) is closed bounded and nonempty.

Let {Ks : s ∈ S} be as in the Lemma. We must show that
⋂

s
Ks 6= ∅.

Put K1
s = ad(

⋃

t≥s
A(K0

t )), where K0
t = Kt for each t ∈ S. Then K1

s is a

nonempty closed admissible subset of K0
s for each s and K1

s ⊂ K1
t whenever

s ≥ t. We shall prove that δ(K1
s ) ≤ kδ(K0

s ).
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Indeed, for x, y ∈
⋃

t≥s
A(K0

t ) we have x ∈ A(K0
p ), y ∈ A(K0

q ) with q ≥ p ≥ s.

Since y ∈ A(K0
q ) ⊂ K0

q ⊂ K0
p , we get

d(x, y) ≤ r(x,K0
p ) ≤ kδ(K0

p ) ≤ kδ(K0
s ),

hence δ(K1
s ) ≤ kδ(K0

s ). Continuing this process for each s ∈ S we get a sequence
of subsets {Ki

s : i = 1, 2, ...} such that Ki
s ⊂ Ki

t whenever s ≥ t and δ(Ki
s) ≤

kδ(Ki−1
s ) for each i. For each s ∈ S we have δ(Ki

s) ≤ kiδ(K0
s ) → 0 as i → ∞.

By Cantor’s principle there is a unique xs ∈ X such that
⋂

i
Ki

s = {xs}.

For every s, t ∈ S we may assume t > s. Then

{xs} =
⋂

i

Ki
s ⊃

⋂

i

Ki
t = {xt}.

From this
⋂

i,s
Ki

s 6= ∅, hence
⋂

s
Ks 6= ∅ and the proof is complete.

The above proof is essentially due to Maluta (1989).

Lemma 5. Let (X, d) be a complete metric space with N(X) < 1 and having
property (P ), S a totally ordered semigroup and c > N(X). Then for each
bounded net {xs : s ∈ S} in X there is z ∈

⋂

s
ad (xt : t ≥ s) such that

(i) d(z, y) ≤ r({xs}, y) for every y ∈ X, where r({xs}, y) = lim sup
s

d(xs, y),

(ii) r({xs}, z) ≤ c lim sup
s

δ(xt : t ≥ s).

Proof. (i) For each s ∈ S we put As = ad(xt : t ≥ s). By Lemma 4, A =
⋂

s
As 6=

∅. For z ∈ A, y ∈ X we set

M = lim sup
s

d(xs, y) = r({xs}, y).

Then for each ε > 0 there is t ∈ S such that sup
s≥t

d(xs, y) < M + ε. Hence

d(z, y) ≤ r(y,A) ≤ r(y,At) ≤ M + ε,

and (i) follows.

(ii) Fix s ∈ S. Since R(As) ≤ N(X)δ(As) < cδ(As), there is zs ∈ As such
that r(zs, As) < cδ(As). The net {zs} is bounded, hence by property (P ) there
is z ∈

⋂

s
ad(zt : t ≥ s) such that

r({xs}, z) ≤ lim sup
t

r({xs}, zt) ≤ lim sup
t

r(zt, At)

≤ lim sup
t

cδ(At) = c lim sup
t

δ(At).

This implies (ii) and the lemma is proved.

Now we are able to state our third result.
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Theorem 3. Let (X, d) be a bounded complete metric space with N(X) < 1 and
having property (P ), S a totally ordered semigroup, {Ts : s ∈ S} a semigroup of

k-Lipschitzian mappings with k < N(X)−1/2. Then {Ts} have a common fixed
point.

Proof. Take c ∈ (N(X), 1) such that η = k2c < 1. For x ∈ X, put xs = Tsx. By
Lemma 5 there is z = z(x) such that

(i) d(z, y) ≤ r({Tsx}, y) for all y ∈ X,

(ii) r({Tsx}, z) ≤ c lim sup
s

δ(Ttx : t ≥ s).

Put r(x) = sup{d(Tsx, x) : s ∈ S}. We have

lim sup
s

δ(Ttx : t ≥ s) ≤ sup{d(Tsx, Ttx) : s, t ∈ S}

≤ k sup
i∈S

d(Tix, x) = kr(x).

From this and (ii) we get

r({Tsx}, z) ≤ ckr(x).(1)

From (i) we have

r(z) = sup
s

d(Tsz, z) ≤ sup
s

r({Ttx}, Tsz).

On the other hand

r({Ttx}, Tsz) = lim sup
t

d(Ttx, Tsz) = lim sup
t

d(TsTtx, Tsz)

≤ k lim sup
t

d(Ttx, z) = kr({Ttx}, z).

From this and (1) we get

r(z) ≤ ck2r(x) = ηr(x).

We construct a sequence {xn} by putting x1 = x, xn+1 = z(xn), n ≥ 1. Then

r(xn+1) ≤ ηr(xn) ≤ ... ≤ ηnr(x1) → 0 as n → ∞.

On the other hand

d(xn+1, xn) ≤ d(xn+1, Tsxn) + d(Tsxn, xn)

≤ d(xn+1, Tsxn) + r(xn), ∀s ∈ S.

From this we get

d(xn+1, xn) ≤ lim sup
s

d(xn+1, Tsxn) + r(xn) = r({Tsxn}, xn+1) + r(xn)

≤ ckr(xn) + r(xn) ≤ (1 + ck)ηn−1r(x1).

This shows that {xn} is a Cauchy sequence. Let z = lim
n

xn. For each s ∈ S we

have

d(Tsz, z) ≤ d(z, xn) + d(xn, Tsxn) + d(Tsxn, Tsz)

≤ d(z, xn) + r(xn) + kd(xn, z) → 0 as n → ∞.
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So Tsz = z, ∀s ∈ S and the proof is complete.
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