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LYAPUNOV’S INEQUALITY FOR

LINEAR DIFFERENTIAL ALGEBRAIC EQUATION

NGUYEN DINH CONG AND HOANG NAM

Abstract. We introduce a concept of Lyapunov exponents and Lyapunov
spectrum of a linear differential algebraic equation (DAE) and derive Lya-
punov’s inequality for a DAE of index 1. We derive some estimates for sum of
Lyapunov exponents from a fundamental solution matrix of a DAE by means
of its coefficients.

1. Introduction

In science and practical application there are numerous problems such as the
problem of description of dynamic systems, electric circuit systems or problems in
cybernetics etc... requiring investigation of solutions of differential equations of
the type Ax′+Bx = 0, where A and B are constant or continuous time-dependent
matrices of order m with detA = 0. Such equations are called differential alge-
braic equations (DAEs).

Investigation of DAEs was carried out intensively by a group of researchers from
Humboldt University of Berlin (see [3, 4, 5, 6, 7]) and by Russian mathematicians
(see [8] and the references therein). Many results on stability properties of DAEs
were obtained such as asymptotic and exponential stability of DAEs which are
of index 1 and 2 [4,7], a criterion for stability of a DAE of index 1 [6], stability of
periodic DAEs [5]. The method used in the above papers is based on reduction
of investigation of a DAE to investigation of the corresponding ODE.

For a DAE under certain conditions, we are able to transform it into a system
consisting of a system of ordinary differential equations (ODEs) and a system
of algebraic equations so that we can use methods and results of the theory
of ordinary differential equations. For studying the stability and asymptotic
behaviour of solutions of ODEs, the key tools are two methods by Lyapunov:
the method of Lyapunov exponents and the method of Lyapunov’s functions
[1,2]. Although the theory of Lyapunov exponents for an ODE has been well
developed, a concept of Lyapunov exponents of a DAE has still not been discussed
in the literature. In this paper we develop a concept of Lyapunov exponents and
obtain for DAEs Lyapunov’s inequality which is an analogue of the one from the
qualitative theory of ODEs.

Now we recall some basic notions of the theory of Lyapunov exponents [1, 2].
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Definition 1.1. For a real function f : R → R, the number (or ±∞)

λ(f) := lim
t→∞

1

t
ln |f(t)|

is called Lyapunov exponent of f .

The Lyapunov exponent of a matrix function F (t) =
[
fjk(t)

]
(j, k = 1, 2, . . . ,m)

is defined by

λ(F (t)) := max
i,k

λ
(
fjk(t)

)
.

Note that one can define Lyapunov exponent for a function defined on half line
or on the set of positive integers.

Lyapunov exponent has two principal properties:

1) λ
( m∑

k=1

fk(t)
)
≤ max

1≤k≤m
λ
(
fk(t)

)
,

2) λ
( m∏

k=1

fk(t)
)
≤

m∑
k=1

λ
(
fk(t)

)
.

In this article, we define Lyapunov spectrum of a DAE and derive Lyapunov’s
inequality in case the equation is transferable.

2. Lyapunov exponents of a DAE

Let G be an open connected set in R := R
m×R

m×R. We consider a differential
equation

f(x′(t), x(t), t) = 0(2.1)

where f : G −→ R
m, (y, x, t) 7−→ f(y, x, t), is continuous in G and has continuous

partial derivatives with respect to y and x in G. Furthermore, we assume that
for each (y, x, t) ∈ G any triple (ŷ, x, t) with

ŷ − y ∈ Ker (f ′
y(y, x, t))

belongs to G.

A function x(t) is called a classical solution of (2.1) on the interval [t0, T ] if
the following three conditions are satisfied:

1. x(t) is differentiable on [t0, T ],

2.
(
x′(t), x(t), t

)
∈ G for all t ∈ [t0, T ],

3. f(x′(t), x(t), t) = 0 for all t ∈ [t0, T ].

It turns out that this classical notion of solution, while being natural for ODEs,
is too narrow for DAEs. For example let us regard the DAE

{
x′

1(t) = g(x1(t), x2(t), t)

x2(t) = h(x1(t), t)
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as an implicit system f(x′(t), x(t), t) = 0 with

x =

(
x1

x2

)
, f(y, x, t) =

(
y1 − g(x1, x2, t)
x2 − h(x1, t)

)
.

Then we obtain for a function h not being partially differentiable with respect to
t a non-differentiable component x2 of the solution x.

Let N : [t0, T ] → R
m be a smooth subspace-valued function with constant

dim N(t), and Q( · ) = I −P ( · ) ∈ C1 be a projector function onto N . We denote
by C1

N [t0, T ] the function space

C1
N [t0, T ] := {x ∈ C[t0, T ] : Px ∈ C1[t0, T ]}

equipped with the norm ‖x‖ := ‖x‖∞ + ‖(Px)′‖∞, where

‖x‖∞ := sup
t0≤t≤T

‖x(t)‖.

One can show that this definition is independent of the choice of the projector
function Q ∈ C1, namely two projectors generate equivalent norms on the same
function space (see Griepentrog and März [3, p.29]).

Now we turn to the case of a linear DAE

A(t)x′ + B(t)x = 0, t ∈ J,(2.2)

where A, B are continuous m × m-matrix functions, rankA(t) = r(r < m),
N(t) := ker A(t) is of the same dimension m − r for all t ∈ J . The region G of
definition of (2.2) is assumed equal R

m × R
m × J , where J is the time-interval

of (2.2). Sometime one may consider the case of finite time interval J = [t0, T ].
However, for our aim of defining Lyapunov spectrum of DAEs we shall consider
only the case of infinite time interval J = [t0,∞). Furthermore, we take for the
solution spaces of the DAEs (2.1) the space

C1
N [t0,∞) :=

⋂

T>t0

C1
N [t0, T ].

Definition 2.1. Assume that N(t) is smooth, i.e. there exists a differentiable
projector function Q ∈ C1 onto N(t), P = I − Q. A function x ∈ C1

N [t0,∞) is
said to be a solution of (2.2) on J if the identity

Ax′ + Bx = A
[
(Px)′ − P ′x

]
+ Bx = 0

is satisfied for all t ∈ J .

Definition 2.2. The linear DAE (2.2) is called transferable on G if there exists
a smooth projector function Q = I − P ∈ C1 onto N(t) and the matrix G(t) =
A(t) + B(t)Q(t) has bounded inverse G−1(t) on each interval [t0, T ] ⊂ J .

The following proposition on the existence and uniqueness of the solution of an
initial value problem (IVP) for transferable equation was proved in Griepentrog
and März [3, p.36].
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Proposition 2.1. Suppose that the DAE (2.2) is transferable on G. Then for
each given x0 ∈ R

m the IVP

A(t)x′ + B(t)x = 0, x(t0) − x0 ∈ N(t0),(2.3)

is uniquely solvable on each interval [t0, T ] ⊂ J . The solution is defined by the
state variable system

u′(t) = P ′(t)u(t) − P (t)(I + P ′(t))G−1(t)B(t)u(t), u(t0) = P (t0)x
0,(2.4)

x(t) = u(t) − Q(t)G−1(t)B(t)u(t).(2.5)

Furthermore, u(t) = P (t)x(t).

Note that using the projector Ps(t) = I − Q(t)G−1(t)B(t) onto

S(t) := {x ∈ R
m : B(t)x ∈ im A(t)},

the formulas (2.4), (2.5) can be rewritten:

u′(t) =
[
P ′(t)Ps(t) − P (t)G−1(t)B(t)

]
u(t),(2.6)

x(t) = Ps(t)u(t).(2.7)

Definition 2.3. The equation (2.2) is called of index 1 if for all t ∈ [t0,∞)

N(t) ⊕ S(t) = R
m.(2.8)

Note that, according to Theorem A13 of Griepentrog and März [3], expression
(2.8) is equivalent to the condition that the matrix

G(t) := A(t) + B(t)Q(t)

is nonsingular for all t ∈ [t0,∞). If the equation (2.2) is of index 1, then it is
equivalent to the system

u′(t) =
[
P ′(t)Ps(t) − P (t)G−1(t)B(t)

]
u(t), t ∈ [t0,∞),(2.9)

v(t) + Q(t)G−1(t)B(t)u(t) = 0,(2.10)

where u = Px and v = Qx. Moreover if u(t0) = u0 ∈ imP (t0), then u(t) ∈
im P (t) for all t ∈ J .

Definition 2.4. In case (2.2) is of index 1, (2.6) is called the corresponding
(under P ) ordinary differential equation (ODE) of (2.2).

For transferable DAE (2.3) with t ∈ [t0,∞), Proposition 2.1 provides its unique
solvability on the infinite interval [t0,∞).

If x(t) is a solution of equation (2.3) with t ∈ J , then for all t ∈ J , x(t) belongs
to subspace S(t).

Theorem 2.1. Suppose that the linear DAE (2.2) is transferable and its coef-
ficient matrices A(t), B(t) and G−1(t) are bounded on J . Then the Lyapunov
exponent of any nontrivial solution x(t) of (2.2) equals the Lyapunov exponent of
the corresponding solution of the corresponding ODE of (2.2).
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Proof. Since u(t0) = u0 ∈ im P (t0), we have u(t) ∈ im P (t) for all t ∈ J . By
(2.7), a solution of (2.2) has the form

x(t) = Ps(t)u(t)

where Ps = I −Qs, Qs = QG−1B, u(t) is the solution of the corresponding ODE
with initial condition u(t0) = P (t0)x

0.

By the assumption of the theorem we have ‖G−1‖ ≤ k, ‖B‖ ≤ b, ‖A‖ ≤ a for
some positive constants k, b, a. Since P = G−1A we have

‖P‖ = ‖G−1A‖ ≤ ka,

‖Q‖ = ‖I − P‖ ≤ 1 + ka.

Therefore

‖Qs‖ = ‖QG−1B‖ ≤ (1 + ka)kb,

‖Ps‖ = ‖I − Qs‖ ≤ 1 + (1 + ka)kb.

Consequently, Ps and P are bounded on J , hence

λ(Ps) ≤ 0 and λ(P ) ≤ 0.

This implies that

λ(x) = λ(Psu) ≤ λ(Ps) + λ(u) ≤ λ(u),

λ(u) = λ(Px) ≤ λ(P ) + λ(x) ≤ λ(x),

consequently λ(x) = λ(u).

3. Lyapunov’s inequality for DAEs

In this section we introduce the notion of Lyapunov spectrum of a DAE and
derive Lyapunov’s inequality for a DAE by using Lyapunov’s inequality of the
corresponding ODE. For doing this, we need a concept of a fundamental solution
matrix of a DAE.

Suppose we are given a transferable DAE with continuous coefficients

A(t)x′ + B(t)x = 0, t ∈ J,(3.1)

and an initial condition

P (t0)
(
x(t0) − x0

)
= 0,(3.2)

where P (t) = I − Q(t), Q(t) ∈ C1 is a projector function onto N(t) := Ker A(t).
Let rankA(t) = r = constant, r < m.

Definition 3.1. A square matrix X(t) of order m is called a fundamental solu-
tion matrix (FSM) of (3.1) if its first r vector-columns are linearly independent
solutions of (3.1) and the last m − r vector-columns of X(t) are zero.

Note that any solution x(t) of (3.1) belongs to a subspace S(t) of dimension
r, so that we have at most r linearly independent solutions. Hence the set of all
solutions of (3.1) is a linear subspace of dimension ≤ r. Moreover, it is known
(see [3, p.40]) that if pj (j = 1, 2, ..., r) are r linearly independent vector-columns
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of im P (t0) and the vectors uj(t), xj(t) are derived from the linear state variable
system

u′(t) =
[
P ′(t)Ps(t) − P (t)G−1(t)B(t)

]
u(t),

x(t) = Ps(t)u(t),

with the initial vectors uj(t0) = pj , then vectors x1(t), ..., xr(t) are linearly inde-
pendent and

im P (t) = span
(
u1(t), ..., ur(t)

)
,

im S(t) = span
(
x1(t), ..., xr(t)

)
.

Therefore, the set of all solutions of (3.1) is a linear subspace of dimension r,
which we denote by Rr. Any FSM has the form

X(t) =
(
x1(t), x2(t), ..., xr(t), 0, 0, ..., 0

)
.

For simplicity of notation, in what follows we shall write a FSM shortly as

Xr(t) =
(
x1(t), x2(t), ..., xr(t)

)
.

Theorem 3.1. Suppose that the coefficients A(t), B(t) of (3.1) are bounded.
Assume further that (3.1) is transferable on J with a projector Q(t) = I −P (t) ∈

C1(J) onto N(t) such that Q′(t) and G−1(t) =
(
A(t) + B(t)Q(t)

)−1
are bounded

on J . Then any nontrivial solution x = x(t) of (3.1) has finite Lyapunov expo-
nent.

Proof. From Theorem 2.1 we have λ(x) = λ(u), where x(t) is a solution of (3.1),
u(t) is the corresponding solution of the corresponding ODE

u′(t) =
[
P ′(t)Ps(t) − P (t)G−1(t)B(t)

]
u(t).(3.3)

Since (3.1) is transferable and P ′(t), A(t), B(t), G−1(t) are bounded, the functions
P (t), Ps(t), are bounded too. This implies that ‖P ′(t)Ps(t)−P (t)G−1(t)B(t)‖ <

∞. Thus (3.3) is a linear ODE with bounded coefficients, hence any nontrivial
solution u(t) of (3.3) has finite Lyapunov exponent. Consequently, any nontrivial
solution of (3.1) has finite Lyapunov exponent.

Definition 3.2. The set of all finite Lyapunov exponents of all solutions of a
DAE is called Lyapunov spectrum of this DAE.

Note that since the DAE (3.1) has at most r linear independent solutions, its
Lyapunov spectrum consists of at most r distinct numbers, which we may order
by increasing values

λ1(A,B) < λ2(A,B) < ... < λd(A,B), d ≤ r.
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Definition 3.3. A FSM Xr(t) =
(
x1(t), ..., xr(t)

)
of (3.1) is called normal if the

expression

σ
Xr

:=

r∑

i=1

λ(xi(t))

attains its minimum in the set of all FSMs of (3.1).

We denote by ns(s = 1, . . . , d) the maximum number of linearly independent
solutions of (3.1) with Lyapunov exponent equal λs(A,B). Put

Rs :=
{
x(t) : x(t) is a solution of (3.1) and λ

(
x(t)

)
≤ λs(A,B)

}
,

then Rs is a linear subspace of the solution space Rr of (3.1) and dimRs = Ns,
where

Nk = n1 + ... + nk, k = 1, 2, ..., d,

N1 < N2 < ... < Nd = r.

Definition 3.4. We say that a system of non-zero vector-functions x1(t), ..., xk(t)
has the property of incompressibility if for any linear combination

y(t) =

k∑

i=1

cixi(t)

we have

λ(y) = max
i ∈ {1, ..., k}

ci 6= 0

λ(xi).

Note that, any set of vector-functions with different Lyapunov exponents ob-
viously has the property of the incompressibility.

Similar to the theory of ODEs, we can easily prove the following result.

Theorem 3.2. A FSM Xr = (x1(t), ..., xr(t)) of (3.1) is normal if and only if
the system x1(t), ..., xr(t) has the property of incompressibility.

Note that in all normal FSMs the number ns of the solutions with Lyapunov
exponent equal λs(A,B) (s = 1, ..., d) is identical. This number ns is called
multiplicity of the exponent λs(A,B) of (3.1). Furthermore, any normal FSM
Xr(t) of (3.1) realizes the Lyapunov spectrum of (3.1): each λi(A,B) (i = 1, ..., d)
equals λ(xk) for some k = 1, 2, ..., r.

It is not difficult to prove (like in the theory of ODEs) that for any FSM Xr

of (3.1) we have

σ
Xr

≥
d∑

i=1

niλi(A,B),
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and Xr is normal if and only if

σ
Xr

=

d∑

i=1

niλi(A,B).

Now we come to the main result of this paper on Lyapunov’s inequality for
a DAE. Note that in case of DAEs, besides the coefficient matrices, projector
functions appear in the formula of the Lyapunov’s inequality. The presence of
projectors is natural since they have appeared already in the definition of a solu-
tion of a DAE. In some cases of the next section we may be able to get Lyapunov’s
inequality without the presence of projectors.

Theorem 3.3. Assume that (3.1) is transferable and the coefficient matrices
A(t), B(t) and matrix G−1(t) are bounded on J . Assume further that the nullspace
N(t) of A(t) does not depend on t. Then we have the following Lyapunov’s
inequality

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

tr(P ′Ps − PG−1B)(t1)dt1.(3.4)

Proof. Let

Xr(t) =
(
x1(t), ..., xr(t)

)

be a normal FSM of (3.1), and

U(t) =
(
u1(t), ..., ur(t), ur+1(t), ..., um(t)

)

be a corresponding FSM of the corresponding ODE (2.6), i.e. we have xi(t) =
Ps(t)ui(t) for i = 1, ..., r. Note that the correspondence between Xr(t) and Ut(t)
is restricted to the first r vector-functions and implies

ui(t) ∈ im P (t) for i = 1, ..., r.

Since im P (t0)⊕ Ker P (t0) = R
m, we can choose

ui(t0) ∈ im P (t0) for i = 1, ..., r,

uj(t0) ∈ Ker P (t0) for j = r + 1, ...,m.

We show that with this choice of initial values the solution uj(t), j = r+1, . . . ,m,
are constant.

We have

G−1A = G−1A(I − Q) = G−1(A + BQ)(I − Q) = I − Q,

G−1BQ = G−1(A + BQ − A) = I − G−1A = I − (I − Q) = Q,

Q = G−1B(I − P ) = G−1B − G−1BP,
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hence G−1B = Q + G−1BP , which implies, for j ∈ {r + 1, ...,m},

(Puj)
′ = P ′uj + Pu′

j = P ′uj + P (P ′Ps − PG−1B)uj

= (P ′ + PP ′Ps − P ′Ps)uj + (P ′Ps − PG−1B)uj

= (P ′ − QP ′Ps)uj + (P ′Ps − PG−1B)uj

= (P ′ − P ′PPs)uj +
[
P ′PsP − P (Q + G−1BP )

]
uj

= (P ′ − P ′P )uj + (P ′Ps − PG−1B)Puj

= P ′Quj + (P ′Ps − PG−1B)Puj .

Let Q⊥ = I − P⊥ be the orthogonal projector onto the nullspace of A(t). Then
P⊥ is independent of t and therefore, we have

P ′Q = (PP⊥)′(Q⊥Q) = P ′P⊥Q⊥Q = 0.

Consequently,

(Puj)
′ = (P ′Ps − PG−1B)Puj,

and since P (t0)uj(t0) = 0, we have Puj ≡ 0, t ∈ J for j = r + 1, ...,m. On the
other hand, for j = r + 1, ...,m, we have

(Quj)
′ = Q′uj + Qu′

j = Q′uj + Q(P ′Ps − PG−1B)uj

= Q′uj + QP ′Psuj

= Q′uj + P ′PPsuj

= (Q′ + P ′P )uj = (Q′ − Q′P )uj = Q′Quj = −P ′Quj = 0,

hence Quj = cj for all t ∈ J .

Thus, uj(t) = P (t)uj(t) + Q(t)uj(t) = cj = const for j = r + 1, ...,m, which
implies that

U(t) =
(
u1(t), ..., ur(t), cr+1, ..., cm

)
.

By Theorem 2.1, λ(xi) = λ(ui) for i = 1, ..., r. On the other hand, λ(uj) =
λ(cj) = 0 for j = r + 1, ...,m. Consequently, since Xr(t) is normal, by using the
Lyapunov’s inequality for the ODE (2.6) we get

d∑

i=1

niλi(A,B) =

r∑

i=1

λ(xi) =

m∑

i=1

λ(ui)

≥ lim
t→∞

1

t

t∫

t0

tr (P ′Ps − PG−1B)(t1)dt1.

Corollary 3.1. If the coefficients of (3.1) have the form

A(t) =

(
W (t) 0

0 0

)
, B(t) =

(
B11(t) B12(t)
B21(t) B22(t)

)
,
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where W (t) is a nonsingular square matrix of order r, B22(t) is an invertible ma-
trix of order m−r and B−1

22 (t), B(t), W−1(t) are bounded on J , then Lyapunov’s
inequality of (3.1) is of the following form

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

tr (W−1B12B
−1
22 B21 − W−1B11)(t1)dt1.

Proof. Clearly, N(t) := Ker A(t) =
{(

0
z2

)
: z2 ∈ R

m−r
}

is independent of t,

and Q(t) =

(
0 0
0 I

)
. We have

G(t) = A(t) + B(t)Q(t) =

(
W (t) B12(t)

0 B22(t)

)
,

G−1(t) =

(
W−1(t) −W−1(t)B12(t)B

−1
22 (t)

0 B−1
22 (t)

)
,

P ′(t)Ps(t) − P (t)G−1(t)B(t) = −P (t)G−1(t)B(t)

=

(
−W−1(t)B11(t) + W−1(t)B12(t)B

−1
22 (t)B21(t) 0

0 0

)
.

By Theorem 3.3, we have

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

tr (W−1B12B
−1
22 B21 − W−1B11)(t1)dt1.

Remark 3.1

(i) From the proof of Theorem 3.3 it is clear that Theorem 3.3 remains true
if we replace the condition that the nullspace N(t) is independent of t by the
(weaker) condition that P ′Q = 0.

(ii) If (3.1) has the Kronecker normal form with index 1, i.e.,

A(t) =

(
Ir 0
0 0

)
, B(t) =

(
B11(t) 0

0 Im−r

)
,

then the Lyapunov’s inequality of (3.1) has the form

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

−tr B11(t1)dt1.
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(iii) If the assumptions of Theorem 3.3 hold with Q = Q⊥ (the orthogonal
projector), then the Lyapunov’s inequality of (3.1) has the form

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

−tr(PG−1B)(t1)dt1.

4. Some explicit estimates of sum of Lyapunov exponents of a DAE

In this section, using Lyapunov’s inequality we shall derive some estimates for
sum of Lyapunov exponents of a DAE, which can be computed explicitely via
coefficients of the DAE (no projector presented).

Theorem 4.1. Suppose we are given a transferable DAE on J

A(t)x′ + B(t)x = 0,(4.1)

where the coefficients A(t), B(t) ∈ C1(J) have the following block form

A(t) =

(
A11(t) A12(t)
A21(t) A22(t)

)
, B(t) =

(
B11(t) B12(t)
B21(t) B22(t)

)
,

here A11(t) and B11(t) are square matrices of order r = rank A(t), A11 and
B22 − A21A

−1
11 B12 are nonsingular matrices. Assume further that the nullspace

N(t) of A(t) is independent of t and the canonical projector Qs(t) onto N(t)
along S(t) is bounded on J . Then, Lyapunov’s inequality for the DAE (4.1) has
the form

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

tr (−C(t1)dt1,(4.2)

where

C :=
[
B11 − B12

(
B22 − A21A

−1
11 B12

)−1(
B21 − A21A

−1
11 B11

)]

×
[
A11 − A12

(
B22 − A21A

−1
11 B12

)−1(
B21 − A21A

−1
11 B11

)]−1
.

Proof. First we will transfer our system to a standard Kronecker form, and then
apply the arguments of the proof of Theorem 3.3.

Put

L1 =

(
Ir 0

−A21A
−1
11 Im−r

)
.

Note that A22(t) := A22(t) − A21(t)A
−1
11 (t)A12(t) = 0 (see [8, p.33]). (This is

because, if conversely A22(t0) 6= 0 for some t0 ∈ J , then rank L(t0)A(t0) > r =
rank (A(t)). Therefore,

L1A =

(
A11 A12

0 0

)
, L1B =

(
B11 B12

B21 − A21A
−1
11 B11 B22 − A21A

−1
11 B12

)
.
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Put H11 = B11, H12 = B12, H21 = B21 − A21A
−1
11 B11,H22 = B22 − A21A

−1
11 B12.

By assumption of the theorem, H22 = B22 − A21A
−1
11 B12 is nonsingular, hence

we can define

R1 =

(
I 0

−H−1
22 H21 H−1

22

)
.

We have

L1AR1 =

(
A11 A12

0 0

)(
I 0

−H−1
22 H21 H−1

22

)
=

(
A11 A12

0 0

)
,

L1BR1 =

(
H11 H12

H21 H22

)(
I 0

−H−1
22 H21 H−1

22

)
=

(
B11 B12

0 I

)
,

where

A11 = A11 − A12H
−1
22 H21, A12 = A12H

−1
22 ,

B11 = H11 − H12H
−1
22 H21, B12 = H12H

−1
22 .

Now put

L0 :=

(
I −B12

0 I

)
,

and W1 := L0L1. Then we have

W1AR1 = L0L1AR1 =

(
I −B12

0 I

)(
A11 A12

0 0

)
=

(
A11 A12

0 0

)
,

W1BR1 = L0L1BR1 =

(
I −B12

0 I

)(
B11 B12

0 I

)
=

(
B11 0
0 I

)
.

Since (4.1) is a transferable DAE on J , the matrix pencil {A,B} is regular with
index 1 (see [3, p. 198] and [8. p. 53]), i.e.

deg
(
det (λA + B)

)
= rankA = r.

On the other hand,

det (λA + B) = det
(
W−1

1 R−1
1 ) det (λA11 + B11).

This implies detA11 6= 0 for all t ∈ J .

Now put

L2 =

(
I B11A

−1

11 A12

0 I

)
, R2 =

(
A

−1

11 −A
−1

11 A12

0 I

)
.
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We have

L2W1AR1R2 =

(
I B11A

−1

11 A12

0 I

)(
A11 A12

0 0

)(
A

−1

11 −A−1
11 A12

0 I

)

=

(
I 0
0 0

)
,

L2W1BR1R2 =

(
I B11A

−1

11 A12

0 I

)(
B11 0
0 I

)(
A

−1

11 −A
−1

11 A12

0 I

)

=

(
B11A

−1

11 0
0 I

)
.

Hence, with the notation

W := L2W1 = L2L0L1 =

(
I B11A

−1

11 A12

0 I

) (
I −B12

0 I

)(
I 0

−A21A
−1
11 I

)

R := R1R2 =

(
I 0

−H−1
22 H21 H−1

22

)(
A

−1

11 −A
−1

11 A12

0 I

)

C := B11A
−1

11 = (H11 − H12H
−1
22 H21)(A11 − A12H

−1
22 H21)

−1

=
[
B11 − B12(B22 − A21A

−1
11 B12)

−1(B21 − A21A
−1
11 B11)

]
×

×
[
A11 − A12(B22 − A21A

−1
11 B12)

−1(B21 − A21A
−1
11 B11)

]−1
,

we have

A = W−1

(
Ir 0
0 0

)
R−1, B = W−1

(
C 0
0 I

)
R−1.

Consider the projector function

Q(t) = R(t)

(
0 0
0 I

)
R−1(t)

onto N(t) := ker A(t). It is evident Q(t) ∈ C1(J) since A,B ∈ C1(J).

We have

P = I − Q = R

(
I 0
0 0

)
R−1

G = A + BQ

= W−1

(
I 0
0 0

)
R−1 + W−1

(
C 0
0 I

)
R−1R

(
0 0
0 I

)
R−1

= (RW )−1

G−1 = RW,

Qs = QG−1B = R

(
0 0
0 I

)
R−1RWW−1

(
C 0
0 I

)
R−1

= R

(
0 0
0 I

)
R−1 = Q.
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Therefore

P ′Ps − PG−1B =

=
[
R

(
I 0
0 0

)
R−1

]′
R

(
I 0
0 0

)
R−1 − R

(
I 0
0 0

)
R−1RWW−1

(
C 0
0 I

)
R−1

= R′

(
I 0
0 0

)
R−1R

(
I 0
0 0

)
R−1 − R

(
I 0
0 0

)
R−1R′R−1R

(
I 0
0 0

)
R−1

− R

(
C 0
0 0

)
R−1

= R′

(
I 0
0 0

)
R−1 − R

(
I 0
0 0

)
R−1R′

(
I 0
0 0

)
R−1 − R

(
C 0
0 0

)
R−1

=
[
I − R

(
I 0
0 0

)
R−1

]
R′

(
I 0
0 0

)
R−1 − R

(
C 0
0 0

)
R−1

= R

(
0 0
M 0

)
R−1 − R

(
C 0
0 0

)
R−1

= R

(
−C 0
M 0

)
R−1,

where

(
0 0
0 I

)
R−1R′

(
I 0
0 0

)
=

(
0 0
M 0

)
.

On the other hand,

tr
[
R

(
−C 0
M 0

)
R−1

]
= tr

[
RR−1

(
−C 0
M 0

)]
= tr

(
−C 0
M 0

)
= tr(−C).

By assumption of the theorem, we have λ(Q) = λ(Qs) = 0. Therefore, the
Lyapunov exponent of any nontrivial solution x(t) of (4.1) equals the Lyapunov
exponent of the corresponding solution of the corresponding ODE of (4.1). Now
we note that the condition on boundedness of A,B,G−1 in Theorem 3.3 is needed
for proving equality of the Lyapunov exponents of x(t) and of the corresponding
solution of the corresponding ODE, and here we was able to prove the equality
directly from the assumption of our theorem. Because the nullspace N(t) of A(t)
is independent of t, using arguments similar to those of the proof of Theorem 3.3
we get

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

tr (P ′Ps − PG−1B)(t1)dt1

= lim
t→∞

1

t

t∫

t0

tr (−C(t1))dt1.
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Theorem 4.2. Suppose we are given a transferable DAE

A(t)x′ + B(t)x = 0, t ∈ J,(4.3)

where the coefficients A(t), B(t) ∈ C1(J) are bounded on J and have the block
form

A(t) =

(
A11(t) A12(t)
A21(t) A22(t)

)
, B(t) =

(
B11(t) B12(t)
B21(t) B22(t)

)
,

with A11(t) being an invertible square matrix of order r=rank A(t) and the ma-

trices A−1
11 , A′, B

−1

22 are bounded on J . Then

d∑

i=1

niλi(A,B) ≥ lim
t→∞

1

t

t∫

t0

{
tr

[(
B12 − B11A

−1
11 A12 + A′

11A
−1
11 A12 − A′

12

)

(
B22 − A21A

−1
11 A12 − B21A

−1
11 A12 + A21A

−1
11 B11A

−1
11 A12

)−1

(
B21A

−1
11 − A21A

−1
11 B11A

−1
11

)]

− tr
(
B11A

−1
11 − A′

11A
−1
11

)}
(t1)dt1,(4.4)

where B22 = B22 − A21A
−1
11 A12 − B21A

−1
11 A12 + A21A

−1
11 B11A

−1
11 A12.

Proof. Multiplying both parts of equation (4.3) from the left by

w(t) =

(
Ir o

−A21A
−1
11 I

)

we get

w(t)A(t)x′ + w(t)B(t)x = 0.(4.5)

Put x(t) = R(t)y(t), where

R :=

(
A−1

11 −A−1
11 A12

0 I

)
, R−1 =

(
A11 A12

0 I

)
.

Then (4.5) becomes

w(t)A(t)R(t)y′ +
[
w(t)B(t)R(t) + w(t)A(t)R′(t)

]
y = 0.

Since r = rank A(t) = rank A11(t) and A11 is nonsingular, we have A22 −
A21A

−1
11 A12 = 0 (see [8, p.53]). Therefore, the last equation is equivalent to

the system
(

I 0
0 0

)
y′ +

(
B11(t) B12(t)
B21(t) B22(t)

)
y = 0,(4.6)
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where

B11 = B11A
−1
11 − A′

11A
−1
11 ,

B12 = B12 − B11A
−1
11 A12 + A′

11A
−1
11 A12 − A′

12,

B21 = B21A
−1
11 − A21A

−1
11 B11A

−1
11 ,

B22 = B22 − A21A
−1
11 A12 − B21A

−1
11 A12 + A21A

−1
11 B11A

−1
11 A12.

Since, this equation has index 1, the matrix B22 must be invertible on J .

Because A(t), B(t), A′(t), A−1
11 (t) are bounded on J , R(t), R−1(t) and the

matrices B11, B12, B21, B12 are bounded on J , hence λ(x) = λ(y).

Therefore, from Corollary 3.1 it follows

r∑

i=1

λ(xi) =

r∑

i=1

λ(yi) ≥ lim
t→∞

1

t

t∫

t0

tr
(
B12B

−1

22 B21 − B11

)
(t1)dt1.

Inequality (4.4) follows immediately from this inequality.
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