ANOTHER CLASSIFICATION OF QUASI-MARTINGALES IN THE LIMIT

TRAN QUANG VINH

ABSTRACT. Given a stochastic basic (A_n) , a sequence (X_n) of integrable random variables, adapted to (A_n) is said to be a quasi-martingale in the limit if for every $\varepsilon > 0$, there exists $p \in N$ such that for every $m \geq p$ there exists $p_m \geq m$ such that for all $n \geq p_m$ we have

$$
P\Big(\sup_{p\leq q\leq m}|X_q(n)-X_q|>\varepsilon\Big)<\varepsilon.
$$

The main aim of this note is to prove that the class of all quasi-martingales in the limit would be classified into a nondecreasing directed family of subclasses whose smallest element is just the class of mils introduced by M. Talagrand (1985).

1. Notations and Definitions

Let (Ω, \mathcal{A}, P) be a complete probability space, (\mathcal{A}_n) an increasing sequence of complete sub-σ-fields of A with $A_n \uparrow A$. In this note, we shall consider only sequences (X_n) of random variables with each $X_n \in L^1(\mathcal{A}_n)$, i.e. X_n is \mathcal{A}_n measurable and

$$
E(|X|) = \int_{\Omega} |X_n| dP < \infty.
$$

For other related notions of martingale-like sequences, the reader is referred to [2]. In this note, we recall only the following definition.

Definition 1.1. A sequence (X_n) is said to be

a) a mil if for every $\varepsilon > 0$, there exists $p \in N$ such that for every $n \geq p$ we have

$$
P\Big(\sup_{p\leq q\leq n}|X_q(n)-X_q|>\varepsilon\Big)<\varepsilon,
$$

where given $m, n \in N$ with $m \leq n$, $X_m(n)$ denotes the \mathcal{A}_m -conditional expectation of X_n (cf. [5]).

Received December 21, 2001.

b) a game which becomes fairer with time if for every $\varepsilon > 0$, there exists $p \in N$ such that for every $n \geq p$ we have

$$
\sup_{p \le q \le n} P(|X_q(n) - X_q| > \varepsilon) < \varepsilon.
$$

It is clearly that by definition, every mil is a game fairer with time. However, by Theorem 4 [6] the classical Doob's martingale limit theorem still holds for mils. Especially, D. Q. Luu [3] has recently noted that the above results of M. Talagrand would has been extended to the following important generalization of mils.

Definition 1.2. A sequence (X_n) is said to be a quasi-martingale in the limit (briefly, a quasi-mil) if for every $\varepsilon > 0$, there exists $p \in N$ such that for every $m \geq p$ there exists $p_m \geq m$ such that for all $n \geq p_m$ we have

(1.1)
$$
P\Big(\sup_{p\leq q\leq m}|X_q(n)-X_q|>\varepsilon\Big)<\varepsilon.
$$

As a continuation of $[6]$, $[3]$ and $[4]$, the main aim of this note is to establish another classification of the class of all quasi-mils which is independent of that given in [4].

2. Main results

The first result we begin with is the following example which shows that unlike mils, the class of quasi-mils is independent of games fairer with time.

Example 2.1. Neither the class of games fairer with time nor that of quasi-mils is contained in each other. Let $([0,1], \mathcal{B}_{[0,1)}, P)$ be the Lebesgue probability space on [0, 1), where $\mathcal{B}_{[0,1)}$ is the completion of the Borel σ -field w.r.t the Lebesgue measure P. For $m = 0$, set $b_m = 0$, $I_1^0 = [0, 1)$ and $\mathcal{A}_m = {\phi, I_1^0}$. For $m \ge 1$, set $b_m =$ $\sum_{i=1}^{m-1}$ $j=0$ 2^j , Q_m the partition of $[0,1)$ in 2^m intervals $\{I_j^m, 1 \le j \le 2^m\}$ of equal length and \mathcal{A}_m the σ -algebra generated by Q_m . On the probability space with stochastic basic (\mathcal{A}_m) , we shall construct first a game fairer with time (X_n) which is not a quasi-mil. Indeed, for $n = 1$, set $X_n = 0$. For $n \geq 2$, set $X_n = 1$ on the first and $X_n = -1$ on the second interval of Q_m which are contained in $I_j^{(m-1)}$ $j^{(m-1)},$ where (m, j) is the unique pair of $m \geq 1$ and $1 \leq j \leq 2^{m-1}$ with $n = b_{m-1} + j$ and $X_n = 0$ elsewhere. Then it is easily seen that constructed in such a way, the sequence (X_n) has the following properties:

(a) (X_n) converges to zero in L^1 ,

(b) For all $m, n \in N$, $X_q(n) = 0$ if $q \leq b_{m-1}$ and $X_q(n) = X_n$ if $b_{m-1} < q \leq n$,

(c) (X_n) does not converge to zero, a.s.

By the properties (a), (b) and Chebyshev's inequality, it is easily checked that (X_n) must be a game fairer with time. However, for all $m, n \in N$ with $n > b_m$

we have

$$
\sup_{b_{m-1} < q \le b_m} |X_q(n) - X_q| = \sup_{b_{m-1} < q \le b_m} |X_q| = 1.
$$

Then (X_n) cannot be a quasi-mil.

To construct the converse example, set $n_k = 2^k n_{k-1}$ with $k \in N$ and $n_0 = 1$. Now let define the sequence (Y_n) as follows. For $n \neq n_k$ with $k \in N$, set $Y_n = 0$. For $k \ge 1$ being any but fixed and $n = n_k$, set $Y_n = 2^k$ or $Y_n = -2^k$, resp., on the first interval of Q_n which is contained in the $(2p-1)$ -th or in the 2p-th interval of $Q_{n_{k-1}}$ resp., with $1 \leq p \leq \frac{n_{k-1}}{2}$ $\frac{z-1}{2}$ and $Y_n = 0$ elsewhere. It is not hard to check that defined in such away, we have $P(Y_n \neq 0) = 2^{-k}$. Then (Y_n) converges to zero, a.s. On the other hand, for all $k \geq 1$ we have

$$
Y_{n_{k-1}}(n) = 1
$$
 or $Y_{n_{k-1}}(n) = -1$, resp.,

on the $(2p-1)$ -th or 2p-th interval of $Q_{n_{k-1}}$ resp., with $1 \leq p \leq \frac{n_{k-1}}{2}$ $\frac{\epsilon-1}{2}$. It follows that the sequence (Y_n) cannot be a game fairer with time. However for all $k \geq 2$ and $q < n_{k-1}$, we have $Y_q(n) = 0$. It guarantees that if for any $m \in N$ with $m = n_k$ for some $k \in N$ we take $p_m = n_{k+1} + 1$ and for any other m we set $p_m = m + 1$ then for all $p, m, n \in N$ with $m \geq p$ and $n \geq p_m$ we get

$$
\sup_{p \le q \le m} |Y_q(n) - Y_q| = \sup_{p \le q \le m} |Y_q|.
$$

This with the almost sure convergence of (Y_n) to zero shows that (Y_n) must be a quasi-mil. It means that the class of quasi-mils is not contained in that of games fairer with time.

To show how large is the class of quasi-mils, we have considered in [4] the set of G of all nondecreasing functions from N to N . Then equipped with the partial order " \leq " given by

$$
f =' g \quad \text{iff} \quad \text{card}\left(\{f \neq g\}\right) < \infty
$$

and

$$
f <' g \quad \text{iff} \quad \text{card}\left(\{f > g\}\right) < \infty \quad \text{and} \quad \text{card}\left(\{f < g\}\right) = \infty,
$$

G is easily checked to be a directed set. Further we have pointed out there that a sequence (X_n) is a quasi-mil if and only if it is a *mil of size g* for some $g \in G$, write $(X_n) \in \mathcal{M}^g$, i.e., for every $\varepsilon > 0$ there exists $p \in N$ such that for all $m, n \in N$ with $p < m < m + g(m) \le n$ we have

(2.1)
$$
P\Big(\sup_{p\leq q\leq m}|X_q(n)-X_q|>\varepsilon\Big)<\varepsilon.
$$

Particularly, it was shown that when q runs over G , the set of all quasi-mils is classified into a nondecreasing family $(\mathcal{M}^g, g \in G)$ for which if $f, g \in G$ with $f \leq g$ then the class \mathcal{M}^f is strictly contained in \mathcal{M}^g . The main aim of this note is to give another classification of the class of all quasi-mils which is independent of that having been just mentioned before.

For this purpose let F denote the set of all functions from N to N . Then it is not hard to check that endowed with the same partial order \leq' , F becomes also a directed set. Thus a natural question arises whether or not the above classification can be extended to (F, \leq') . The following result gives a negative answer to the question.

Proposition 2.1. There exists a pair (f, g) of elements of F with $f < g$ for which $\mathcal{M}^f = \mathcal{M}^g$.

Proof. First, it is worth noting that the proof of Theorem 2.2 [4] does not depend on the nondecreasing property of the function $g \in G$. Hence, a sequence (X_n) is a quasi-mil if and only if there exists $f \in F$ such that (X_n) is a mil of size f. Now let define two functions f, g as follows:

$$
f(m) = k \bmod^k m + 1
$$

and

$$
g(m) = \begin{cases} f(m) & \text{if } \mod^k m = 0, \\ f(m) + 1 & \text{if } \mod^k m > 0, \end{cases}
$$

where k is a prime number equal to or larger than 2 and mod_m^k means residuation of m devided by k. Then it is evident that $f, g \in F$, $f \le g$ and $f <' g$. Now for any $h \in G$, set

$$
a_k(h) = k + h(k), \quad k \in N,
$$

and

$$
b_n(h) = \max\{m : m + h(m) \le n\}, \quad n \ge a_1(h).
$$

Clearly, we have

(2.2)
$$
b_n(g) \le b_n(f) < n, \quad n \ge a_1(h).
$$

We claim more that

(2.3)
$$
b_n(f) = b_n(g) = pk, \ p \in N, \ pk + 1 \le n \le (p+1)k.
$$

Indeed, let $p \in N$ be any but fixed. Then by the same definition of f and g we have

$$
pk + f(pk) = pk + g(pk) = pk + 1.
$$

Hence by (2.2) , it follows that

$$
b_{pk+1}(f) = b_{pk+1}(g) = pk,
$$

and then

(2.4)
$$
pk \le b_n(g) \le b_n(f), \quad pk + 1 \le n \le (p+1)k.
$$

Now to see (2.3), suppose on the contrary that there exists some $pk + 1 \le n \le$ $(p+1)k$ and $j \ge 1$ such that $b_n(f) = pk + j$. Then again by the definitions of f and $b_n(f)$ one obtains

$$
n \le b_n(f) + f(b_n(f)) = pk + j + f(pk + j)
$$

= pk + j + kj + 1
= (p + j)k + (j + 1) > n.

This is impossible. Thus by (2.4) we get (2.3) and the claim. Having it in hand, we are in a good position to show that defined as given at the beginning of the construction, the pair (f, g) gives a desired example. To see this, it is useful to note first that $\mathcal{M}^f \subset \mathcal{M}^g$ since $f \leq g$. To prove the converse inclusion, let $(X_n) \in \mathcal{M}^g$ and $\varepsilon > 0$ be any but fixed. Then by definition there exists, say $p \geq k$ such that for any $m, n \in N$ with $m \geq p$ and $n \geq m + g(m)$, (2.1) is satisfied, i.e.

$$
P\Big(\sup_{p\leq q\leq m}|X_q(n)-X_q|>\varepsilon\Big)<\varepsilon.
$$

Now let $s, n \in N$ with $s \geq p$ and $n \geq s + f(s)$. Then there exists $p_1 \in N$ such that

$$
p_1k + 1 \le n \le (p_1 + 1)k.
$$

Thus by the claim we have

$$
b_n(g) = b_n(f) = p_1 k.
$$

It follows that

$$
b_n(f) = p_1 k \geq s.
$$

Therefore by taking $m = b_n(q) = p_1 k$ we have $p \leq s \leq m$ and

$$
n \ge b_n(g) + g(b_n(g)) = m + g(m).
$$

Consequently, by (2.1) one obtains

$$
P\Big(\sup_{p\leq q\leq s}|X_q(n)-X_q|>\varepsilon\Big)\leq P\Big(\sup_{p\leq q\leq m}|X_q(n)-X_q|>\varepsilon\Big)<\varepsilon.
$$

This means that $(X_n) \in \mathcal{M}^f$, which completes the construction.

 \Box

The previous proposition shows that the next classification is independent from Theorem 2.3 of [4]. To see this, let define on F the other partial order \leq^* , given by $f \leq^* g$ iff card $({g \leq f}) < \infty$. It is clear that if $f, g \in G$ with $f \leq^* g$ then $f <' g$. Further, if we choose $f, g \in G$ as

$$
f(m) = m, \quad m \in N,
$$

and

$$
g(2m) = g(2m - 1) = 2m, \quad m \in N,
$$

then clearly $f \leq g$ but one cannot compare f with g in the order \leq^* . It means that restricted to G, the second order \leq^* is strictly weaker than the first one \leq' . However, even on F we get the following classification of the class of quasi-mils. **Theorem 2.1.** When f runs over the directed set (F, \leq^*) , the class of all quasimils is classified into a nondecreasing family $(\mathcal{M}^f, f \in F)$ for which the smallest subclass \mathcal{M}^1 coincides with the set of all mils. Furthermore, for any $f, g \in F$ with $f \leq^* g$, the subclass \mathcal{M}^f is strictly contained in \mathcal{M}^g .

Proof. The first part of the theorem follows as the first part of Theorem 2.2 [4], where we did not use the increasing property of $g \in G$. The main part of the proof consists in showing the second statement of the theorem. For this purpose, let $f, g \in F$ with $f \leq^* g$. Then by definition, there exists $n_0 \in N$ such that $f(m) < g(m)$, $m \geq n_0$. To construct a quasi-mil $(X_n) \in \mathcal{M}^g$ which does not belong to \mathcal{M}^f , we choose the usual Lebesgue probability space on [0,1] to be (Ω, \mathcal{A}, P) . Further, for each $n \in N$, set $a_n = \prod 2^j$, Q_n the partition of $[0, 1)$ in j≤n

 a_n intervals of equal length and A_n the complete σ -algebra generated by Q_n .

For simplicity, let define

$$
m_0 = \max (n_0, a_1(f), a_1(g)).
$$

Clearly by the definition of $b_n(f)$ given in the proof of the previous proposition, it follows that the sequence $(b_n(f), n \geq m_0)$ does not decrease and the set ${b_n(f), n \geq m_0}$ is infinite. Let (m_k) denote the strictly increasing sequence renumbering in turn all different elements of $\{b_n(f), n \geq m_0\}$. Then it is clear that for every $k \in N$ we have

(2.5)
$$
b_n(f) = m_k \quad \text{if and only if} \quad n_k \le n < n_{k+1},
$$

where $n_k = m_k + f(m_k)$.

Now define a desired quasi-mil (X_n) as follows: For $n \neq n_k$, $k \in N$ set $X_n = 0$. For any other $n \in N$, set

$$
X_n = \frac{a_n}{a_{b_n(f)}}
$$
 or
$$
X_n = -\frac{a_n}{a_{b_n(f)}},
$$
 resp.

on the first interval of Q_n which is contained in the $(2s-1)$ -th or $(2s)$ -th interval of $Q_{b_n(f)}$, resp., with $1 \leq s \leq \frac{a_{b_n(f)}}{2}$ $\frac{n(J)}{2}$ and $X_n = 0$, elsewhere. It is easily checked that defined in such a way we have

$$
P(\lbrace X_n \neq 0 \rbrace) \le \frac{a_{b_n(f)}}{a_n} \le \prod_{j=a_{b_n(f)+1}}^n 2^{-j} \le 2^{-n},
$$

noting that by (2.2) $b_n(f) + 1 \leq n, n \geq m_0$.

Therefore

$$
(2.6) \t\t (X_n) \t converges to zero, a.s.
$$

On the other hand, by taking $n = n_k, k \in N$, we get

(2.7) $X_{b_n(f)} = 1$ or $X_{b_n(f)} = -1$, resp.

on the $(2s-1)$ -th or $(2s)$ -th interval of $Q_{b_n(f)}$, resp. with $1 \leq s \leq \frac{a_{b_n(f)}}{2}$ $\frac{n(J)}{2}$. This with (2.6) implies that (X_n) is neither a game fairer with time nor a mil of size f, i.e., $(X_n) \notin \mathcal{M}^f$.

To show that $(X_n) \in \mathcal{M}^g$ we claim that for $n = n_k, k \in \mathbb{N}$ we have

$$
(2.8) \t\t b_n(g) < b_n(f).
$$

Indeed, by (2.2) suppose on the contrary that there exists some $k \in N$ with $b_{n_k}(g) = b_{n_k}(f)$. Then by (2.5) we have

$$
n_k = m_k + f(m_k) = b_{n_k}(f) + f[b_{n_k}(f)] < b_{n_k}(g) + g[b_{n_k}(g)] \le n_k.
$$

It is impossible. Thus (2.8) is verified. Hence by (2.7) we get

$$
X_q(n) = 0, \ n \ge m_0, \ q \le b_n(g).
$$

Therefore, for any $p, m, n \in N$ with $m_0 \leq p \leq m$ and $n \geq a_m(g)$ we have $b_n(q) \geq m$ and then

$$
\sup_{p \le q \le m} |X_q(n) - X_q| \le \sup_{p \le q \le b_n(g)} |X_q(n) - X_q| = \sup_{p \le q \le b_n(g)} |X_q|.
$$

This with (2.6) guarantees that (X_n) is a mil of size g, i.e., $(X_n) \in \mathcal{M}^g$. \Box

ACKNOWLEDGEMENTS

The author would like to express his sincere thanks to Professor D. Q. Luu for valuable comments and suggestions.

REFERENCES

- [1] L. H. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math. 35 (1970), 279-283.
- [2] G. A. Edgar and L. Sucheston, Stopping times and directed processes, Encyclopedia Math. Its Appl. 47, Cambridge Univ. Press, 1992.
- [3] D. Q. Luu, Further decomposition and convergence theorems for Banach space-valued martingale-like sequences, Bull. Pol. Acad. Sci., Ser. Math. 45 (1997), 419-428.
- [4] D. Q. Luu and T. Q. Vinh, On martingales in the limit and their classification, Vietnam. J. Math. 29 (2001), 159-164.
- [5] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1975.
- [6] M. Talagrand, Some structure results for martingales in the limit and pramarts, Annals Probab. 13 (1985), 1192-1203.

Faculty of Mathematics and Informatics Hanoi Pedagogical University