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ANOTHER CLASSIFICATION OF
QUASI-MARTINGALES IN THE LIMIT

TRAN QUANG VINH

ABSTRACT. Given a stochastic basic (A ), a sequence (X,) of integrable ran-
dom variables, adapted to (A,) is said to be a quasi-martingale in the limit
if for every € > 0, there exists p € N such that for every m > p there exists
Pm > m such that for all n > p,,, we have

P( sup | Xq(n) — X > e) <e.
p<g<m

The main aim of this note is to prove that the class of all quasi-martingales in
the limit would be classified into a nondecreasing directed family of subclasses
whose smallest element is just the class of mils introduced by M. Talagrand
(1985).

1. NOTATIONS AND DEFINITIONS

Let (2, A, P) be a complete probability space, (A,) an increasing sequence of
complete sub-o-fields of A with A, T A. In this note, we shall consider only
sequences (X,) of random variables with each X,, € L'(A,), i.e. X, is A,-
measurable and

E(X)) :/|Xn|dP < .
Q

For other related notions of martingale-like sequences, the reader is referred to
[2]. In this note, we recall only the following definition.

Definition 1.1. A sequence (X)) is said to be

a) a mil if for every € > 0, there exists p € N such that for every n > p we have

P( sup |X4(n) — X4| > E) <eg,
p<g<n

where given m,n € N with m < n, X,,(n) denotes the A,,-conditional expecta-
tion of X,, (cf. [5]).
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b) a game which becomes fairer with time if for every ¢ > 0, there exists p € N
such that for every n > p we have

sup P(|X4(n) — Xy >¢) <e.
p<g<n

It is clearly that by definition, every mil is a game fairer with time. However,
by Theorem 4 [6] the classical Doob’s martingale limit theorem still holds for
mils. Especially, D. Q. Luu [3] has recently noted that the above results of M.
Talagrand would has been extended to the following important generalization of
mils.

Definition 1.2. A sequence (X,) is said to be a quasi-martingale in the limit
(briefly, a quasi-mil) if for every € > 0, there exists p € N such that for every
m > p there exists p,, > m such that for all n > p,, we have

(1.1) P( sup |Xg4(n) — X4| > 6) <e.
p<gsm

As a continuation of [6], [3] and [4], the main aim of this note is to establish
another classification of the class of all quasi-mils which is independent of that
given in [4].

2. MAIN RESULTS

The first result we begin with is the following example which shows that unlike
mils, the class of quasi-mils is independent of games fairer with time.

Example 2.1. Neither the class of games fairer with time nor that of quasi-mils
is contained in each other. Let ([0, 1], Bjg 1), ) be the Lebesgue probability space
on [0,1), where Bjg ) is the completion of the Borel o-field w.r.t the Lebesgue
measure P. For m = 0, set b,, =0, I{ = [0,1) and A,,, = {¢, I{}. For m > 1, set

m—1
bm = )_ 27, Qp, the partition of [0,1) in 2™ intervals {I7", 1 < j < 2™} of equal
j=0

length and .A,, the o-algebra generated by @,,. On the probability space with
stochastic basic (A, ), we shall construct first a game fairer with time (X,,) which
is not a quasi-mil. Indeed, for n =1, set X,, = 0. For n > 2, set X,, = 1 on the
first and X,, = —1 on the second interval of (),, which are contained in I J(-m_l),
where (m, j) is the unique pair of m > 1 and 1 < j < 2™ ! with n = by,_1 +j
and X,, = 0 elsewhere. Then it is easily seen that constructed in such a way, the
sequence (X,,) has the following properties:

(a) (X,,) converges to zero in L',
(b) For all m,n € N, X,(n) =0if ¢ <by—1 and X (n) = X, if b1 < g < n,
(c) (X,) does not converge to zero, a.s.

By the properties (a), (b) and Chebyshev’s inequality, it is easily checked that
(X,,) must be a game fairer with time. However, for all m,n € N with n > b,
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we have

sup | Xy(n) —Xgl=  sup |X, =1
bmfl <q§bm bmfl <q§bm
Then (X,,) cannot be a quasi-mil.

To construct the converse example, set ny = 2¥n;_; with k € N and ng = 1.
Now let define the sequence (Y,,) as follows. For n # nj with k € N, set Y;, = 0.
For k > 1 being any but fixed and n = ny, set ¥;, = 2¥ or Y, = —2*, resp., on the
first interval of @,, which is contained in the (2p — 1)-th or in the 2p-th interval

of Qn,_, resp., with 1 <p < 1 and Y,, = 0 elsewhere. It is not hard to check

that defined in such away, we have P(Y, # 0) = 27%. Then (Y,,) converges to
zero, a.8. On the other hand, for all £ > 1 we have

Yo, (n)=1 or Y,

Nk—1 Nk—1

(n) =-1, resp.,

neg—1

on the (2p — 1)-th or 2p-th interval of @), _, resp., with 1 <p < . Tt follows

that the sequence (Y;,) cannot be a game fairer with time. However for all £ > 2
and ¢ < ng_1, we have Y (n) = 0. It guarantees that if for any m € N with
m = ny for some k € N we take p,, = np+1 + 1 and for any other m we set
Pm = m + 1 then for all p,m,n € N with m > p and n > p,, we get
sup |Yy(n) =Y, = sup |Yg|.
p<q<m p<g<m

This with the almost sure convergence of (Y},) to zero shows that (Y;,) must be a
quasi-mil. It means that the class of quasi-mils is not contained in that of games
fairer with time.

To show how large is the class of quasi-mils, we have considered in [4] the set
of G of all nondecreasing functions from N to N. Then equipped with the partial
order “<’” given by

f=g it card({f #g}) <o

and
f<'g iff card({f >g}) <oc and card({f < g}) = o0,

G is easily checked to be a directed set. Further we have pointed out there that a
sequence (X,,) is a quasi-mil if and only if it is a mil of size g for some g € G, write
(X,) € MY, ie., for every € > 0 there exists p € N such that for all m,n € N
with p <m < m+ g(m) < n we have

(2.1) P( sup |Xg4(n) — X4| > 6) <e.

p<gsm
Particularly, it was shown that when ¢ runs over G, the set of all quasi-mils is
classified into a nondecreasing family (MY, g € G) for which if f,g € G with
f <’ g then the class M/ is strictly contained in M9. The main aim of this note
is to give another classification of the class of all quasi-mils which is independent
of that having been just mentioned before.
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For this purpose let I’ denote the set of all functions from N to N. Then it
is not hard to check that endowed with the same partial order </, F' becomes
also a directed set. Thus a natural question arises whether or not the above
classification can be extended to (F,<’). The following result gives a negative
answer to the question.

Proposition 2.1. There exists a pair (f,g) of elements of F with f <' g for
which Mf = M9,

Proof. First, it is worth noting that the proof of Theorem 2.2 [4] does not depend
on the nondecreasing property of the function g € G. Hence, a sequence (X,,) is
a quasi-mil if and only if there exists f € F such that (X,,) is a mil of size f.
Now let define two functions f, g as follows:

f(m) = kmodfm + 1
and

(m) = f(m) if mod*m =0,
gum f(m)+1 if mod*m >0,

where k is a prime number equal to or larger than 2 and mod*, means residuation
of m devided by k. Then it is evident that f,g € F, f < g and f <’ g. Now for
any h € G, set

ag(h) =k+ h(k), k€N,
and
bp(h) = max{m : m+ h(m) <n}, n>ai(h).
Clearly, we have
(2.2) bn(g) < bn(f) <mn, n>ai(h).
We claim more that
(2.3) bu(f) =bn(g) =pk, pE N, pk+1<n< (p+ 1)k

Indeed, let p € N be any but fixed. Then by the same definition of f and g we
have

pk + f(pk) = pk + g(pk) = pk + 1.
Hence by (2.2), it follows that
bpk-+1(f) = bpr+1(9) = pk,
and then

(2.4) pk <bn(g) <bn(f), pk+1<n<(p+1)k.
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Now to see (2.3), suppose on the contrary that there exists some pk+1 <n <
(p+ 1)k and j > 1 such that b,(f) = pk + j. Then again by the definitions of f
and b, (f) one obtains

n < by (f) + f(bu(f)) =Pk + 7+ f(pk + j)
=pk+j+kj+1
=@+)k+0G+1)>n

This is impossible. Thus by (2.4) we get (2.3) and the claim. Having it in hand,
we are in a good position to show that defined as given at the beginning of the
construction, the pair (f,g) gives a desired example. To see this, it is useful
to note first that Mf C MY since f < g. To prove the converse inclusion, let
(X,) € MY and € > 0 be any but fixed. Then by definition there exists, say p > k
such that for any m,n € N with m > p and n > m + g(m), (2.1) is satisfied, i.e.

P( sup | Xy(n) — X,| > 5) <e
p<q<m

Now let s,n € N with s > p and n > s+ f(s). Then there exists p; € N such
that

pik+1<n<(p+1)k.
Thus by the claim we have
bn(9) = bn(f) = p1k.
It follows that
bn(f) = p1k > s.
Therefore by taking m = b,(g) = p1k we have p < s < m and
n > bn(g) + g(bn(g)) = m + g(m).
Consequently, by (2.1) one obtains

P( sup | Xy(n) — X,| > 5) < P( sup | Xy(n) — X,| > 5) <e
p<q<s p<q<m

This means that (X,,) € M/, which completes the construction. O
The previous proposition shows that the next classification is independent from
Theorem 2.3 of [4]. To see this, let define on F' the other partial order <*, given

by f <* g iff card ({g < f}) < oo. It is clear that if f,g € G with f <* g then
f <’ g. Further, if we choose f,g € G as

flm)=m, meN,
and
g(2m) =g(2m —1)=2m, m € N,

then clearly f <’ g but one cannot compare f with g in the order <*. It means
that restricted to G, the second order <* is strictly weaker than the first one <’.
However, even on F we get the following classification of the class of quasi-mils.
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Theorem 2.1. When f runs over the directed set (F,<*), the class of all quasi-
mils is classified into a nondecreasing family (MY, f € F) for which the smallest
subclass M' coincides with the set of all mils. Furthermore, for any f,qg € F
with f <* g, the subclass MY is strictly contained in M9.

Proof. The first part of the theorem follows as the first part of Theorem 2.2 [4],
where we did not use the increasing property of ¢ € G. The main part of the
proof consists in showing the second statement of the theorem. For this purpose,
let f,g € F with f <* g. Then by definition, there exists ng € IV such that
f(im) < g(m), m > ng. To construct a quasi-mil (X,,) € M9 which does not
belong to MY, we choose the usual Lebesgue probability space on [0,1) to be
(Q, A, P). Further, for each n € N, set a,, = [] 27, @, the partition of [0,1) in
Jj<n
ay intervals of equal length and A,, the complete o-algebra generated by @Q,.
For simplicity, let define

mp = max (nO>al(f)va1(g))'

Clearly by the definition of b, (f) given in the proof of the previous proposition,
it follows that the sequence (by(f), n > mg) does not decrease and the set
{bn(f), m > myp} is infinite. Let (my) denote the strictly increasing sequence
renumbering in turn all different elements of {b,(f), n > mg}. Then it is clear
that for every kK € N we have

(2.5) bn(f) =my  if and only if ni <n < ngyr,

where ng = my + f(mg).
Now define a desired quasi-mil (X,,) as follows: For n # ng, k € N set X,, = 0.
For any other n € N, set

Gn Gn

X, = or X, =——— resp.
@y (f) @y (f)
on the first interval of @, which is contained in the (2s — 1)-th or (2s)-th interval
a
of Qp,(y), T€Sp., with 1 < s < b"T(f) and X,, = 0, elsewhere. It is easily checked

that defined in such a way we have

P((X, £0) <D< [ 27 <2,
i J=aby (£)+1

noting that by (2.2) b,(f) +1 < n, n > my.
Therefore

(2.6) (Xy) converges to zero, a.s.
On the other hand, by taking n = ng, k € N, we get

(2.7) Xpo(py =1 or Xy (5= —1, resp.
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on the (2s — 1)-th or (2s)-th interval of @, (), resp. with 1 < s < w. This
with (2.6) implies that (X,,) is neither a game fairer with time nor a mil of size
fie., (Xn) & M/,

To show that (X,,) € MY we claim that for n = ng, kK € N we have

(2.8) bn(g) < bn(f)-

Indeed, by (2.2) suppose on the contrary that there exists some k € N with
bn, (9) = by, (f). Then by (2.5) we have

ng = my + f(mg) = bn, (f) + flbn, (f)]
< bny (9) + glbn,. (9)] < ni.
It is impossible. Thus (2.8) is verified. Hence by (2.7) we get
Xy(n) =0, n>mg, q <bu(g).

Therefore, for any p,m,n € N with mg < p < m and n > a,,(g) we have
bn(g) > m and then

sup |Xg4(n) —Xg| < sup | Xy(n) — Xyl = sup | Xl
p<q<m p<q<bn(g) p<q<bn(g)
This with (2.6) guarantees that (X,,) is a mil of size g, i.e., (X,,) € MY. O
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