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ON THE ASYMPTOTIC STABILITY OF

TIME-VARYING DIFFERENTIAL EQUATIONS

WITH MULTIPLE DELAYS AND APPLICATIONS

NGUYEN SINH BAY, NGUYEN THE HOAN AND VU NGOC PHAT

Abstract. This paper studies the asymptotic stability of some class of re-
tarded functional differential equations. Based on the stability of the under-
lying linear system, new sufficient conditions for asymptotic stability of linear
retarded systems as well as systems with nonlinear perturbations are derived.
The class of systems is allowed to be time-varying and time-delay. The results
are applied to the input feedback stabilization problem of some class of linear
control systems.

1. Introduction

Stability analysis of dynamical systems with time-delayed states is a topic of
practical and theoretical interest, because time-delay states encounter in many
dynamical systems described by continuous-time equations (see, e.g., [1, 4, 8, 10,
11, 12] and references therein). Recently, research interest has been focused on
the asymptotic stability problem for time-delay systems described by differential
retarded equations of the form

ẋ(t) = f(t, xt), f(t, 0) = 0, t ≥ 0,(1)

with initial condition (t0, φ) : x(s) = φ(s), s ∈ [t0 − h, t0], where h > 0, x(t) ∈
Rn, t0 ∈ R+, φ ∈ C := C([−h, 0], Rn), xt denotes the segment on [t−h, t] of vector
function x(.) ∈ C(R+, Rn) so that xt : [−h, 0] → Rn is defined by xt(s) = x(t+s),
−h ≤ s ≤ 0.

We recall that the zero solution of system (1) (or system (1) itself) is called
asymptotically stable if for every ε > 0, for every t0 ∈ R+, there is δ > 0 such that
for any φ ∈ C([−h, 0], Rn) : ‖φ‖ < δ the solution x(t) with the initial condition
(t0, φ) of the system satisfies

(i) ‖x(t)‖ < ε, ∀t ≥ t0,

(ii) ‖x(t)‖ → 0, as t → ∞.

The asymptotic stability analysis of general system (1) based on the second
direct Lyapunov method has gained significant advances over the past years; see,
e.g., [5, 7, 12, 15]. It is woth noting that in most of the mentioned papers, suf-
ficient conditions for asymptotic stability are given in terms of the existence of
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Lyapunov functionals and finding such Lyapunov functionals is a difficult task in
many cases. In [4, 6, 9, 14], the stability conditions for time-invariant delay sys-
tems are formulated in terms of the existence of the solution of Riccati/Lyapunov
equations. For linear neutral-type time-invariant equations a similar approach
and stability conditions were proposed in [7, 13]. Some authors (see [2] and refer-
ences therein) have obtained stability conditions via the linear matrix inequality
approach, shown to be equivalent to some Riccati equations. In [13, 14, 15, 16],
sufficient stability conditions for linear systems with nonlinear or delay pertur-
bations were established by using the stability criteria of the linear underlying
systems.

In this paper, we give both time-varying and time-delay stability conditions
formulated in terms of the asymptotic stability of the linear underlying systems.
The approach allows us to apply the obtained results in the stabilization problem
of some classes of linear control systems.

2. Preliminaries

Let us recall some notations and definitions, which will be used throughout
the paper.

Let R+ denote the set of all nonnegative real numbers, 〈x, y〉 the scalar product
of x, y in Rn, AT the transpose of matrix A, I the identity matrix, A−1 the inverse
of matrix A, B[0,1] the closed unit ball in Rn, xt ∈ C with

‖xt‖ = sup
−h≤s≤0

‖xt(s)‖;

λmin(A) = inf
{

〈Ax, x〉 : x ∈ B[0,1]

}

,

λmax(A) = sup
{

〈Ax, x〉 : x ∈ B[0,1]

}

:= ‖A‖.
A matrix A is said to be positive definite if 〈Ax, x〉 ≥ 0, ∀x ∈ Rn and 〈Ax, x〉 >

0, if x 6= 0. It follows from [3] that for a symmetric positive definite ma-
trix A the spectrum σ(A) is a bounded closed set contained in the segment
[λmin(A), λmax(A)] and we have the following result.

Proposition 2.1. [3] If A is a symmetric positive definite matrix, then λmin(A) >

0 and there is A−1 such that the following relations hold

(i) λmin(A)‖x‖2 ≤ 〈Ax, x〉 ≤ λmax(A)‖x‖2, ∀x ∈ Rn;

(ii)
1

λmax(A)
‖x‖2 ≤ 〈A−1x, x〉 ≤ 1

λmin(A)
‖x‖2, ∀x ∈ Rn;

(iii) λmin(A
2) ≥

[

λmin(A)
]2

;

(iv) λmax(A
2) ≤

[

λmax(A)
]2

.

Consider a homogeneous time-varying system

ẋ(t) = A(t)x(t), t ≥ 0.(2)

Let us denote by S(t) the fundamental matrix and by U(t, s) the evolution matrix
of the system defined by U(t, s) = S(t)S−1(s); t ≥ s ≥ 0. It is obvious that if
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matrix function A(t) is bounded on R+, i.e., there is M > 0 such that

sup
t≥0

‖A(t)‖ ≤ M < +∞,

then the evolution matrix U(t, s) satisfies the condition

‖U(t, s)‖ ≤ eM |t−s|, ∀t, s ≥ 0.

Definition 2.1. The zero solution of system (2) is exponentially stable if there
exist positive numbers K and δ such that

‖U(t, s)‖ ≤ Ke−δ(t−s), ∀t ≥ s ≥ 0.(3)

Definition 2.2. Let K and δ be positive real numbers. A n × n−matrix func-
tion A(t) belongs to BCAS(K, δ) if A(t) is continuous, bounded on R+ and the
evolution matrix U(t, s) of system (2) satisfies condition (3).

The classical Lyapunov Theorem asserts that the zero solution of system (2),
where A(t) = A for all t ≥ 0, is asymptotically stable if only if for every symmetric
positive definite matrix P the Lyapunov equation

AT Q + QA = −P

has a symmetric positive definite matrix solution Q. In the sequel, we give a
time-varying analog of this result. For this, let us define a matrix function P (t)
to be uniformly positive definite on R+ if

∃ c > 0 : 〈P (t)x, x〉 ≥ c‖x‖2, ∀t ∈ R+, ∀x ∈ Rn.

Throughout this paper we denote by BSUPD(Rn) the set of all n × n-matrix
functions, which are symmetric, bounded, uniformly positive definite on R+.

Consider the following time-varying Lyapunov matrix equation

Q̇(t) + AT (t)Q(t) + Q(t)A(t) = −P (t), t ∈ R+.(4)

Proposition 2.2. Assume that A(t) ∈ BCAS(K, δ). Then for every P (t) ∈
BSUPD(Rn), the Lyapunov matrix equation (4) has a solution Q(t) ∈ BSUPD(Rn)
given by

Q(t) =

∞
∫

t

UT (τ, t)P (τ)U(τ, t)dτ(5)

and the following relation holds

P

2M
‖x‖2 ≤ 〈Q(t)x, x〉 ≤ PK2

2δ
‖x‖2, ∀t ∈ R+, ∀x ∈ Rn,(6)

where M := sup
t≥0

‖A(t)‖; P := sup
t≥0

‖P (t)‖. Conversely, if for any matrix function

P (t) ∈ BSUPD(Rn) there is a solution Q(t) ∈ BSUPD(Rn) of equation (4)
defined by (5), then the zero solution of (2) is asymptotically stable.
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Proof. The matrix function A(t) belongs to BCAS(K, δ), then the evolution ma-
trix U(τ, t) satisfies condition (3). For any matrix P (t) ∈ BSUPD(Rn) we
consider the matrix function given by (5)

Q(t) =

∞
∫

t

UT (τ, t)P (τ)U(τ, t)dτ.

By the properties of U(τ, t) and P (t), the matrix function Q(t) is well defined,
Q(t) is symmetric for all t ≥ 0 and we can show that Q(t) satisfies the Lyapunov
equation (4) as follows. Replacing U(τ, t) = S(τ)S−1(t) and differentiating both
sides of (5) in t, we have

Q̇(t) = ṠT−1

(t)

∞
∫

t

ST (τ)P (τ)S(τ)dτS−1(t)

+ ST−1

(t)
d

dt

[

∞
∫

t

ST (τ)P (τ)S(τ)dτ
]

S−1(t)

+ ST−1

(t)

∞
∫

t

ST (τ)P (τ)S(τ)dτṠ−1(t).

Since Ṡ−1(t) = −S−1(t)A(t), ṠT−1

(t) = −AT (t)ST−1

(t), we have

Q̇(t) = −AT (t)Q(t) − Q(t)A(t) + ST−1

(t)
d

dt

[

∞
∫

t

ST (τ)P (τ)S(τ)dτ
]

S−1(t).

Therefore

Q̇(t) = −AT (t)Q(t) − Q(t)A(t) − P (t),

as desired. We now prove that Q(t) ∈ BSUPD(Rn). Indeed, we have

〈Q(t)x, x〉 =

∞
∫

t

〈P (τ)U(τ, t)x,U(τ, t)x〉dτ.

Since P (t) ∈ BSUPD(Rn), we have

∃c > 0 : 〈P (t)x, x〉 ≥ c‖x‖2, ∀x ∈ Rn, ∀t ∈ R+.

Therefore

〈Q(t)x, x〉 =

∞
∫

t

〈P (τ)U(τ, t)x,U(τ, t)x〉dτ

≥ c

∞
∫

t

‖U(τ, t)x‖2dτ, ∀x ∈ Rn,∀t ∈ R+.
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On the other hand, since

‖x‖ = ‖U(t, τ)U(τ, t)x‖ ≤ ‖U(t, τ)‖‖U(τ, t)x‖,

‖U(τ, t)x‖ ≥ ‖x‖
‖U(t, τ)‖ ,

it holds

〈Q(t)x, x〉 ≥ c

∞
∫

t

‖x‖2

‖U(t, τ)‖2
dτ.

Taking Proposition 2.1 into account we have

〈Q(t)x, x〉 =

∞
∫

t

〈P (τ)U(τ, t)x,U(τ, t)x〉dτ

≥ c‖x‖2

∞
∫

t

e−2M |t−τ |dτ

= c‖x‖2

∞
∫

t

e2M(t−τ)dτ

=
c

2M
‖x‖2, ∀t ∈ R+,∀x ∈ Rn,

which shows that Q(t) ∈ BSUPD(Rn). To prove the second inequality in (6), we
deduce from (3) that

〈Q(t)x, x〉 =

∞
∫

t

〈P (τ)U(τ, t)x,U(τ, t)x〉dτ

≤ P‖x‖2

∞
∫

t

‖U(τ, t)‖2dτ

≤ PK2‖x‖2

∞
∫

t

e−2δ(τ−t)dτ

≤ PK2

2δ
‖x‖2.

To prove the converse part, we take a Lyapunov function for linear system (2) of
the form V (t, x) = 〈Q(t)x, x〉, x ∈ Rn. It is easy to verify that

d

dt
V (t, x(t)) = −〈P (t)x(t), x(t)〉 ≤ −c‖x(t)‖2, ∀t ∈ R+;

hence the zero solution is asymptotically stable. The proof is complete.
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If V : R+ × C → R+ is continuous and x(τ, φ)(t) is the solution of equation
(1) through (τ, φ), we define

V̇ (t, φ) := lim
η→0+

1

η
[V (t + η, xt+η(τ, φ)) − V (t, φ)].

The function V̇ (t, φ) is upper right-hand derivate of V (t, φ) along the solution of
equation (1).

In the sequel, we will need the following stability theorem of functional differ-
ential equations.

Proposition 2.3. [4] Assume that f : R+ × C → Rn takes R+× (bounded set of
C) into bounded set of Rn, and c1, c2, c3 are positive real numbers. If there is a
continuous functional V : R+ × C → R such that

i) c1‖φ(0)‖2 ≤ V (t, φ) ≤ c2‖φ‖2, ∀t ≥ 0, ∀φ ∈ C;

ii) V̇ (t, φ) ≤ −c3‖φ(0)‖2, ∀t ≥ 0, ∀φ ∈ C,

where V̇ (t, φ) is the upper right-hand derivate of V (t, φ) along the solution of
equation (1). Then the solution x = 0 of equation (1) is asymptotically stable.

3. Main results

Consider a linear retarded system of the form

ẋ(t) = A(t)x(t) +

r
∑

i=1

Ai(t)x(t − hi) +

q
∑

i=1

0
∫

−ki

dGi(s)x(t + s)(7)

where t ≥ 0; x ∈ Rn, A(t), Ai(t), i = 1, 2, . . . , r are n × n-matrix functions on
R+; Gi(s), i = 1, 2, ..., q are n×n-matrix functions with finite total variations on
respective segments [−ki, 0], 0 := k0 < k1 < k2 < · · · < kq ≤ h , 0 < h1 < h2 <

... < hr ≤ h (h := max{hr, kq}). Throughout this section we assume that the
functions Ai(t) are bounded on R+ and the function Gi(t) satisfies a condition
so called Lipschitzian property on segments [−ki, 0], i = 1, 2, . . . , q :

‖Gi(s) − Gi(s
′)‖ ≤ Li|s − s′|, ∀s, s′ ∈ [−ki, 0], i = 1, 2, . . . , q.(8)

Theorem 3.1. Assume that A(t) ∈ BCAS(K, δ) and Gi(s), i = 1, 2, ..., q satisfy
condition (8). Then system (7) is asymptotically stable if

r
∑

i=1

sup
t≥0

‖Ai(t)‖2 +

q
∑

i=1

kiL
2
i ≤ δ2

(

r +
q

∑

i=1
ki

)

K4

.(9)

Proof. Since A(t) ∈ BCAS(K, δ), by Proposition 2.2 for the matrix function
P (t) = αI, α > 0, the matrix function Q(t) ∈ BSUPD(Rn) given by

Q(t) = α

∞
∫

t

‖U(τ, t)‖2dτ
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satisfies the Lyapunov equation (4). Take the Lyapunov functional V (t, φ) on
R+ × C for system (7) defined by

V (t, φ) := 〈Q(t)φ(0), φ(0)〉 +

r
∑

i=1

0
∫

−hi

‖φ(τ)‖2dτ +

q
∑

i=1

0
∫

−ki

0
∫

s

‖φ(τ)‖2dτds.

Taking φ := xt, where x(t) is a solution of equation (1) and xt is defined by
xt(s) = φ(s); s ∈ [−h, 0], we have

V (t, xt) := 〈Q(t)x(t), x(t)〉 +

r
∑

i=1

0
∫

−hi

‖xt(τ)‖2dτ +

q
∑

i=1

0
∫

−ki

0
∫

s

‖xt(τ)‖2dτds.

By some simple calculations and by Proposition 2.2 we can show that

α

2M
‖x(t)‖2 ≤ V (t, xt) ≤

(αK2

2δ
+ rh + h

q
∑

i=1

ki

)

‖xt‖2.

Condition (i) of Proposition 2.3 is fulfiled.

Taking derivative of V (t, xt) in t along the solution of system (7) we get

V̇ (t, xt) =
〈

(Q̇(t) + AT (t)Q(t) + Q(t)A(t))x(t), x(t)
〉

+

r
∑

i=1

(

‖x(t)‖2 − ‖x(t − hi)‖2
)

+

q
∑

i=1

0
∫

−ki

ds
(

‖x(t)‖2 − ‖x(t + s)‖2
)

+ 2
〈

Q(t)x(t),
r

∑

i=1

Ai(t)x(t − hi)
〉

+ 2
〈

Q(t)x(t),

q
∑

i=1

0
∫

−ki

dGi(s)x(t + s)
〉

.

By completing the square we have

−‖x(t − hi)‖2 + 2〈AT
i (t)Q(t)x(t), x(t − hi)〉 ≤ ‖AT

i (t)‖2‖Q(t)‖2‖x(t)‖2;

hence

−
r

∑

i=1

‖x(t − hi)‖2 + 2
r

∑

i=1

〈AT
i (t)Q(t)x(t), x(t − hi)〉 ≤

r
∑

i=1

‖AT
i (t)‖2‖Q(t)‖2‖x(t)‖2 ≤ ‖Q(t)‖2

r
∑

i=1

sup
t≥0

‖Ai(t)‖2‖x(t)‖2.(10)

On the other hand, since ‖Gi(s)−Gi(s
′)‖ ≤ Li|s−s′| and ki ≥ 0, for i = 1, 2, ..., q,

we deduce that

∥

∥

∥

0
∫

−ki

dGi(s)x(t + s)
∥

∥

∥
≤ Li

0
∫

−ki

‖x(t + s)‖ds
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and

−
q

∑

i=1

0
∫

−ki

‖x(t + s)‖2ds + 2

q
∑

i=1

0
∫

−ki

〈Q(t)x(t), dGi(s)x(t + s)〉

≤
q

∑

i=1

kiL
2
i ‖Q(t)‖2‖x(t)‖2.(11)

Taking (4), (6), (10), (11) and Proposition 2.2 into account, we obtain that

V̇ (t, xt) ≤
(

− P + r +

q
∑

i=1

ki + ‖Q(t)‖2
r

∑

i=1

sup
t≥0

‖Ai(t)‖2 + ‖Q(t)‖2
q

∑

i=1

kiL
2
i

)

‖x(t)‖2.

From the last inequality it follows that the derivative V̇ (t, xt) is uniformly nega-
tive definite on R+ provided

−α + r +

q
∑

i=1

ki + ‖Q(t)‖2
r

∑

i=1

sup
t≥0

‖Ai(t)‖2 + ‖Q(t)‖2
q

∑

i=1

kiL
2
i < 0.

From Proposition 2.2 and condition (6) it follows that the derivative V̇ (t, xt) is
uniformly negative definite on R+ if

−α + r +

q
∑

i=1

ki +
α2K4

4δ2

r
∑

i=1

sup
t≥0

‖Ai(t)‖2 +
α2K4

4δ2

q
∑

i=1

kiL
2
i < 0,

or

r
∑

i=1

sup
t≥0

‖Ai(t)‖2 +

q
∑

i=1

kiL
2
i <

α −
(

r +
q

∑

i=1
ki

)

α2
· 4δ2

K4
= H(α)

4δ2

K4
,(12)

where

H(α) :=

α −
(

r +
q

∑

i=1
ki

)

α2
·

Since the function H(α) attains its maximum value at α = 2
(

r +
q

∑

i=1
ki

)

, the

proof is now followed from Proposition 2.3 by choosing Ai(t) and Li such that

r
∑

i=1

sup
t≥0

‖Ai(t)‖2 +

q
∑

i=1

kiLi2 <
δ2

(

r +
q

∑

i=1
ki

)

K4

·

The proof is completed.

As a special case, when dGi(t) = 0 (i = 1, 2, ..., q) or Ai(t) = 0 (i = 1, 2, ..., r)
for all t ≥ 0, the following sufficient conditions for the stability of retarded system
(7) can be derived.
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Corollary 3.1. For system (7), where dGi(t) = 0 on [−ki, 0] for all i = 1, 2, ..., q,
we assume the same conditions on A(t) as in Theorem 3.1. Then (7) is asymp-
totically stable if

r
∑

i=1

sup
t≥0

‖Ai(t)‖2 <
δ2

rK4
·

Corollary 3.2. For system (7), where Ai(t) = 0, i = 1, 2, ..., r, for all t ≥ 0,
we assume the same assumptions on A(t) and Gi(t) as in Theorem 3.1. Then
(7) is asymptotically stable if

q
∑

i=1

Li2

Ri2
< 1,

where R2
i :=

δ2

K4ki

q
∑

j=1
kj

, i = 1, 2, . . . , q.

Remark 3.1. By some arguments simillar to those in the proof of Theorem 3.1
we may extend the result for the following system

ẋ(t) = A(t)x(t) +
r

∑

i=1

Ai(t)x(t − hi) +

q
∑

i=1

−ki−1
∫

−ki

dGi(s)x(t + s), t ≥ 0.(13)

Theorem 3.2. Under the assumptions of Theorem 3.1, assume additionally that

r
∑

i=1

sup
t≥0

‖Ai(t)‖2 +

q
∑

i=1

Li2(ki − ki−1) <
δ2

(r + k)K4
·

Then system (13) is asymptotically stable.

Example 3.1. Consider a linear retarded system of the form:

ẋ(t) = A(t)x(t) +

0
∫

−2

dG1(s)x(t + s) +

0
∫

−3

dG2(s)x(t + s), t ≥ 0,(14)

where

A(t) =

(

−1 0
e−t −1

)

; G1(s) = |0.02 · s + 0.01|I2; G2(s) = |0.03 · s + 0, 01|I2.

We may verify that K = 2, δ = 1, L1 = 0.02, L2 = 0.03, k1 = 2, k2 = 3, h = 3.
Hence

L2
1

R2
1

+
L2

1

R2
2

= 0.28 < 1.

Applying Corollary 3.2 we can conclude that system (14) is asymptotically stable.
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Now we consider the asymptotic stability of a class of nonlinear system of the
form

ẋ(t) = A(t)x(t) + f(t, x(t − h1), x(t − h2), . . . , x(t − hr)), t ≥ 0,(15)

f(t, 0, . . . , 0) = 0,∀t ≥ 0,

where 0 < h1 < h2 < ... < hr := h, r ≥ 1, A(t) is n × n-matrix function on R+;
f : R+ × C → Rn. In the sequel, we will need the following condition: There are
real bounded scalar functions ai(t) : R+ → R+, i = 1, 2, . . . , r such that

‖f(t, x1, x2, . . . , xr)‖ ≤
r

∑

i=1

ai(t)‖xi‖, ∀t ∈ R+,∀xi ∈ Rn(16)

Let us denote

a2 :=

r
∑

i=1

sup
t≥0

|ai(t)|2.

The following theorem gives a sufficient condition for the asymptotic stability of
system (15).

Theorem 3.3. Assume conditions (16) and A(t) ∈ BCAS(K, δ). Then system
(15) is asymptotically stable if

0 < a <
δ√
rK2

·

Proof. By the same arguments used in the proof of Theorem 3.1, using Lyapunov
functional

V (t, xt) = 〈Q(t)x(t), x(t)〉 +
r

∑

i=1

0
∫

−hi

‖xt(τ)‖2dτ,

where Q(t) is a solution of matrix equation (4) with P (t) = rαI, where α > 0
will be chosen later, we arrive at the fact that

V̇ (t, xt) ≤ −r(α − 1)‖x(t)‖2 +

r
∑

i=1

a2
i (t)‖Q(t)x(t)‖2

=
〈

[(

r
∑

i=1

|ai(t)|2
)

I − r(α − 1)Q−2(t)
]

Q(t)x(t), Q(t)x(t)
〉

.

By Proposition 2.1 we obtain

V̇ (t, xt) ≤ ‖Q(t)x(t)‖2
[

a2 − r(α − 1)λmin([Q(t)]−2)
]

.

Therefore, from Proposition 2.1 and (6) we can deduce the following estimations:

λmin(Q
−2(t)) ≥ 4δ2

r2α2K4
,

V̇ (t, xt) ≤ ‖Q(t)x(t)‖2
[

α2 − r(α − 1)
4δ2

r2α2K4

]

.



ON THE ASYMPTOTIC STABILITY 61

On the other hand, since Q(t) ∈ LSUPD(Rn), the derivative of the functional
V (t, xt) is uniformly negative definite on R+ if

a2 <
α − 1

α2
· 4δ2

rK4
·

Since the function g(α) =
α − 1

α2
attains its maximum at α = 2, it suffices to

choose a satisfying

0 < a <
δ√
rK2

·

The theorem is proved.

Example 3.2. Consider the following system in R2

{

ẋ1(t) = −(2 + cos t)x1(t) + a sin x2(t − 2),

ẋ2(t) = −(2 − cos t)x2(t),
(17)

where t ≥ 0, a > 0, xi(t) ∈ R1, i = 1, 2.

Note that x = 0 is a solution of system (17). Since

A(t) =

(

−(2 + cos t) 0
0 −(2 − cos t)

)

,

f(t, xt) = [a sin x2(t − 2), 0]T ,

we can find the evolution matrix

U(t, s) =

(

e−2(t−s)−(sin t−sin s) 0

0 e−2(t−s)+(sin t−sin s)

)

and hence

‖U(t, s)‖ ≤ Ke−2(t−s), ∀t ≥ s ≥ 0,

where K = e2. On the other hand, we have

‖f(t, x(t − 2)‖ ≤ a‖x(t − 2)‖.
Therefore, the zero solution of system (17) is asymptotically stable when

a <

√
2

e2
·

4. An application to stabilization

In this section we study the stabilizability problem of a class of control systems
with delays using the results obtained in the previous section. Consider the
following control system

ẋ(t) = A(t)x(t) +

0
∫

−h

dG(s)x(t + s) + B(t)u(t), t ≥ 0,(18)
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where h > 0, x(t) ∈ Rn, u(t) ∈ Rm, B(t) : Rm → Rn, t ≥ 0; A(t) and G(s)
satisfy the conditions stated in the previous section.

We recall that system (18) is stabilizable by a feedback controller u(t) =
K(t)x(t) if its closed-loop system is asymptotically stable in the Lyapunov sense.
The feedback control for system (18) will be found in the form

u(t) = µ

0
∫

−h

BT (t)dG(t)x(t + s), t ≥ 0, s ∈ [−h, 0], µ > 0.(19)

Theorem 4.1. Assume that A(t) ∈ BCAS(K, δ), G(s) is L-Lipschitz on [−h, 0]
and 0 < sup

t≥0
λmax [B(t)BT (t)] < +∞. Then control system (18) is stabilizable by

linear feedback controller (19) if the parameter µ satisfies the condition

0 < µ <
δ − K2Lh

K2Lh sup
t≥0

λmax [B(t)BT (t)]
·(20)

Proof. By control (19), system (18) is reduced to the form

ẋ(t) = A(t)x(t) +

0
∫

−h

[

I + µB(t)BT (t)
]

dG(s)x(t + s).(21)

Note that x = 0 is a solution of system (21). Let us take P (t) = αI, where
α > 0 will be chosen later. According to Proposition 2.2, we can find a solution
Q(t) ∈ BSUPD(Rn) of the matrix equation (4). Consider a Lyapunov functional
of the form

V (t, xt) = 〈Q(t)x(t), x(t)〉 +

0
∫

−h

ds

0
∫

s

‖xt(τ)‖2dτ.

It is easy to verify that there are numbers c1 > 0, c2 > 0 such that

c1‖x(t)‖2 ≤ V (t, xt) ≤ c2‖xt‖2

Condition i) of Proposition 2.3 is fulfiled.

From Proposition 2.2 it follows that

V̇ (t, xt) = 〈(h − P )Ix(t), x(t)〉 −
0

∫

−h

‖x(t + s)‖2ds

+ 2
〈

Q(t)x(t),

0
∫

−h

[

I + µB(t)BT (t)
]

dG(s)x(t + s)
〉

≤
(

h − α +
α2K4

4δ2
L2h‖I + µB(t)BT (t)‖2

)

‖x(t)‖2.
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Since µ > 0 and B(t)BT (t) is non-negative definite, we have

‖I + µB(t)BT (t)‖ = 1 + µ‖B(t)BT (t)‖, ∀t ≥ 0.

Therefore, the derivative V̇ (t, xt) is uniformly negative definite on R+ if

h − α +
α2K4

4δ2
L2h

(

1 + µB(t)BT (t)
)2

< 0, ∀t ≥ 0

or

[

1 + µ sup
t≥0

λmax

[

B(t)BT (t)]
]2

<
α − h

α2
· 4δ2

K4L2h
·

Since max
α>0

[α − h

α2

]

=
1

4h
, it is sufficient to choose µ such that

0 < µ <
δ − K2Lh

K2Lh sup
t≥0

λmax [B(t)BT (t)]
·

In this case, Condition ii) of Proposition 2.3 is satisfied. The proof is completed.

Example 4.1. Consider the following retarded control system in R2

ẋ(t) = A(t)x(t) +

0
∫

−1

dG(s)x(t + s) + B(t)u(t), t ≥ 0,(22)

where

A(t) =

(

0 1
−6 −5

)

; G(s) =

(

0.02 cos s 0
0 0.02 cos s

)

;

B(t) =

(

0.1
0.2

)

; u ∈ R1.

It is easy to verify that

‖U(t, s)‖ ≤ 8e−2(t−s), t ≥ s ≥ 0;

max
−1≤s≤0

‖G′(s)‖ ≤ 0.02 sin 1 ≤ 0.018.

Taking L = 0.018 we have

β2 := λmax[B(t)BT (t)] = ‖B(t)BT (t)‖ = 0.05

By Theorem 4.1 we can assert that system (22) is stabilizable by the linear
feedback of form (19) provided

0 < µ <
δ − hLK2

hLK2β2
=

2 − 1 · 0, 018 · 82

1 · 0.018 · 0.05 · 82
= 14.72...
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