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ON THE WEAK TAUTNESS AND

THE LOCALLY WEAK TAUTNESS OF

A DOMAIN IN A BANACH SPACE

LE MAU HAI AND PHAM KHAC BAN

Abstract. It is shown that every Banach analytic manifold X which is
weakly taut is hyperbolic in the sense of Kobayashi. A relation between the
locally weak tautness and the weak tautness of a domain in a Banach space is
also established.

1. Introduction

The main purpose of this paper is to establish a relation between the weak
tautness and the hyperbolicity of a Banach analytic manifold as well as a relation
between the locally weak tautness and the weak tautness of a unbounded domain
in a Banach space.

One of the most essential problems of complex analysis is to derive global
properties from the local ones. For example, in hyperbolic analysis it is proved
that the global tautness and the local one are equivalent for bounded domains in
C

n. Is this equivalence is still true for unbounded domains in C
n ?

Recently, Gaussier [3] has solved this problem for unbounded domains in C
n for

which there exist local peak and antipeak plurisubharmonic functions at infinity.
We want to extend this result for unbounded domains in Banach spaces. However,
the notion “taut” does not exist for the case of the domains in Banach spaces.
Therefore, this notion should be changed in such a way that is suitable for this
case. In this paper we first give the notion “weakly taut” and after that we extend
a result of Gaussier to unbounded domains in Banach spaces.

The paper contains four sections. In Section 2 we give some definitions and
notations. Section 3 is devoted to the relation between the hyperbolicity and the
weak tautness. We prove that every Banach complex manifold which is weak
taut is hyperbolic. The relation between the locally weak tautness and the weak
tautness of an unbounded domain in a Banach space is considered in Section 4.

2. Basic notions

We shall make use of several properties of Banach analytic spaces presented in
the books of Ramis [8] and Mazet [6].
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2.1. Let X be a Banach analytic space. As in the finite dimensional case we can
define the Kobayashi pseudo-distance kX on X. We say that X is hyperbolic if
kX is a distance defining the topology of X. It is known [2] that when dimX <∞
then kX defines the topology of X if it is a distance. However this is not true in
the case of infinite dimension [9].

2.2. As in the case of finite dimension, for x ∈ X and v ∈ TxX the Kobayashi-
Vesentini infinitesimal pseudo-metric F (x, v) is defined by

FX(x, v) = inf
{
r > 0 : ∃f : ∆

hol
−→ X, f(0) = x, f ′(0) =

v

r

}
.

For the case where X is a domain in a Banach space ,Vesentini [10] has proved
that FX(x, v) is upper-semicontinuous on T (X). Moreover, in this case he has
shown that for two points p, q in X the following equality holds:

kX(p, q) = inf
{ 1∫

0

FX(γ(t), γ′(t))dt : γ is a piecewise C1-curve joining p with q
}
.

For the case where X is a Banach manifold we don’t know whether FX(x, v)
is upper-semicontinuous on T (X) or not. However it is easy to see that FX(x, v)
is decreasing under holomorphic maps. Futhermore, for x ∈ X we can choose a
neighbourhood Ux of x which is isomorphic to a ball in a Banach space E. For
all x′ ∈ Ux we can consider Tx′X = E. Then for x′ ∈ Ux, and v′ ∈ Tx′X we have

FX(x′, v′) ≤ FUx(x′, v′).

Again using the above result of Vesentini we can conclude that FX(x, v) is locally
upper bounded on T (X). Hence we can define the upper-regulization of FX(x, v)
by setting

F ∗
X(x, v) = lim sup

x′ → x

v′ → v

FX(x′, v′)

Then F ∗
X(x, v) is upper-semicontinuous on T (X) and decreasing under holomor-

phic maps. Now, for two points p, q ∈ X we define

k∗X(p, q) = inf
{ 1∫

0

F ∗
X(γ(t), γ′(t))dt : γ is a piecewise C1-curve joining p with q

}
.

Then k∗X(p, q) is a pseudo-distance on X and k∗X(p, q) is decreasing under holo-
morphic maps. Hence

k∗X(p, q) ≤ kX(p, q)

for all p, q ∈ X.

2.3. Since every infinite dimensional Banach space cannot be locally compact, we
need to introduce a suitable change for the notion of tautness.
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We say that X is weakly taut if for every sequence {fn} ⊂ Hol(∆,X), the
space of holomorphic maps from the unit disc ∆ in C to X equipped with the
compact-open topology, one of the following two conditions holds:

(i) there exists a subsequence
{
fnk

}
which is convergent in Hol(∆,X),

(ii) there exists a discrete subset S of ∆ and a subsequence
{
fnk

}
such that{

fnk

∣∣
∆\S

}
is compactly divergent, i.e for every compact subset K ⊂ ∆ \ S and

L ⊂ X there exists k0 such that

fnk
(K) ∩ L = ∅

for k ≥ k0.

2.4. Let Ω be an unbounded domain in a Banach space E. A neighbourhood of
infinity in Ω is a set containing the complement of a closed ball in Ω. If ϕ is a
function defined on Ω and c a complex number, we set ϕ(∞) = c if

lim
{
ϕ(z) : z ∈ Ω, ‖z‖ −→ +∞

}
= c.

2.5. Let Ω be a domain in a Banach space E. We say that Ω is locally weak taut
if for each p ∈ ∂Ω there exists a neighbourhood U of p such that U ∩Ω is weakly
taut.

The following definition is a minor modification of Gaussier’s one.

2.6. A function ϕ is said to be a local peak plurisubharmonic function at a
point p ∈ ∂Ω ∪ {∞} if there exists a neighbourhood V of p such that ϕ is
plurisubharmonic on Ω ∩ V , continuous up to Ω ∩ V, and satisfies

{
ϕ(p) = 0,

sup
{
ϕ(z) : z ∈ Ω ∩ (V \ U)

}
< 0

for any neighbourhood U of p in V .

2.7. A function ψ is said to be a local antipeak plurisubharmonic function at p ∈
∂Ω∪{∞} if there exists a neighbourhood V of p such that ψ is plurisubharmonic
on V ∩ Ω, continuous up to Ω ∩ V, and satisfies

{
ψ(p) = −∞,

inf
{
ψ(z) : z ∈ Ω ∩ (V \ U)

}
> −∞

for any neighbourhood U of p in V .

3. Weak tautness and hyperbolicity

In this section we establish the relation between the weak tautness and the
hyperbolicity for a Banach analytic manifold.

Theorem 3.1. Every Banach analytic manifold X which is weakly taut is hy-

perbolic.
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Proof. (i) First we show that for each x0 ∈ X there exist a neighbourhood U of
x0 and c > 0 such that FX(x, v) ≥ c‖v‖ for all x ∈ U and v ∈ TxX.

Indeed, in the converse case there exists x0 ∈ X and a sequence {xn} ⊂ X,
xn −→ x0 as n→ ∞ such that for each n ≥ 1 ∃ fn ∈ Hol(∆,X), fn(0) = xn and
‖f ′n(0)‖ ≥ n.

Let {λj}, 0 < |λj| < 1 and λj → 0. For each n ≥ 1, put

θn(λ) =

n∏

j=1

λ− λj

1 − λjλ
for λ ∈ ∆.

Then θn ∈ Hol(∆,∆) for n ≥ 1 and

θn(λj) = 0 for 1 ≤ j ≤ n,

θ′n(λ1) 6= 0 for n ≥ 1.

Thus for each k ≥ 1 we can find nk such that
∥∥f ′nk

(θk(λ1))θ
′
k(λ1)

∥∥ =
∥∥f ′nk

(0)
∥∥ |θ′k(λ1)| ≥ k

for k ≥ 1.

For gk = fnk
· θk ∈ Hol(∆,X) we have

lim
k
gk(λj) = lim

k
fnk

(θk(λj)) = lim
k
fnk

(0) = lim
k
xnk

= x0

for all j ≥ 1. By the hypothesis there exists a subsequence
{
gkp

}
=

{
fnkρ

· θkp

}

of {gk} which is convergent in Hol(∆,X). Hence

sup
p≥1

∥∥g′kp
(λ1)

∥∥ <∞.

However

sup
p≥1

∥∥g′kp
(λ1)

∥∥ = sup
p

∥∥f ′nkp
(0)θ′kp

(λ1)
∥∥ = ∞.

(ii) Now we show that kX is a metric on X. Let p, q be two different points
on X. Take a neighbouhood Uq of q such that p 6∈ U q. By (i) we can choose a
neighbourhood Vq of q, Vq ⊂ Uq, and c > 0 such that

FX(x, v) ≥ c‖v‖

for all x ∈ Vq and v ∈ TxX.

Take a ball B(q, r) ⊂ Vq. Let γ : [0, 1] → X be a piecewise C1-curve joining
q to p, γ(0) = q, γ(1) = p. Let 0 < s < 1 such that γ([0, s)) ⊂ B(q, r) and
γ(s) = y ∈ ∂B(q, r). Then

1∫

0

F ∗
X(γ(t), γ′(t))dt ≥

s∫

0

F ∗
X(γ(t), γ′(t))dt

≥ c

s∫

0

‖γ′(t)‖dt ≥ c‖γ(s) − γ(0)‖ = cr > 0.
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Hence

kX(p, q) ≥ k∗X(p, q) ≥ cr > 0.

Thus kX is a metric on X.

(iii) We show that kX defines the topology of X. First we assume that
kX(xn, x0) → 0 but xn 6→ x0 as n → ∞. We choose a connected neighbour-
hood U of x0 and c > 0 such that

FX(x, v) ≥ c‖v‖(1)

holds for all x ∈ U and v ∈ TxX. Next we choose a neighbourhood V of x0 such
that V ⊂ U . Without loss of generality we may assume that

V = B(x0, r) =
{
x ∈ E : ‖x− x0‖ < r

}
⊂ U.

Since {xn} 6→ x0 there exists a subsequence {yn} ⊂ {xn} such that {yn} 6∈
B(x0, r) for n ≥ 1. We have

k∗X(yn, x0) = inf
{ 1∫

0

F ∗
X(γ(t), γ′(t))dt : γ ∈ Ωyn,x0

}
(2)

where Ωyn,x0
denotes the set of piecewise C1-curves γ : [0, 1] → X, γ(0) = x0,

γ(1) = yn. According to (2) , we can find γn ∈ Ωyn,x0
such that

k∗X(yn, x0) ≥

1∫

0

F ∗
X(γn(t), γ′n(t))dt −

1

n
·

Let 0 < tn < 1 such that

γn([0, tn)) ⊂ B(x0, r) and y′n = γn(tn) ∈ ∂B(x0, r).

Then

k∗X(y′n, x0) ≤

tn∫

0

F ∗
X(γn(t), γ′n(t))dt ≤

1∫

0

F ∗
X(γn(t), γ′n(t))dt

< k∗X(yn, x0) +
1

n
≤ kX(yn, x0) +

1

n
·

Thus

k∗X(y′n, x0) −→ 0 as n→ ∞.

It is easy to see that x0, y
′
n belong to U . Choose βn ∈ Ωy′

n,x0
⊂ U such that

k∗X(y′n, x0) ≥

1∫

0

F ∗
X(βn(t), β′n(t))dt −

1

n

≥

sn∫

o

F ∗
X(βn(t), β′n(t))dt −

1

n
,
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where 0 < sn < 1 is chosen such that βn([0, sn)) ⊂ B(x0, r) and βn(sn) ∈
∂B(x0, r).

Using (1) and the definition of F ∗
X we have

sn∫

0

F ∗
X(βn(t), β′n(t))dt ≥ c

sn∫

0

‖β′n(t)‖dt ≥ c‖βn(sn) − βn(0)‖

= cr for all n ≥ 1.

This is impossible because

sn∫

0

F ∗
X(βn(t), β′n(t))dt ≤ k∗X(y′n, x0) +

1

n
−→ 0

as n→ ∞.

On the other hand, since X is a Banach manifold, by using a similar argument
as in [5, Proposition 1.7] we can show that if yn → y0 on X then kX(yn, y0) −→ 0.
Theorem 3.1 is proved.

4. Weak tautness of domains in Banach spaces

Similarly as in [3], we will prove the following

Theorem 4.1. Let Ω be a domain in a Banach space E. Suppose that there

exist local peak and antipeak plurisubharmonic functions at infinity. Then Ω is

hyperbolic.

Similarly as in [3], we first prove the following

Lemma 4.1. Let p be a point in ∂Ω∪{∞}. Assume that there are local peak and

antipeak plurisubharmonic functions ϕ and ψ at p, both defined on a neighbour-

hood Vp of p. Then for every neighbourhood U of p there exists a neighbourhood

U ′ of p such that every holomorphic map f : ∆ → Ω satisfies

f(0) ∈ U ′ ⇒ f
(
∆ 1

2

)
⊂ U,

where ∆ 1

2

=
{
z ∈ ∆ : |z| <

1

2

}
.

Proof. Since ϕ is a local peak plurisubharmonic function at p, there exist neigh-
bourhoods U and V of p, U ⊂ V ⊂ Vp and two positive constants c, c′ (c > c′)
such that





inf
z∈Ω∩∂U

ϕ(z) = −c′,

sup
z∈Ω∩∂V

ϕ(z) = −c.
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Then the function ϕ̃ defined on Ω by the formula




ϕ̃(z) = ϕ(z) if z ∈ Ω ∩ U,

ϕ̃(z) = sup
(
ϕ(z),−

c + c′

2

)
if z ∈ Ω ∩ (V \ U),

ϕ̃(z) = −
c+ c′

2
if z ∈ Ω \ V

is a global negative peak plurisubharmonic function at p.

Let f ∈ Hol(∆,Ω). Since ϕ̃ · f is subharmonic and (ϕ̃ · f)(eiθ) ≤ 0 for all
θ ∈ [0, 2π], for every negative α such that (ϕ̃ · f)(0) > α we have mes(Eα) ≥ π

where

Eα =
{
θ ∈ [0, 2π] : (ϕ̃ · f)(eiθ) ≥ 2α

}
.

Indeed,

α < (ϕ̃ · f)(0) ≤
1

2π

2π∫

0

(ϕ̃ · f)(eiθ)dθ

=
1

2π

∫

Eα

(
ϕ̃ · f

)
(eiθ)dθ +

1

2π

∫

∂∆\Eα

(ϕ̃ · f
)
(eiθ)dθ

≤
1

2π

∫

∂∆\Eα

(ϕ̃ · f)(eiθ)dθ <
1

2π
· 2α mes(∂∆ \ Eα)

=
α

π
(2π −mesEα).

Hence

mes(Eα) ≥ π.(1)

Choose now a sufficiently small positive number ε such that




inf
Ω∩∂U

(ϕ+ εψ) = −c1 < 0,

sup
Ω∩∂V

(ϕ+ εψ) = −c2 < −c1.

Define a function ρ on Ω by setting

ρ(z) =





(ϕ+ εψ)(z) if z ∈ Ω ∩ U,

sup
(
(ϕ + εψ)(z),−

c1 + c2

2

)
if z ∈ Ω ∩ (V \ U),

−
c1 + c2

2
if z ∈ Ω \ V.

Then ρ(z) is a continuous negative plurisubharmonic function on Ω and
ρ−1(−∞) = {p}. Using the Poisson integral we have

ρf(λ) ≤
1

2π

2π∫

0

1 − r2

1 − 2r cos(θ − t) + r2
ρf(eiθ)dθ
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for |λ| = r <
1

2
.

Since 0 ≤ r ≤
1

2
, we have

1 − r2

1 − 2r cos(θ − t) + r2
≥

1

3

for 0 ≤ θ ≤ 2π. Hence

ρf(λ) ≤
1

6π

2π∫

0

(ρ · f)(eiθ)dθ for |λ| <
1

2
.(2)

Since ϕ̃ is a peak function at p and ρ satisfies ρ(p) = −∞, for each positive
constant L there exists a negative constant α such that for any point z in Ω
the inequality ϕ̃(z) ≥ 2α implies ρ(z) < −L. Using inequalities (1), (2) and the
fact that ρ is a negative function we can show that for every f ∈ Hol(∆,Ω) and
λ ∈ ∆ 1

2

,

ϕ̃(f(0)) > α⇒ (ρ · f)(λ) ≤ −
L

6
·(3)

Since ρ−1(−∞) = {p}, the family

Un =
{
z ∈ Ω : ρ(z) <

(
−

1

6

)
n
}

is a neighbourhood basis of p in Ω. For each positive integer n there exists a
negative constant αn such that

ϕ̃(z) ≥ 2αn ⇒ ρ(z) < −n.

Let U ′
n be the neighbourhood of p in Ω defined by

U ′
n =

{
z ∈ Ω : ϕ̃(z) > αn

}
.

Then from (3) it follows that if f ∈ Hol(∆,Ω) and f(0) ∈ U ′
n then f

(
∆ 1

2

)
⊂ Un.

Lemma 4.1 is proved.

Proof of Theorem 4.1. As in Theorem 3.1, it suffices to show the following: ∀a ∈ Ω
∃ a neighbourhood U of a and c > 0 such that

FΩ(z, u) ≥ c‖u‖

for z ∈ U and u ∈ E.

To obtain a contradiction suppose that we can find z0 ∈ Ω and a sequence
{zn} ⊂ Ω, zn → z0 as n→ ∞, {un} ⊂ E, ‖un‖ = 1 such that

FΩ(zn, un) ≤
1

n
.(4)

Choose a sequence {fn} ⊂ Hol(∆,Ω) such that

fn(0) = zn, ‖f ′n(0)‖ ≥ n.(5)
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Assume that there exists ε > 0 such that

M = sup
{
‖fn(λ)‖ : |λ| ≤ ε, n ≥ 1

}
<∞.

Then

‖f ′n(0)‖ =
∥∥∥

1

2πi

∫

|t|=ε

fn(t)dt

t2

∥∥∥ ≤
M

ε

for all n ≥ 1. This contradicts (5). Hence, we can find {λk}, λk → 0 such
that

∥∥fnk
(λk)

∥∥ → ∞. Composing every fnk
with a Moebius transform we get a

family
{
f̃nk

}
⊂ Hol(∆,Ω) such that f̃nk

(0) = fnk
(λk) and f̃nk

(λk) = znk
. This

contradicts Lemma 4.1.

We now establish the weak tautness of an unbounded domain in a Banach
space through the locally weak tautness.

Theorem 4.2. Let Ω be a domain in a Banach space E. Assume that Ω is

locally weak taut at each point in ∂Ω and that there are local peak and antipeak

plurisubharmonic functions at infinity. Then Ω is a weakly taut domain.

Proof. Given {fn} ⊂ Hol(∆,Ω).

First case. Suppose that there exists a point λ in ∆ and a subsequence{
gn

}
n∈A

⊂ {fn} such that

lim
n∈A

‖gn(λ)‖ = ∞.

Let

C =
{
z ∈ ∆ : lim

n∈A
‖gn(z)‖ = ∞

}
.

By Lemma 4.1, for any point λ ∈ C, we have

lim
n∈A

∥∥gn · hλ,θ

∥∥ = +∞

uniformly on ∆ 1

2

, where

hλ,θ(z) =
λ− eiθz

1 − eiθλz
(6)

is an automorphism of ∆.

According to Lemma 2.2.1 in [3], for each λ ∈ C there exists a positive real
number rλ such that

lim
n∈A

∥∥gn

(
∆(λ, rλ)

)∥∥ = +∞,

where

∆(λ, rλ) =
{
z ∈ ∆ : |z − λ| < rλ

}
.

Thus C is open in ∆. Moreover, if
(
λk

)
k

is a sequence of points in ∆ converging to

a point λ in ∆, the compactness of the set {λk, k ≥ 1} ∪ {λ} implies by [3, Lemma
2.2.1] that there exists a positive real constant r such that for every positive
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integer k lim
n∈A

‖gn‖ = +∞ uniformly on ∆(λk, r). Hence lim
n∈A

‖gn(λ)‖ = +∞.

Therefore, the set C is closed in ∆. This implies C = ∆. Hence for each λ ∈ ∆
there exists a positive real number rλ such that lim

n∈A
‖gn‖ = +∞ uniformly on

∆(λ, rλ). In particular, the sequence
(
gn

)
n∈A

diverges to infinity uniformly on

compact subsets of ∆. Hence the sequence
(
gn

)
n∈A

is compactly divergent.

Second case. Assume that for every point λ ∈ ∆ and every subsequence{
fnk

}
⊂ {fn} the subsequence

{
fnk

(λ)
}

is bounded. In this case we prove that
{fn} is locally bounded. Indeed, assume to the contrary that {fn} is not locally
bounded. Then there is λ0 ∈ ∆ and a sequence {λk}, λk → λ0 as k → ∞ and a
subsequence

{
fnk

}
of the sequence {fn} such that lim

k

∥∥fnk
(λk)

∥∥ = +∞. Lemma

2.1.1 of [3] implies that

lim
k

∥∥fnk
· hλk,θ

∥∥ = +∞

uniformly on ∆ 1

2

where hλk,θ is defined as in (6). Using Lemma 2.2.1 of [3] for

the compact set {λk, k ≥ 1}∪ {λ0} we conclude that there is a positive constant
r > 0 such that

lim
k

∥∥fnk

(
∆(λk, r)

)∥∥ = +∞.

Hence

lim
k

∥∥fnk
(λ0)

∥∥ = +∞.

This contradicts the boundedness of the subsequence
{
fnk

(λ0)
}
.

Now we suppose that {fn} is not compactly divergent. By Theorem 4.1, Ω
is hyperbolic. Since kΩ is a distance decreasing in holomorphic maps we deduce
that there is λ0 ∈ ∆ and subsequence

{
gn

}
n∈A

⊂ {fn} such that
{
gn(λ0)

}
n∈A

converges to x0 ∈ Ω. Let

C =
{
λ ∈ ∆ : ∃ lim

n∈A
gn(λ)

}
.

By C ′ we denote the set of limit points of C in ∆.

(a) Assume that C ′ 6= ∅. Since
{
gn

}
n∈A

is locally bounded, the sequence{
gn

}
n∈A

converges to g in Hol(∆, E) by [1]. If g(∆) ⊂ Ω then Ω is weakly taut.

In the converse case, there exists λ1 ∈ ∆ such that g(λ1) ∈ ∂Ω.

Put

D =
{
λ ∈ ∆ : g(λ) ∈ ∂Ω

}
.

By the above argument, D is nonempty. Moreover, it is easy to see that D is
closed in ∆. Let λ be a point in D. Then p = g(λ) ∈ ∂Ω. Since Ω is locally
weak taut at p, there exists a neighbourhood U of p such that U ∩ Ω is weakly
taut. Since

{
gn

}
n∈A

converges to g in Hol(∆, E), there exists δ > 0 such that

gn(∆(λ, δ)) ⊂ U∩Ω for n ∈ A, n ≥ n0. Since U∩Ω is weakly taut and g(λ) ∈ ∂Ω,
there exists a discrete subset S ⊂ ∆(λ, δ) such that g

(
∆(λ, δ) \ S

)
⊂ ∂Ω. We

may choose a sufficiently small 0 < δ1 < δ such that g(∆(λ, δ1)) ⊂ ∂Ω. Hence D
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is open in ∆ and, therefore, D = ∆. Thus g(∆) ⊂ ∂Ω. This is imposible because
g(λ0) = x0 ∈ Ω.

(b) Assume that C ′ = ∅. By A we denote the set

A =
{
U : U is open in ∆ and there exists a subsequence

{
gU
n

}
⊂

{
gn

}
n∈A

such that
{
gU
n

}
is compactly divergent on U

}

We endow A with the ordered relation defined as follows: write U1 < U2 if
U1 ⊂ U2 and every

{
gU1

n

}
⊂ {gn} which is compactly divergent on U1 contains{

gU2

n

}
⊂

{
gU1

n

}
such that

{
gU2

n

}
is compactly divergent on U2.

First we check that A 6= ∅. To do this, we shall prove that ∃ε > 0 ∃
{
gn

}
n∈B

⊂{
gn

}
n∈A

such that
{
gn

}
n∈B

is compactly divergent on

∆∗(λ0, ε) =
{
λ ∈ ∆ : 0 < |λ− λ0| < ε

}
.

Consequently, ∆∗(λ0, ε) ∈ A. Vice-versa, for each k there exists a subsequence

Bk ⊂ A and λk : 0 < |λk − λ0| <
1

k
such that the subsequence

{
gn(λk)

}
n∈Bk

is

convergent. Moreover, we may asume that Bk+1 is a subsequence of Bk. Then by
the diagonal process we can find a subsequence

{
gn

}
n∈B

⊂
{
gn

}
n∈A

such that

λ0 is a limit point of the set C̃ =
{
λ ∈ ∆ : ∃ limn∈B gn(λ)

}
. Hence the above

argument shows that
{
gn

}
n∈B

is convergent in Hol(∆,Ω) and, therefore, Ω is
weakly taut.

Now let
{
Uα

}
α∈I

be a linearly ordered subset of A. The Lindelofness of C

implies that there exists

Uα1
< Uα2

< · · · < Uαn < . . .

such that

U =
⋃

α∈I

Uα =
∞⋃

j=1

Uαj
.

By the diagonal process we can find a subsequence
{
gn

}
n∈B

⊂
{
gn

}
n∈A

such that
it is compactly divergent on U . Hence U ∈ A. Moreover, by the same argument

we can show that for every sequence
{
g

Uαj
n

}
⊂ {gn}, which is compactly diver-

gent on Uαj
, there exists a subsequence

{
gn

}
n∈J

⊂
{
g

Uαj
n

}
which is compactly

divergent on U . We now prove that the family
{
Uα

}
α∈I

has a supremum. Let
α0 ∈ I. If we can find j0 such that Uα0

< Uαj0
then the above argument shows

that Uα0
< U . Hence U is a supremum of the family

{
Uα

}
α∈I

. Vice-versa, let

Uαj
< Uα0

for all αj . Then Uα0
= U . On the other hand, since

{
Uα

}
α∈I

is a
linearly ordered subset, for each β ∈ I either Uβ < Uα0

or Uα0
< Uβ . As Uα0

= U,

from the definition of A together with the ordered relation over it we deduce that
Uβ < Uα0

for all β ∈ I. Thus, Uα0
is a supremum of the family

{
Uα

}
α∈I

.
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By the Zorn lemma, A has a maximal element Ω. Assume that
{
gΩ
n

}
n∈J

is a
compactly divergent subsequence associated to Ω. Let

T =
{
λ ∈ ∆ \ Ω : there exists a subsequence

{
gn

}
n∈J̃

⊂
{
gΩ
n

}
n∈A

such that
{
gn(λ)

}
n∈J̃

is convergent in Ω
}
.

For each λ ∈ T , by using the argument in the preceding part of this proof we
can find ε > 0 and a subsequence

{
hn

}
n∈J1

⊂
{
gn

}
n∈J̃

such that
{
hn

}
n∈J1

is compactly divergent on ∆∗(λ, ε). Then
{
hn

}
n∈J1

is compactly divergent on

∆∗(λ, ε) ∪ Ω. The maximality of Ω implies that ∆∗(λ, ε) ⊂ Ω. This shows that
T is discrete and

{
gΩ
n

}
n∈J

is compactly divergent on Ω \ T .

Consequencely, from the definition of the weakly taut notion we can conclude
that Ω is weakly taut. Theorem 4.3 is proved.
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