MILD SOLUTIONS OF NONLINEAR EVOLUTION FUNCTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACE

A. SGHIR

Abstract. The existence of a mild solution of the abstract functional differential inclusion

$$
P(\varphi) \begin{cases} u'(t) + Au(t) - F(t, u_t) \ni 0, & t \in I = [0, T] \\ u(t) = \varphi(t), & t \in J = [-r, 0] \end{cases}
$$

is obtained by a Filippov technique. Here A is an operator such that $A +$ $\omega \mathcal{I}$ is m-accretive for some $\omega \in \mathbb{R}^+$, and the multimapping $F(t,.)$ is $h(t)$ -Lipschitzian. The result is applied to a nonlinear functional control problem.

1. INTRODUCTION

Let $(E, |.|)$ be a real Banach space. Let $\mathcal{C} := C([-r, 0]; E)$ be the Banach space of continuous functions from $J := [-r, 0]$ to E with the usual supremum norm $\|\cdot\|$. For any $u \in \mathcal{C}_T := C([-r,T]; E)$ and any $t \in I := [0,T]$ $(T > 0)$, we denote by u_t the element of C defined by $u_t(\theta) = u(t + \theta), \theta \in J$.

We consider the nonlinear evolution functional differential inclusion

$$
P(\varphi)\begin{cases}u'(t) + Au(t) - F(t, u_t) \ni 0, \ t \in I, \\ u_0 = \varphi, \ \varphi \in \mathcal{C}\end{cases}
$$

where A is an operator such that $A+\omega I$ is m-accretive for some $\omega \geq 0$ and $F: I \times$ $\mathcal{C} \to \mathcal{F}(E)$ is a multimapping with $\mathcal{F}(E)$ being the family of all nonempty, closed and bounded subsets of E. Such a inclusion is a convenient tool to investigate for instance the control problem

$$
\begin{cases} u'(t) + Au(t) - f(t, u_t, w(t)) \ni 0, \quad w(t) \in W(t), \\ u_0 = \varphi, \end{cases}
$$

where W is a multimapping of controls. Setting

$$
F(t, u_t) = \{ f(t, u_t, w(t)) : w(t) \in W(t) \}
$$

we reduce to above control problem to the above inclusion $P(\varphi)$.

Received January 15, 2001; in revised form May 24, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 34G25, 34K35, 47H06.

Key words and phrases. Nonlinear evolution functional differential inclusion; mild solution; m-accretive operator; control problem.

2 A. SGHIR

The study of evolution functional differential equations (or inclusions) has received much attention over the last forty years. Various conditions on A and F have been considered, and existence results for different spaces of initial functions have been obtained. When A and F are singlevalued, we mention here the work of Travis and Webb ([16]; A linear and $F(t,\psi) = F(\psi)$), Webb ([17]; $A + \omega I$ accretive for some $\omega \in \mathbb{R}$ and $F(t,\psi) = F(\psi)$), Kartsatos and Parrott ([10, 11; $A(t)$ nonlinear m-accretive operator and F is Lipschitz continuous in both variables)... When A is singlevalued and F a multimapping, we mention the work of Obukhovskii ([13]; A linear and F is a compact convex valued multimapping),... When A is a nonlinear m-accretive operator and $F(t, \psi) = F(\psi)$ is a Lipschitz continuous function, we mention the works of Ruess and Summers [15], and Ruess [14],... The purpose of this paper is to establish, under certain additional assumptions, the existence of a mild solution $u : [-r, T] \to E$ (to be defined precisely later) of $P(\varphi)$. Our technique for proving the existence of mild solution u of $P(\varphi)$ is by showing that the solution is the uniform limit of the sequence (u^n) , where

$$
u^n = \begin{cases} \varphi & \text{on } J \\ v^n & \text{on } I \end{cases}
$$

and v^n are mild solutions of problems

$$
(P_{f_n})\begin{cases} (v^n)'(t) + Av^n(t) \ni f_n(t) \\ v^n(0) = \varphi(0) \end{cases}
$$

with $f_n(t) \in F(t, u_t^{n-1})$ a.e.

2. Preliminaries

Let (X, d) be a metric space, $\mathcal{F}(X)$ the family of all nonempty, closed and bounded subsets of X and δ the Hausdorff distance in $\mathcal{F}(X)$, i.e., for $A, B \in \mathcal{F}(X)$

$$
\delta(A,B)=\max\big[\sup_{a\in A}d(a,B),\sup_{b\in B}d(b,A)\big]
$$

where $d(a, B) = \inf_{b \in B} d(a, b)$.

Let $G: I \to \mathcal{P}(E)$ (the family of all nonempty subsets of E) be a multimapping. A function $g: I \to E$ such that $g(s) \in G(s)$ for every $s \in I$ is called a selection of G. G is called measurable if for almost all $s \in I$, $G(s) \subset$ closure ${g_n(s) : n \in \mathbb{N}}$ where g_n are measurable selections of G (see [18]). By the symbol of I_G^1 we will denote the set of all Bochner integrable selections of the multimapping G , i.e.

$$
I_G^1 = \{ g \in L^1(I; E) : g(s) \in G(s) \text{ a.e.} \}.
$$

If $I_G^1 \neq \emptyset$ then the measurable multimapping G is called integrable and

$$
\int\limits_I G(s)ds = \Big\{\int\limits_I g(s)ds : g \in I_G^1\Big\}.
$$

Lemma 2.1. [18] Let $G: I \to \mathcal{P}(E)$ be a measurable multimapping and $u: I \to$ E a measurable function. Then for any measurable function $v: I \to \mathbb{R}^+$, there exists a measurable selection g of G such that

$$
|g(s) - u(s)|_E \le d(u(s), G(s)) + v(s) \ a.e.
$$

Definition 2.1 [4]. Let $A : D(A) \subset E \to \mathcal{P}(E)$ be an operator in E, where $D(A) = \{x \in E : Ax \neq \emptyset\}$ is the effective domain of A. A is accretive in E if

$$
|u - \widehat{u} + \lambda (v - \widehat{v})| \ge |u - \widehat{u}|
$$

whenever $\lambda \geq 0$ and $(u, v), (\hat{u}, \hat{v}) \in A$. A is m-accretive in E if

$$
R(\mathcal{I} + \lambda A) := \bigcup_{u \in D(A)} (u + \lambda Au) = E \text{ for all } \lambda > 0.
$$

At last, we present some basic concepts and results concerning the Cauchy problem $P(A, x, f)$

$$
\begin{cases} u' + Au \ni f \\ u(0) = x \end{cases}
$$

where A is an operator in E, $x \in E$ and $f \in L^1(I; E)$ (see [2, 3, 4]). We refer the reader to [7, 9, 12] for some informations and references about nonlinear evolution inclusions and their applications.

Definition 2.2 [4]. Let $\varepsilon > 0$. An ε -approximate solution of problem $P(A, x, f)$ on I is a piecewise constant function $v: I \to E$ such that there exist a partition $(0 = t_0 < t_1 < \cdots < t_N = T)$ of I and two finite sequences of E (f_1, \ldots, f_N) and (v_0, v_1, \ldots, v_N) satisfying the following properties

i) Max
$$
(t_i - t_{i-1}) < \varepsilon
$$
;
\nii) $v(0) = x = v_0$ and $v(t) = v(t_i) = v_i$ on $[t_{i-1}, t_i]$, $i = 1, ..., N$;
\niii) $\frac{v_i - v_{i-1}}{t_i - t_{i-1}} + Av_i \ni f_i$, $i = 1, ..., N$;
\niv) $\sum_{i=1}^N \int_{t_{i-1}}^{t_i} |f(s) - f_i| ds < \varepsilon$.

Definition 2.3 [4]. A mild solution of $P(A, x, f)$ on I is a function $u \in C(I; E)$ such that for each $\varepsilon > 0$ there is an ε -approximate solution v of problem $P(A, x, f)$ on I such that

$$
|u(t) - v(t)| < \varepsilon \text{ for } t \in I.
$$

Theorem 2.1. [4] Let $\omega \in \mathbb{R}$ such that $A + \omega \mathcal{I}$ is m-accretive in E and $f \in$ $L^1(0,T; E)$. Then for every $x \in \overline{D(A)}$, the initial value problem $P(A,x,f)$ has a

unique mild solution on I. Moreover, if w is a mild solution on I of $P(A, y, q)$, then

$$
e^{-\omega t} |u(t) - w(t)| - e^{-\omega s} |u(s) - w(s)| \le \int_{s}^{t} e^{-\omega \tau} |f(\tau) - g(\tau)| d\tau
$$

for $0 \leq s \leq t \leq T$.

Definition 2.4 [4]. Let A_n be an operator in E for each positive integer n. Then $\liminf_{n\to\infty} A_n$ is the operator defined by $(x, y) \in \liminf_{n\to\infty} A_n$ if there are $(x_n, y_n) \in A_n$ such that $(x, y) = \lim_{n \to \infty} (x_n, y_n)$. In particular, if $A_n = A$ for all $n \in \mathbb{N}$, then $\liminf A_n = A =$ closure of A (i.e. graph of A is the closure of the graph of A in n→∞ $E \times E$).

Theorem 2.2. [4] Let $\omega \in \mathbb{R}$ such that $A_n + \omega \mathcal{I}$ is m-accretive in $E, x_n \in \mathbb{R}$ $\overline{D(A_n)}$ and $f_n \in L^1(I;E)$ for $n = 1, 2, \ldots, \infty$. Let u_n be the mild solution of $P(A_n, x_n, f_n)$ on I for each n. If $\lim_{n \to \infty} f_n = f$ in $L^1(I; E)$ and $\lim_{n \to \infty} x_n = x$ and $A_{\infty} \subset \liminf_{n \to \infty} A_n$, then $\lim_{n \to \infty} u_n(t) = u(t)$ uniformly on I.

3. Main result

Consider the nonlinear evolution functional differential inclusion

$$
P(\varphi)\begin{cases}u'(t) + Au(t) - F(t, u_t) \ni 0, \ t \in I\\u_0 = \varphi, \ \varphi \in \mathcal{C}\end{cases}
$$

under the following assumptions:

(A) There exists $\omega \in \mathbb{R}^+$ such that $A + \omega \mathcal{I}$ is m-accretive, $\varphi(0) \in \overline{D(A)}$.

(F) The multimapping $F: I \times C \to \mathcal{F}(E)$ satisfies the conditions:

 (F_1) For every $\phi \in \mathcal{C}$, the multimapping $F(.,\phi)$ is measurable on I.

 (F_2) There is an integrable function $h: I \to \mathbb{R}^+$ such that for every $\phi, \xi \in \mathcal{C}$,

$$
\delta(F(t,\phi), F(t,\xi)) \le h(t) \|\phi - \xi\| \text{ a.e. in } I.
$$

 (F_3) The function $q : t \longrightarrow d(0, F(t, 0))$ is integrable on I.

For $u \in C_T$ and $t \in I$, let $G_u : I \to \mathcal{F}(E)$ be the measurable multimapping defined by $G_u(s) = F(s, u_s)$ for every $s \in I$. We consider

$$
I_{G_u}^1 = \{ f \in L^1(I; E) : f(s) \in F(s, u_s) \text{ a.e. } s \in I \}.
$$

We have that $I_{G_u}^1$ is nonempty.

Definition 3.1. A function $u \in C_T$ is called a mild solution of problem $P(\varphi)$ if $u(t) = \varphi(t)$ for $t \in J$ and u is a mild solution of the problem

$$
(P_f) \quad \begin{cases} u'(t) + Au(t) \ni f(t) \text{ a.e. } t \in I \\ u(0) = \varphi(0) \end{cases}
$$

where $f \in I_{G_u}^1$.

We are now ready to state our main result.

Theorem 3.1. Assume that conditions (A) and (F) hold. Then there exists a mild solution of $P(\varphi)$.

Proof. From the assumption (A) and the theorem of existence and uniqueness of mild solutions (see Theorem 2.1), it follows that there exists a unique solution v^0 of (P_0) . Set

$$
u^{0}(t) = \begin{cases} \varphi(t) & \text{if } t \in J, \\ v^{0}(t) & \text{if } t \in I. \end{cases}
$$

Then by Lemma 2.1 there is a measurable selection f_1 of the multimapping $t\to$ $F(t, u_t^0)$ such that, for almost all $t \in I$,

$$
|f_1(t)| \le d(0, F(t, u_t^0)) + q(t)
$$

\n
$$
\le d(0, F(t, 0)) + \delta(F(t, 0), F(t, u_t^0)) + q(t)
$$

\n
$$
\le 2q(t) + h(t) \sup_{\tau \in [-r, T]} |u^0(\tau)|
$$

and $f_1 \in L^1(I; E)$. By Theorem 2.1, let v^1 be the unique mild solution of the problem (P_{f_1}) . Set

$$
u^1(t) = \begin{cases} \varphi(t) & \text{if } t \in J, \\ v^1(t) & \text{if } t \in I. \end{cases}
$$

We have for all $t \in I$, (see Theorem 2.1)

$$
e^{-\omega t} |v^1(t) - v^0(t)| \le \int_0^t e^{-\omega s} |f_1(s)| ds
$$

$$
\le \int_0^t e^{-\omega s} (2q(s) + \sup_{\tau \in [-r,T]} |u^0(\tau)| h(s)) ds := m(t).
$$

By Lemma 2.1, there is a measurable selection f_2 of the multimapping $t \rightarrow$ $F(t, u_t^1)$ such that, for almost all $t \in I$,

$$
|f_2(t) - f_1(t)| \le 2d(f_1(t), F(t, u_t^1))
$$

\n
$$
\le 2\delta(F(t, u_t^0), F(t, u_t^1))
$$

\n
$$
\le 2h(t) \|u_t^0 - u_t^1\|
$$

\n
$$
\le 2h(t) \sup_{s \in [0,t]} |v^0(s) - v^1(s)|
$$

\n
$$
\le 2h(t)e^{\omega t}m(t)
$$

and then $f_2 \in L^1(I; E)$. Let v^2 be the unique mild solution of the problem (P_{f_2}) . Set

$$
u^{2}(t) = \begin{cases} \varphi(t) & \text{if } t \in J, \\ v^{2}(t) & \text{if } t \in I. \end{cases}
$$

Thus, we can define by induction two sequences (u^n) and (f_n) with $u^n \in C_T$ and $f_n \in L^1(I;E)$ such that:

(i) for all $n \in \mathbb{N}$,

$$
u^n(t) = \begin{cases} \varphi(t) & \text{if } t \in J, \\ v^n(t) & \text{if } t \in I, \end{cases}
$$

where v^n is the unique mild solution of the problem (P_{f_n}) ;

(ii) $f_0 = 0$ and for all $n \ge 1$,

$$
f_n(t) \in F(t, u_t^{n-1})
$$
 a.e. in I ;

(iii) for almost all $t \in I$ and $n \geq 1$,

$$
|f_{n+1}(t) - f_n(t)| \le 2h(t) \|u_t^n - u_t^{n-1}\|.
$$

It follows from (iii) that

(iv) for all $t \in I$ and $n \geq 1$,

$$
e^{-\omega t} |u^{n+1}(t) - u^n(t)| \le \int_0^t e^{-\omega t_1} |f_{n+1}(t_1) - f_n(t_1)| dt_1
$$

$$
\le \int_0^t 2e^{-\omega t_1} h(t_1) ||u_{t_1}^n - u_{t_1}^{n-1}|| dt_1
$$

$$
\leq \int_{0}^{t} 2e^{-\omega t_1} h(t_1) e^{\omega t_1} \Big[\sup_{t_1 + \theta \in [0, t_1]} e^{-\omega (t_1 + \theta)} |u^n(t_1 + \theta) - u^{n-1}(t_1 + \theta)| \Big] dt_1
$$

\n
$$
\leq \int_{0}^{t} 2h(t_1) \int_{0}^{t_1} e^{-\omega t_2} |f_n(t_2) - f_{n-1}(t_2)| dt_2 dt_1
$$

\n...\n...\n
$$
\leq \int_{0}^{t} 2h(t_1) \int_{0}^{t_1} 2h(t_2) ... \int_{0}^{t_{n-1}} 2h(t_n) e^{-\omega t_n} ||u_{t_n}^1 - u_{t_n}^0|| dt_n ... dt_1
$$

\n
$$
\leq \int_{0}^{t} 2h(s) ds]^n
$$

\n
$$
\leq m(t) \cdot \frac{0}{n!}.
$$

Then, for all $n \geq 1$,

$$
||u^{n+1} - u^n||_{\omega} = \sup_{t \in [-r,T]} e^{-\omega t} |u^{n+1}(t) - u^n(t)|
$$

=
$$
\sup_{t \in I} e^{-\omega t} |u^{n+1}(t) - u^n(t)|
$$

$$
\left[\int_{0}^{T} 2h(t)dt \right]^n
$$

$$
\leq m(T) \frac{1}{n!}.
$$

We deduce that (u^n) is a Cauchy sequence of a continuous functions converging uniformly to a function $u \in C_T$ and for almost all $t \in I$, $(f_n(t))$ is a Cauchy sequence in E. Hence $(f_n(.))$ converges pointwise almost everywhere to a measurable function $f(.)$ in E. Furthermore, there exists a function $\alpha \in L^1_+(I)$ such that $|f_n(t)| \leq \alpha(t)$ for almost all $t \in I$ and $n \in \mathbb{N}$. Thus (f_n) converges to f in $L^1(I;E)$ and by Theorem 2.2 $u_{|I}$ is a mild solution of problem (P_f) . Moreover $f \in I_{G_u}^1$ since for almost all $t \in I$,

$$
d(f(t), F(t, u_t)) \le |f(t) - f_n(t)| + d(f_n(t), F(t, u_t))
$$

$$
\le |f(t) - f_n(t)| + h(t)e^{\omega t}||u^{n-1} - u||_{\omega}
$$

and the right hand side tends to zero almost everywhere on I as $n \to +\infty$. Consequently u is mild solution of $P(\varphi)$. \Box

Definition 3.2 (see [8]). Given $(\alpha, \beta) \in A$ and $f \in L^1(0,T;E)$, we call solution of

$$
(PP)_f \begin{cases} \frac{d}{dt} [u(t) + \lambda Au(t)] + Au(t) \ni f(t), \ t \in I, \\ u(0) = \alpha, \ \beta \in Au(0), \ \lambda > 0 \end{cases}
$$

a function $u \in C([0,T];E)$ such that

$$
\begin{cases} \exists w \in C([0,T];E) \text{ with } u + \lambda w \in W^{1,1}(0,T;E) \text{ and} \\ u(0) = \alpha, \ w(0) = \beta, \ w(t) \in Au(t), \ \forall t \in I, \\ \frac{d}{dt}[u(t) + \lambda w(t)] + w(t) = f(t), \text{ a.e. } t \in I \end{cases}
$$

Definition 3.3. A function $u \in C_T$ is called solution for the abstract functional differential pseudoparabolic inclusion:

$$
\begin{cases} \frac{d}{dt}[u(t) + \lambda Au(t)] + Au(t) - F(t, u_t) \ni 0, \ t \in I \\ u_0 = \varphi \in \mathcal{C}, \ \beta \in A\varphi(0), \ \lambda > 0 \end{cases}
$$

if $u(t) = \varphi(t)$ for $t \in J$ and u is a solution of the problem $(PP)_f$ where $f \in I_{G_u}^1$.

Under the assumptions (A) and (F) , using Propositions 1.1 and 1.3 from [8] and the same technique as above we obtain the existence of solutions for the abstract functional differential pseudoparabolic inclusion.

8 A. SGHIR

4. Application

We end this paper by giving an application of our results to a nonlinear evolution problem.

Let X be a complete metric space, $E = L^1(\Omega)$ (where Ω is a bounded open set in \mathbb{R}^N) and $f: \mathbb{R}^2 \times X \to \mathbb{R}$ generates the operator $f: I \times E \times X \to E$ by the formula

$$
\mathbf{f}(t,e,w)(x) = f(t,e(x),w).
$$

We assume that for all $(e, w) \in E \times X$ the function $f(., e, w)$ is measurable and for every $(t, e) \in I \times E$, $\mathbf{f}(t, e,.)$ is continuous.

Consider a measurable multimapping $W: I \to \mathcal{F}(X)$ and assume that

• there exists $h \in L^1(I)$ such that for almost every $t \in I$ and for all $w \in I$ $W(t)$, $\mathbf{f}(t,.,w)$ is $h(t)$ -Lipschitz;

• for almost all $t \in I$ and for all $e \in E$ the set $f(t, e, W(t))$ is closed and $t \to$ $q(t) = d(0, \mathbf{f}(t, 0, W(t))$ is integrable.

Set $\mathcal{W}_T = \{w : I \to X \text{ measurable and such that } w(t) \in W(t)\}\$ and consider the following nonlinear functional control problem

$$
(P)\begin{cases} \frac{\partial}{\partial t}v(t,x) - \triangle\gamma v(t,x) - f(t,v(t-r,x),w(t)) \ni 0, \\ t \in I, \ x \in \Omega, \ w \in \mathcal{W}_T, \\ 0 \in \gamma v(t,x), \ t \in I, \ x \in \partial\Omega, \\ v(\theta, x) = \varphi(\theta)(x), \ \theta \in J, \ x \in \Omega, \end{cases}
$$

where γ is a maximal monotone operator in $\mathbb{R} \times \mathbb{R}$ with $0 \in \gamma(0)$ (see [1,5]), and $\varphi \in C(J; E)$ such that $\varphi(0) \in D(A)$ with $A = -\triangle \gamma$ in E, that is

$$
A = \{ (\zeta, \xi) \in E \times E : \vartheta \in W_0^{1,1}(\Omega) \text{ with } \xi = -\triangle \vartheta \text{ and}
$$

$$
\vartheta(x) \in \gamma(\zeta(x)) \text{ a.e. } x \in \Omega \},
$$

then A is m-accretive in E (see [6, 8]). Define the multimapping $F: I \times C \to \mathcal{F}(E)$ by

$$
F(t, \phi) = \mathbf{f}(t, \phi(-r), W(t)).
$$

For this multimapping, the conditions $(F_1) - (F_3)$ are fulfilled. We can now write the problem (P) in the form $P(\varphi)$, and conclude, by virtue of Theorem 3.1, the existence of a mild solution.

REFERENCES

- [1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, 1976.
- [2] Ph. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thesis, Orsay, 1972.
- [3] Ph. Bénilan, G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Preprint.
- [4] P. Bénilan and P. Wittbold, Nonlinear Evolution Equations in Banach Spaces. Basic Results and Open Problems, Lect. Notes in Pure and Appl. Math. 150, M. Dekker, New York, 1994.
- [5] H. Br´ezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Studies 5, North-Holland, Amsterdam, 1973.
- [6] H. Brézis and W. Strauss, Semilinear elliptic equations in L^1 , J. Math. Soc. Japan 25 (1973), 565-590.
- [7] M. Crandall and L. Evans, On the relation of the operator $\frac{\partial}{\partial x} + \frac{\partial}{\partial \tau}$ to evolution governed by accretive operators, MRC Technical Summary Report 1541, 197
- [8] Di Benedetto E. and M. Pierre, On the maximum principle for pseudoparabolic equations, MRC Technical Summary Report 2062, 1980.
- [9] L. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math. 26 (1977), 1-42.
- [10] A. Kartsatos and M. Parrott, Convergence of the Kato approximants for evolution equations involving functional perturbations, J. Diff. Equations 47 (1983), 358-377.
- [11] A. Kartsatos and M. Parrott, The weak solution of a functional differential equation in a general Banach space, J. Diff. Equations 75 (1988), 290-302.
- [12] Y. Kobayashi and I. Miyadera, Convergence and approximation of nonlinear semigroups, in "Functional Analysis and Numerical Analysis", (H. Fujita ed.), Japan-France Seminar, Tokyo and Kyoto, 1976, Japan Soc. for the Promotion of Science.
- [13] V. V. Obukhovskii, On semilinear functional differential inclusion in a Banach space and control systems of a parabolic type, Avtomatika 3 (1991), 73-81, (in Russian).
- [14] M. Ruess, The evolution operator approach to functional differential equations with delay, Proc. Amer. Math. Soc. 119 (1993), 738-791.
- [15] M. Ruess and H. Summers, Operator semigroups for functional differential equations with delay, Trans. Amer. Math. Soc. $341(2)$, (1994), 695-719.
- [16] C. Travis and G. Webb, Existence and stability for partial functional equations, Trans. Amer. Math. Soc. 200 (1974), 395-419.
- [17] G. Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230.
- [18] Zhu Qi Ji, On the solution set of differential inclusions in Banach space, J. Diff. Equations 93 (1991), 213-237.

UNIVERSITÉ CADI AYYAD, FACULTÉ DES SCIENCES SEMLALIA, DÉPARTEMENT DE MATÉMATIQUES, B.P. 2390, Marrakech, Morocco.