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MILD SOLUTIONS OF NONLINEAR EVOLUTION
FUNCTIONAL DIFFERENTIAL INCLUSIONS IN
BANACH SPACE

A. SGHIR

ABSTRACT. The existence of a mild solution of the abstract functional differ-
ential inclusion

) {u’(t) + Au(t) — F(t,u,) 30, tel=1[0,T]
u(t) = ¢(t), teJ=[-r0

is obtained by a Filippov technique. Here A is an operator such that A +
w7 is m-accretive for some w € RY, and the multimapping F(t,.) is h(t)-
Lipschitzian. The result is applied to a nonlinear functional control problem.

1. INTRODUCTION

Let (E,|.]) be a real Banach space. Let C := C([—r,0]; E) be the Banach space
of continuous functions from J := [—r,0] to E with the usual supremum norm
||l.]l. For any w € Cp := C([-r,T|; E) and any t € I := [0,T] (T > 0), we denote
by u; the element of C defined by u.(8) = u(t +6), 6 € J.

We consider the nonlinear evolution functional differential inclusion
u'(t) + Au(t) — F(t,u;) 0, t € 1,
P(p) { -~
uy =@, g € C
where A is an operator such that A+wZ is m-accretive for some w > 0 and F' : I X
C — F(F) is a multimapping with F(F) being the family of all nonempty, closed

and bounded subsets of E. Such a inclusion is a convenient tool to investigate
for instance the control problem

' (t) + Au(t) — f(t,u,w(t)) 20, w(t) € W(t),
{Uo =&,
where W is a multimapping of controls. Setting
B(t,u) = {f(tu, w(t)) = w(t) € W(t)}
we reduce to above control problem to the above inclusion P(¢p).
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The study of evolution functional differential equations (or inclusions) has
received much attention over the last forty years. Various conditions on A and F
have been considered, and existence results for different spaces of initial functions
have been obtained. When A and F' are singlevalued, we mention here the work
of Travis and Webb ([16]; A linear and F(t,¢) = F(¢)), Webb ([17]; A + wT
accretive for some w € R and F(t,¢) = F(¢)), Kartsatos and Parrott (][10,
11]; A(t) nonlinear m-accretive operator and F' is Lipschitz continuous in both
variables)... When A is singlevalued and F' a multimapping, we mention the work
of Obukhovskii ([13]; A linear and F is a compact convex valued multimapping),...
When A is a nonlinear m-accretive operator and F(¢,v¢) = F(v) is a Lipschitz
continuous function, we mention the works of Ruess and Summers [15], and
Ruess [14],... The purpose of this paper is to establish, under certain additional
assumptions, the existence of a mild solution u : [-r,7] — E (to be defined
precisely later) of P(¢). Our technique for proving the existence of mild solution
u of P(y) is by showing that the solution is the uniform limit of the sequence

(u™), where
W {gp on J

v  on [
and v™ are mild solutions of problems
Pr) {(v”)'(t) + AV (1) 3 fult)
" 0"(0) = (0)
with f,,(t) € F(t,u}™") ae.
2. PRELIMINARIES

Let (X,d) be a metric space, F(X) the family of all nonempty, closed and
bounded subsets of X and ¢ the Hausdorff distance in F(X), i.e., for A, B € F(X)

6(A, B) = max [supd(a, B),supd(b, A)]
acA beB

where d(a, B) = bing d(a,b).
€

Let G : I — P (F) (the family of all nonempty subsets of E) be a multimap-
ping. A function g : I — FE such that g(s) € G(s) for every s € I is called a
selection of G. G is called measurable if for almost all s € I, G(s) C closure
{gn(s) : n € N} where g, are measurable selections of G (see [18]). By the
symbol of I}, we will denote the set of all Bochner integrable selections of the
multimapping G, i.e.

IL={gc LN;E) : g(s) € G(s) a.e.}.

If 1, é # () then the measurable multimapping G is called integrable and

/G(s)ds = {/g(s)ds 1g € Ié}
T T
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Lemma 2.1. [18] Let G : I — P(E) be a measurable multimapping and w : I —
E a measurable function. Then for any measurable function v : I — RT, there
exists a measurable selection g of G such that

19(s) — u(s)|e < d(u(s),G(s)) + v(s) a.e.

Definition 2.1 [4]. Let A : D(A) C E — P(E) be an operator in E, where
D(A) = {z € E: Az # ()} is the effective domain of A. A is accretive in E if

lu—u+ Av—=2)| > |u—1u]
whenever A\ > 0 and (u,v), (u,v) € A. A is m-accretive in F if

RIZ+ M) = |J (u+Mu)=E forall A >0.
u€D(A)

At last, we present some basic concepts and results concerning the Cauchy
problem P(A,z, f)

u 4+ Au> f
u(0) ==z

where A is an operator in E, x € E and f € LY(I; E) (see [2, 3, 4]). We refer the
reader to [7, 9, 12] for some informations and references about nonlinear evolution
inclusions and their applications.

Definition 2.2 [4]. Let ¢ > 0. An e-approximate solution of problem P(A,z, f)
on [ is a piecewise constant function v : I — E such that there exist a partition
0=ty <ty <---<ty=T)of I and two finite sequences of FE ( fi,..., fn) and
(vo,v1,...,vN) satisfying the following properties

1 M p— .
i) 192}}(\7@ ti1) < &

ii) v(0) =z =vp and v(t) = v(t;) = v; on |t;—1,t],i=1,...,N;

i) LY L A s fi i=1,... N
i —ti1
t;
N
iv) > |f(s) — filds < e.
i=1
ti—1

Definition 2.3 [4]. A mild solution of P(A,z, f) on I is a function u € C(I; F)
such that for each € > 0 there is an e-approximate solution v of problem P(A, z, f)
on [ such that

lu(t) —v(t)| < efortel.

Theorem 2.1. [4] Let w € R such that A + wZ is m-accretive in E and [ €
LY0,T;E). Then for every x € D(A), the initial value problem P(A,x, f) has a
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unique mild solution on I. Moreover, if w is a mild solution on I of P(A,y,g),
then
t

e ult) — w(t)| — e Ju(s) —w(s)| < /e“” [f(7) = g(7)| dr

s

for0<s<t<T.

Definition 2.4 [4]. Let A,, be an operator in E for each positive integer n. Then
liminf A,, is the operator defined by (x,y) € liminfA,, if there are (x,,y,) € A,
n—od

n—~o0

such that (z,y) = lim (x,,y,). In particular, if A, = A for all n € N, then
liminfA,, = A = closure of A (i.e. graph of A is the closure of the graph of A in

n—~o0

E x E).

Theorem 2.2. [4] Let w € R such that A, + wZ is m-accretive in E,x, €

D(A,) and f, € LN(I;E) for n = 1,2,...,00. Let u, be the mild solution of

P(Ayn, @n, fn) on I for each n. If lim f, = f in L'(I; E) and lim z, = z and
n—oo n—oo

A C liminfA,,, then lim wuy,(t) = u(t) uniformly on I.

n—~o0

3. MAIN RESULT

Consider the nonlinear evolution functional differential inclusion
P(o) {u’(t_)—i— Au(t) — Ft,ug) 30, t €T
up =@, p €C
under the following assumptions:
(A) There exists w € RT such that A + wZ is m-accretive, ¢(0) € D(A).
(F') The multimapping F' : I x C — F(E) satisfies the conditions:
(Fy) For every ¢ € C, the multimapping F(., ¢) is measurable on I.

(F%) There is an integrable function h : I — R™ such that for every ¢, ¢ € C,
S(F(t,¢), F(t,€) <h(t)|¢ — & ae. in I.

(F3) The function q : t — d(0, F'(¢,0)) is integrable on 1.

For u € Cp and t € I, let G, : I — F(F) be the measurable multimapping
defined by G, (s) = F(s,us) for every s € I. We consider

I, ={f e L' L;E): f(s) € F(s,us) ae. s€I}.

We have that Iéu is nonempty.

Definition 3.1. A function u € Cr is called a mild solution of problem P(yp) if
u(t) = ¢(t) for t € J and u is a mild solution of the problem

u'(t) + Au(t) > f(t) ae. t €1
() {u<o> — (0)
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where f € Iéu.
We are now ready to state our main result.

Theorem 3.1. Assume that conditions (A) and (F') hold. Then there exists a
mild solution of P(p).

Proof. From the assumption (A) and the theorem of existence and uniqueness of
mild solutions (see Theorem 2.1), it follows that there exists a unique solution v°
of (P()) Set

Je(t)  ifted,
u(t) = {vo(t) iftel.

Then by Lemma 2.1 there is a measurable selection f; of the multimapping ¢t —
F(t,uY) such that, for almost all t € I,

|f1(®)] < d(0, F(t,uf)) +q(t)
< d(0, F(t,0)) + 6(F(t,0), F(t,ud)) + q(t)

< 2q(t) + h(t) sup ‘UO(T)‘
T€[-r,T]

and f; € L' (I; E). By Theorem 2.1, let v! be the unique mild solution of the
problem (Py, ). Set

Je(t)  ifted,
ul(t) = {ul(t) iftel.

We have for all ¢ € I, (see Theorem 2.1)

t

e ol (1) — 10(1)] < / e | fa(s)] ds
0

TE€[—r,T]

< /e_“S(Qq(s) + sup ‘UO(T)‘ h(s))ds := m(t).
0

By Lemma 2.1, there is a measurable selection fo of the multimapping t —
F(t,u}) such that, for almost all t € I,

[f2(t) = f1(®)] < 2d(f1(t), F(t, )
< 20(F(t,up), F(t,u))
< 2h(t Hut _UtH

(t)
< 2h(t) sup "U (s )—vl(s)‘

s€[0,¢]
< 2h(t)e“ m(t)
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and then fo € L' (I; E). Let v* be the unique mild solution of the problem (P,).
Set

)e(t) if te
ui(t) = {v2(t) it tel.

Thus, we can define by induction two sequences (u™) and (f,) with u™ € Cp and
fn € LY(I; E) such that:

(i) for all n € N,

nin  Je(t) if te
W) = {v”(t) it tel,

where v" is the unique mild solution of the problem (P, );
(ii) fo =0 and for all n > 1,

fnt) € F(t,u?™ 1) ae. in I;
(iii) for almost all ¢t € I and n > 1,

| fas1(t) = fu(®)] < 2h(t)uf’ — uf ™.
It follows from (iii) that
(iv) for all t € I and n > 1,

t
e u" () —u(t)] < /e_w“ | frs1(t1) = falta)|dts
0
t

< /2ewt1h(t1)||u§; — o Ydh

[e=]

267wt1h(tl)ewt1 [ sup e*w(t1+9) |un(t1—|—9)—u”*1(tl+9)‘ ]dtl
t1+0€[0,t1]

2h(t1) /eth | fn(t2) — fa—1(t2)| dtadty

t
0

t t1
0

t tnfl
t1
< / oh(ty) / oh(ty)... / (tn)e " |l -l ||dby ... dts
0 0 0
t n
[ [2h(s)ds]
0
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Then, for all n > 1,

[u"™ —uy = sup e umTH(E) — u(8))]
te[—r,T]
= supe“!|u" (1) — u"(t)|
tel
T
[ [2h(t)dt]"
0
< m(T) n!

We deduce that (u™) is a Cauchy sequence of a continuous functions converging
uniformly to a function v € Cr and for almost all ¢ € I, (f,(¢)) is a Cauchy
sequence in E. Hence (f,(.)) converges pointwise almost everywhere to a mea-
surable function f(.) in E. Furthermore, there exists a function o € L (I) such
that |f,(t)] < «(t) for almost all ¢ € I and n € N. Thus (f,) converges to f in
L'(I; E) and by Theorem 2.2 u); is a mild solution of problem (Py). Moreover
fe Iéu since for almost all ¢ € I,

d(f(t), F(t,ur)) < |f(8) = fa(O)] + d(fn(t), F(t, ur))
<|f(t) = fa®] + h(t)e Ju" " = ullu

and the right hand side tends to zero almost everywhere on I as n — —+oo.
Consequently u is mild solution of P(y). O

Definition 3.2 (see [8]). Given (o, 3) € A and f € L'(0,T; E), we call solution
of

| =

- [u(t) + MAu(t)] + Au(t) > f(t), t €1,
(0) =«, B € Au(0), A>0
a function v € C([0,T]; E) such that

Jw € C([0,T]; E) with u + Aw € WH(0,T; E) and
u(0) = o, w(0) =, w(t) € Au(t), YVt € I,

%[u(t) + xw(t)] + w(t) = f(t), ae. tel

(PP)s

S Q.

Definition 3.3. A function v € Cr is called solution for the abstract functional
differential pseudoparabolic inclusion:

%[u(t) + Mu(t)] + Au(t) — F(t,u) 30, t € 1

u=p€eC, feAp0), A>0

if u(t) = p(t) for t € J and u is a solution of the problem (PP); where f € I, .

Under the assumptions (A) and (F), using Propositions 1.1 and 1.3 from [§]
and the same technique as above we obtain the existence of solutions for the
abstract functional differential pseudoparabolic inclusion.
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4. APPLICATION

We end this paper by giving an application of our results to a nonlinear evo-
lution problem.

Let X be a complete metric space, E = L'(Q) (where Q is a bounded open set
in RY) and f : R? x X — R generates the operator f : I x E x X — E by the
formula

f(t,e,w)(z) = f(t,e(z),w).

We assume that for all (e,w) € E x X the function f(.,e,w) is measurable and
for every (t,e) € I x E, f(t,e,.) is continuous.

Consider a measurable multimapping W : I — F (X)) and assume that
e there exists h € L!'(I) such that for almost every t € I and for all w €
W (t),£(t,.,w) is h(t)-Lipschitz;
e for almost all t € I and for all e € E the set f(t,e, W (t)) is closed and t —
q(t) = d(0,£(¢,0, W (t)) is integrable.

Set Wr = {w : I — X measurable and such that w(t) € W(¢)} and consider
the following nonlinear functional control problem

O vt ) — Boyelt, ) = F(t,v(t — ), w(t)) 30,
(P) tel, r€Q, weWr,

0€rv(t,x), tel, xe o,
v(0,2) = p(0)(z), 0 € J, x €Q,

where 7 is a maximal monotone operator in R x R with 0 € v(0) (see [1,5]), and
¢ € C (J; E) such that ¢(0) € D(A) with A = —A~ in E, that is
A={(¢,€6) e EXE:9e Wy (Q) with £ = =AY and
Izx) € y(¢(z)) a.e. € N},

then A is m-accretive in E (see [6, 8]). Define the multimapping F' : I xC — F (E)
by

B(t,¢) = £(t, o(=r), W(1)).

For this multimapping, the conditions (F}) — (F3) are fulfilled. We can now write
the problem (P) in the form P(p), and conclude, by virtue of Theorem 3.1, the
existence of a mild solution.
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