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MILD SOLUTIONS OF NONLINEAR EVOLUTION

FUNCTIONAL DIFFERENTIAL INCLUSIONS IN

BANACH SPACE

A. SGHIR

Abstract. The existence of a mild solution of the abstract functional differ-
ential inclusion

P (ϕ)

{
u′(t) + Au(t) − F (t, ut) 3 0, t ∈ I = [0, T ]

u(t) = ϕ(t), t ∈ J = [−r, 0]

is obtained by a Filippov technique. Here A is an operator such that A +
ωI is m-accretive for some ω ∈ R

+, and the multimapping F (t, .) is h(t)-
Lipschitzian. The result is applied to a nonlinear functional control problem.

1. Introduction

Let (E, |.|) be a real Banach space. Let C := C([−r, 0];E) be the Banach space
of continuous functions from J := [−r, 0] to E with the usual supremum norm
‖.‖. For any u ∈ CT := C([−r, T ];E) and any t ∈ I := [0, T ] (T > 0), we denote
by ut the element of C defined by ut(θ) = u(t+ θ), θ ∈ J .

We consider the nonlinear evolution functional differential inclusion

P (ϕ)

{
u′(t) +Au(t) − F (t, ut) 3 0, t ∈ I,

u0 = ϕ, ϕ ∈ C

where A is an operator such that A+ωI is m-accretive for some ω ≥ 0 and F : I×
C → F(E) is a multimapping with F(E) being the family of all nonempty, closed
and bounded subsets of E. Such a inclusion is a convenient tool to investigate
for instance the control problem

{
u′(t) +Au(t) − f(t, ut, w(t)) 3 0, w(t) ∈W (t),

u0 = ϕ,

where W is a multimapping of controls. Setting

F (t, ut) = {f(t, ut, w(t)) : w(t) ∈W (t)}

we reduce to above control problem to the above inclusion P (ϕ).
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The study of evolution functional differential equations (or inclusions) has
received much attention over the last forty years. Various conditions on A and F
have been considered, and existence results for different spaces of initial functions
have been obtained. When A and F are singlevalued, we mention here the work
of Travis and Webb ([16]; A linear and F (t, ψ) = F (ψ)), Webb ([17]; A + ωI
accretive for some ω ∈ R and F (t, ψ) = F (ψ)), Kartsatos and Parrott ([10,
11]; A(t) nonlinear m-accretive operator and F is Lipschitz continuous in both
variables)... When A is singlevalued and F a multimapping, we mention the work
of Obukhovskii ([13]; A linear and F is a compact convex valued multimapping),...
When A is a nonlinear m-accretive operator and F (t, ψ) = F (ψ) is a Lipschitz
continuous function, we mention the works of Ruess and Summers [15], and
Ruess [14],... The purpose of this paper is to establish, under certain additional
assumptions, the existence of a mild solution u : [−r, T ] → E (to be defined
precisely later) of P (ϕ). Our technique for proving the existence of mild solution
u of P (ϕ) is by showing that the solution is the uniform limit of the sequence
(un), where

un =

{
ϕ on J

vn on I

and vn are mild solutions of problems

(Pfn
)

{
(vn)′(t) +Avn(t) 3 fn(t)

vn(0) = ϕ(0)

with fn(t) ∈ F (t, un−1
t ) a.e.

2. Preliminaries

Let (X, d) be a metric space, F(X) the family of all nonempty, closed and
bounded subsets ofX and δ the Hausdorff distance in F(X), i.e., for A,B ∈ F(X)

δ(A,B) = max
[
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
]

where d(a,B) = inf
b∈B

d(a, b).

Let G : I → P (E) (the family of all nonempty subsets of E) be a multimap-
ping. A function g : I → E such that g(s) ∈ G(s) for every s ∈ I is called a
selection of G. G is called measurable if for almost all s ∈ I, G(s) ⊂ closure
{gn(s) : n ∈ N} where gn are measurable selections of G (see [18]). By the
symbol of I1

G we will denote the set of all Bochner integrable selections of the
multimapping G, i.e.

I1
G = {g ∈ L1(I;E) : g(s) ∈ G(s) a.e.}.

If I1
G 6= ∅ then the measurable multimapping G is called integrable and

∫

I

G(s)ds =
{ ∫

I

g(s)ds : g ∈ I1
G

}
.
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Lemma 2.1. [18] Let G : I → P(E) be a measurable multimapping and u : I →
E a measurable function. Then for any measurable function v : I → R

+, there

exists a measurable selection g of G such that

|g(s) − u(s)|E ≤ d(u(s), G(s)) + v(s) a.e.

Definition 2.1 [4]. Let A : D(A) ⊂ E → P(E) be an operator in E, where
D(A) = {x ∈ E : Ax 6= ∅} is the effective domain of A. A is accretive in E if

|u− û+ λ(v − v̂)| ≥ |u− û|

whenever λ ≥ 0 and (u, v), (û, v̂) ∈ A. A is m-accretive in E if

R(I + λA) :=
⋃

u∈D(A)

(u+ λAu) = E for all λ > 0.

At last, we present some basic concepts and results concerning the Cauchy
problem P (A,x, f)

{
u′ +Au 3 f

u(0) = x

where A is an operator in E, x ∈ E and f ∈ L1(I;E) (see [2, 3, 4]). We refer the
reader to [7, 9, 12] for some informations and references about nonlinear evolution
inclusions and their applications.

Definition 2.2 [4]. Let ε > 0. An ε-approximate solution of problem P (A,x, f)
on I is a piecewise constant function v : I → E such that there exist a partition
(0 = t0 < t1 < · · · < tN = T ) of I and two finite sequences of E ( f1, . . . , fN ) and
(v0, v1, . . . , vN ) satisfying the following properties

i) Max
1≤i≤N

(ti − ti−1) < ε;

ii) v(0) = x = v0 and v(t) = v(ti) = vi on ]ti−1, ti], i = 1, . . . , N ;

iii)
vi − vi−1

ti − ti−1
+Avi 3 fi, i = 1, . . . , N ;

iv)
N∑

i=1

ti∫

ti−1

|f(s) − fi| ds < ε.

Definition 2.3 [4]. A mild solution of P (A,x, f) on I is a function u ∈ C(I;E)
such that for each ε > 0 there is an ε-approximate solution v of problem P (A,x, f)
on I such that

|u(t) − v(t)| < ε for t ∈ I.

Theorem 2.1. [4] Let ω ∈ R such that A + ωI is m-accretive in E and f ∈

L1(0, T ;E). Then for every x ∈ D(A), the initial value problem P (A,x, f) has a
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unique mild solution on I. Moreover, if w is a mild solution on I of P (A, y, g),
then

e−ωt |u(t) − w(t)| − e−ωs |u(s) − w(s)| ≤

t∫

s

e−ωτ |f(τ) − g(τ)| dτ

for 0 ≤ s ≤ t ≤ T .

Definition 2.4 [4]. Let An be an operator in E for each positive integer n. Then
lim inf
n→∞

An is the operator defined by (x, y) ∈ lim inf
n→∞

An if there are (xn, yn) ∈ An

such that (x, y) = lim
n→∞

(xn, yn). In particular, if An = A for all n ∈ N, then

lim inf
n→∞

An = A = closure of A (i.e. graph of A is the closure of the graph of A in

E × E).

Theorem 2.2. [4] Let ω ∈ R such that An + ωI is m-accretive in E, xn ∈

D(An) and fn ∈ L1(I;E) for n = 1, 2, . . . ,∞. Let un be the mild solution of

P (An, xn, fn) on I for each n. If lim
n→∞

fn = f in L1(I;E) and lim
n→∞

xn = x and

A∞ ⊂ lim inf
n→∞

An, then lim
n→∞

un(t) = u(t) uniformly on I.

3. Main result

Consider the nonlinear evolution functional differential inclusion

P (ϕ)

{
u′(t) +Au(t) − F (t, ut) 3 0, t ∈ I

u0 = ϕ, ϕ ∈ C

under the following assumptions:

(A) There exists ω ∈ R
+ such that A+ ωI is m-accretive, ϕ(0) ∈ D(A).

(F ) The multimapping F : I × C → F(E) satisfies the conditions:

(F1) For every φ ∈ C, the multimapping F (., φ) is measurable on I.

(F2) There is an integrable function h : I → R
+ such that for every φ, ξ ∈ C,

δ(F (t, φ), F (t, ξ)) ≤ h(t)‖φ − ξ‖ a.e. in I.

(F3) The function q : t 7−→ d(0, F (t, 0)) is integrable on I.

For u ∈ CT and t ∈ I, let Gu : I → F(E) be the measurable multimapping
defined by Gu(s) = F (s, us) for every s ∈ I. We consider

I1
Gu

=
{
f ∈ L1(I;E) : f(s) ∈ F (s, us) a.e. s ∈ I

}
.

We have that I1
Gu

is nonempty.

Definition 3.1. A function u ∈ CT is called a mild solution of problem P (ϕ) if
u(t) = ϕ(t) for t ∈ J and u is a mild solution of the problem

(Pf )

{
u′(t) +Au(t) 3 f(t) a.e. t ∈ I

u(0) = ϕ(0)
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where f ∈ I1
Gu

.

We are now ready to state our main result.

Theorem 3.1. Assume that conditions (A) and (F ) hold. Then there exists a

mild solution of P (ϕ).

Proof. From the assumption (A) and the theorem of existence and uniqueness of
mild solutions (see Theorem 2.1), it follows that there exists a unique solution v0

of (P0). Set

u0(t) =

{
ϕ(t) if t ∈ J,

v0(t) if t ∈ I.

Then by Lemma 2.1 there is a measurable selection f1 of the multimapping t →
F (t, u0

t ) such that, for almost all t ∈ I,

|f1(t)| ≤ d(0, F (t, u0
t )) + q(t)

≤ d(0, F (t, 0)) + δ(F (t, 0), F (t, u0
t )) + q(t)

≤ 2q(t) + h(t) sup
τ∈[−r,T ]

∣∣u0(τ)
∣∣

and f1 ∈ L1 (I;E). By Theorem 2.1, let v1 be the unique mild solution of the
problem (Pf1

). Set

u1(t) =

{
ϕ(t) if t ∈ J,

v1(t) if t ∈ I.

We have for all t ∈ I, (see Theorem 2.1)

e−ωt
∣∣v1(t) − v0(t)

∣∣ ≤
t∫

0

e−ωs |f1(s)| ds

≤

t∫

0

e−ωs(2q(s) + sup
τ∈[−r,T ]

∣∣u0(τ)
∣∣ h(s))ds := m(t).

By Lemma 2.1, there is a measurable selection f2 of the multimapping t →
F (t, u1

t ) such that, for almost all t ∈ I,

|f2(t) − f1(t)| ≤ 2d(f1(t), F (t, u1
t ))

≤ 2δ(F (t, u0
t ), F (t, u1

t ))

≤ 2h(t)
∥∥u0

t − u1
t

∥∥

≤ 2h(t) sup
s∈[0,t]

∣∣v0(s) − v1(s)
∣∣

≤ 2h(t)eωtm(t)
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and then f2 ∈ L1 (I;E). Let v2 be the unique mild solution of the problem (Pf2
).

Set

u2(t) =

{
ϕ(t) if t ∈ J,

v2(t) if t ∈ I.

Thus, we can define by induction two sequences (un) and (fn) with un ∈ CT and
fn ∈ L1(I;E) such that:

(i) for all n ∈ N,

un(t) =

{
ϕ(t) if t ∈ J,

vn(t) if t ∈ I,

where vn is the unique mild solution of the problem (Pfn
);

(ii) f0 = 0 and for all n ≥ 1,

fn(t) ∈ F (t, un−1
t ) a.e. in I;

(iii) for almost all t ∈ I and n ≥ 1,

|fn+1(t) − fn(t)| ≤ 2h(t)‖un
t − un−1

t ‖.

It follows from (iii) that

(iv) for all t ∈ I and n ≥ 1,

e−ωt
∣∣un+1(t) − un(t)

∣∣ ≤
t∫

0

e−ωt1 |fn+1(t1) − fn(t1)|dt1

≤

t∫

0

2e−ωt1h(t1)‖u
n
t1
− un−1

t1
‖dt1

≤

t∫

0

2e−ωt1h(t1)e
ωt1

[
sup

t1+θ∈[0,t1]
e−ω(t1+θ)

∣∣un(t1+θ)-u
n−1(t1+θ)

∣∣ ]dt1

≤

t∫

0

2h(t1)

t1∫

0

e−ωt2 |fn(t2) − fn−1(t2)| dt2dt1

. . . . . . . . .

≤

t∫

0

2h(t1)

∫ t1

0
2h(t2)...

tn−1∫

0

2h(tn)e−ωtn‖u1
tn -u0

tn‖dtn . . . dt1

≤ m(t).

[ t∫

0

2h(s)ds
]n

n!
.
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Then, for all n ≥ 1,

‖un+1 − un‖ω = sup
t∈[−r,T ]

e−ωt|un+1(t) − un(t)|

= sup
t∈I

e−ωt|un+1(t) − un(t)|

≤ m(T )

[ T∫

0

2h(t)dt
]n

n!
·

We deduce that (un) is a Cauchy sequence of a continuous functions converging
uniformly to a function u ∈ CT and for almost all t ∈ I, (fn(t)) is a Cauchy
sequence in E. Hence (fn(.)) converges pointwise almost everywhere to a mea-
surable function f(.) in E. Furthermore, there exists a function α ∈ L1

+(I) such
that |fn(t)| ≤ α(t) for almost all t ∈ I and n ∈ N. Thus (fn) converges to f in
L1(I;E) and by Theorem 2.2 u|I is a mild solution of problem (Pf ). Moreover

f ∈ I1
Gu

since for almost all t ∈ I,

d(f(t), F (t, ut)) ≤ |f(t) − fn(t)| + d(fn(t), F (t, ut))

≤ |f(t) − fn(t)| + h(t)eωt‖un−1 − u‖ω

and the right hand side tends to zero almost everywhere on I as n → +∞.
Consequently u is mild solution of P (ϕ).

Definition 3.2 (see [8]). Given (α, β) ∈ A and f ∈ L1(0, T ;E), we call solution
of

(PP )f






d

dt

[
u(t) + λAu(t)

]
+Au(t) 3 f(t), t ∈ I,

u(0) = α, β ∈ Au(0), λ > 0

a function u ∈ C([0, T ];E) such that





∃w ∈ C([0, T ];E) with u+ λw ∈W 1,1(0, T ;E) and

u(0) = α, w(0) = β, w(t) ∈ Au(t), ∀ t ∈ I,
d

dt
[u(t) + λw(t)] + w(t) = f(t), a.e. t ∈ I

Definition 3.3. A function u ∈ CT is called solution for the abstract functional
differential pseudoparabolic inclusion:






d

dt
[u(t) + λAu(t)] +Au(t) − F (t, ut) 3 0, t ∈ I

u0 = ϕ ∈ C, β ∈ Aϕ(0), λ > 0

if u(t) = ϕ(t) for t ∈ J and u is a solution of the problem (PP )f where f ∈ I1
Gu

.

Under the assumptions (A) and (F ), using Propositions 1.1 and 1.3 from [8]
and the same technique as above we obtain the existence of solutions for the
abstract functional differential pseudoparabolic inclusion.
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4. Application

We end this paper by giving an application of our results to a nonlinear evo-
lution problem.

Let X be a complete metric space, E = L1(Ω) (where Ω is a bounded open set
in R

N ) and f : R
2 ×X → R generates the operator f : I × E ×X → E by the

formula

f(t, e, w)(x) = f(t, e(x), w).

We assume that for all (e,w) ∈ E ×X the function f(., e, w) is measurable and
for every (t, e) ∈ I × E, f(t, e, .) is continuous.

Consider a measurable multimapping W : I → F (X) and assume that

• there exists h ∈ L1(I) such that for almost every t ∈ I and for all w ∈
W (t), f(t, ., w) is h(t)-Lipschitz;

• for almost all t ∈ I and for all e ∈ E the set f(t, e,W (t)) is closed and t →
q(t) = d(0, f(t, 0,W (t)) is integrable.

Set WT = {w : I → X measurable and such that w(t) ∈ W (t)} and consider
the following nonlinear functional control problem

(P )






∂

∂t
v(t, x) −4γv(t, x) − f(t, v(t− r, x), w(t)) 3 0,

t ∈ I, x ∈ Ω, w ∈ WT ,

0 ∈ γv(t, x), t ∈ I, x ∈ ∂Ω,

v(θ, x) = ϕ(θ)(x), θ ∈ J, x ∈ Ω,

where γ is a maximal monotone operator in R×R with 0 ∈ γ(0) (see [1, 5]), and

ϕ ∈ C (J ;E) such that ϕ(0) ∈ D(A) with A = −4γ in E, that is

A = {(ζ, ξ) ∈ E ×E : ϑ ∈W 1,1
0 (Ω) with ξ = −4ϑ and

ϑ(x) ∈ γ(ζ(x)) a.e. x ∈ Ω},

then A is m-accretive in E (see [6, 8]). Define the multimapping F : I×C → F (E)
by

F (t, φ) = f(t, φ(−r),W (t)).

For this multimapping, the conditions (F1)− (F3) are fulfilled. We can now write
the problem (P ) in the form P (ϕ), and conclude, by virtue of Theorem 3.1, the
existence of a mild solution.
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