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MAPPINGS IN ls-σ-FINITE PONOMAREV-SYSTEMS

NGUYEN VAN DUNG

Abstract. We introduce the notion of an ls-σ-finite Ponomarev-system (f, M,

X, {Pλ,n}) to give a consistent method to construct an s-mapping (msss-
mapping, mssc-mapping, cs-mapping) f with covering-properties from a lo-
cally separable metric space M onto a space X. As applications, we systemati-
cally get characterizations of s-images (msss-images, mssc-images, cs-images)
with covering-properties of locally separable metric spaces.

1. Introduction

Finding characterizations of nice images of metric spaces is one of the most
important problems in theory of generalized metric spaces [11]. Various kinds
of characterizations have been obtained by means of certain networks [16], [23].
Recently, many authors have been interested in finding characterizations of nice
images of locally separable metric spaces under mappings with covering-properties
(covering-mapping for short). The key to prove these results is to construct
covering-mappings from a locally separable metric space onto a space. In [1],
the authors introduced the notion of an ls-Ponomarev-system (f,M,X, {Pλ}) to
give necessary and sufficient conditions such that the mapping f is an s-mapping
with covering-properties from a locally separable metric space M onto a space X.
As applications, characterizations of certain s-images of locally separable metric
spaces were obtained by means of double covers.

In [15], S. Lin introduced msss-mappings and mssc-mappings to characterize
spaces with σ-locally countable networks and spaces with σ-locally finite net-
works respectively. After that, Z. Qu and Z. Gao introduced cs-mappings to
characterize spaces with compact-countable networks in [21]. These mappings
have close relations with s-mappings and play important roles in finding char-
acterizations for images of metric spaces [4], [9], [12], [13], [14]. However, for
the ls-σ-finite Ponomarev-systems (f,M,X, {Pλ}), we do not know what are the
necessary and sufficient conditions such that the mapping f is an msss-mapping
(mssc-mapping, cs-mapping) with covering-properties.
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We are interested in finding a consistent method to construct an s-mapping
(msss-mapping, mssc-mapping, cs-mapping) f with covering-properties from a
locally separable metric space M onto a space X.

In this paper, we use a special kind of the σ-Ponomarev-system (f,M,X, {Pn})
in [5], called a σ-finite Ponomarev-system (f,M,X, {Pn}), to give a consistent
method to construct a covering-mapping f from a separable metric space M onto
a space X. Using a family of σ-finite Ponomarev-systems {(fλ,Mλ,Xλ, {Pλ,n}) :
λ ∈ Λ}, we introduce the notion of an ls-σ-finite Ponomarev-system (f,M,X,

{Pλ,n}) to give a consistent method to construct an s-mapping (msss-mapping,
mssc-mapping, cs-mapping) f with covering-properties from a locally separable
metric space M onto a space X. As applications, we systematically get char-
acterizations of s-images (msss-images, mssc-images, cs-images) with covering-
properties of locally separable metric spaces. These results make the study of
images of locally separable metric spaces more complete.

The paper is organized as follows. In addition to the introduction, the paper
contains two more sections. Section 2 presents definitions of networks and map-
pings, and lemmas which will be used throughout the paper. The main results
are presented in Section 3.

2. Preliminaries

Throughout this paper, all spaces are T1 and regular, all mappings are continu-
ous and onto, a convergent sequence includes its limit point. We denote by N the
set of all natural numbers and write ω = N ∪ {0}. Let pk denote the projection
from

∏

n∈N
Xn onto Xk. Let f : X −→ Y be a mapping, x ∈ X, and P be a

family of subsets of X, we define Px = {P ∈ P : x ∈ P}, f(P) = {f(P ) : p ∈ P},
⋂

P =
⋂

{P : P ∈ P} and
⋃

P =
⋃

{P : p ∈ P}. We say that a con-
vergent sequence {xn : n ∈ N} ∪ {x}, converging to x, is eventually in U

if {xn : n ≥ n0} ∪ {x} ⊂ U for some n0 ∈ N, and is frequently in U if
{xnk

: k ∈ N} ∪ {x} ⊂ U for some subsequence {xnk
: k ∈ N} of {xn : n ∈ N}.

Definition 2.1. Let P be a family of subsets of a space X and K be a subset of
X.

(1) For each x ∈ X, P is called a network at x in X [19] if x ∈
⋂

P and if
x ∈ U with U open in X, then x ∈ P ⊂ U for some P ∈ P.

P is called a network for X [19] if Px is a network at x in X for every x ∈ X.
(2) P is called a cfp-network for K in X [1] if for each compact subset H of

K with H ⊂ U and U open in X, there exists a finite subfamily F of P such
that H ⊂

⋃

{CF : F ∈ F} ⊂
⋃

F ⊂ U , where CF is closed and CF ⊂ F for every
F ∈ F . If K = X, then a cfp-network for K in X is a cfp-network for X [24].

(3) P is called a cs-network for K in X (resp. cs∗-network for K in X) [1]
if for each convergent sequence S in K converging to x ∈ U with U open in X,
S is eventually (resp. frequently) in P ⊂ U for some P ∈ P. If K = X, then a
cs-network for K in X (resp. cs∗-network for K in X) is a cs-network for X [10]
(resp. cs∗-network for X [7]).
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(4) P is called a wcs-network for K in X [5] if for each convergent sequence
S in K converging to x ∈ U with U open in X, S is eventually in

⋃

F ⊂ U for
some finite subfamily F of Px. If K = X, then a wcs-network for K in X is a
wcs-network for X.

(5) P is called a strong network for X [5] if, for each x ∈ X, the exists a
countable P(x) ⊂ P such that P(x) forms a network at x in X.

Lemma 2.2 ([5], Lemma 2.6). If P is a cs-network for a convergent sequence
S ⊂ U with U open in a space X, then there exists F ⊂ P satisfying the following:

(1) F is finite;
(2) For each F ∈ F , ∅ 6= F ∩ S ⊂ F ⊂ U ;
(3) For each x ∈ S, there exists a unique F ∈ F such that x ∈ F ;
(4) If F ∈ F contains the limit point of S, then S − F is finite.

Such an F is said to have the property cs(S,U).

Lemma 2.3 ([5], Lemma 2.7). If P is a cfp-network for a compact subset K ⊂ U

with U open in a space X, then there exists F ⊂ P satisfying the following:

(1) F is finite;
(2) For each F ∈ F , ∅ 6= F ∩ K ⊂ F ⊂ U ;
(3) For each F ∈ F , F − {F} is not a cover for K;
(4) For each F ∈ F , F ∩ K is compact.

Such an F is said to have the property cfp(K,U).

Definition 2.4. A space X is called a cosmic space [20] (resp. ℵ0-space [20]) if
X has a countable network (resp. countable cs-network).

It is well-known that a space X is an ℵ0-space if and only if X has a countable
cfp-network (wcs-network, cs∗-network) [23].

Definition 2.5. Let P =
⋃

{Pn : n ∈ N} be a cover for a space X.
(1) P is called a σ-network for X if for each x ∈ X, there exists a countable

network {Pαn : n ∈ N} at x in X such that Pαn ∈ Pn for every n ∈ N.
(2) P is called a σ-finite network for X if P is a σ-network for X and every

Pn is finite.
(3) A σ-finite network P is called a σ-finite cs-network (resp. σ-finite cfp-

network, σ-finite wcs-network, σ-finite cs∗-network) for X if P is a cs-network
(resp. cfp-network, wcs-network, cs∗-network) for X.

Definition 2.6. Let f : X −→ Y be a mapping.
(1) f is called a (Z)-msss-mapping or an msss-mapping [15] if X is a subspace

of the product space Z =
∏

n∈N
Xn of a family {Xn : n ∈ N} of metric spaces,

and for each y ∈ Y , there exists a sequence {Vy,n : n ∈ N} of open neighborhoods
of y in Y such that each pn(f−1(Vy,n)) is a separable subset of Xn.

(2) f is called a (Z)-mssc-mapping or an mssc-mapping [15] if X is a subspace
of the product space Z =

∏

n∈N
Xn of a family {Xn : n ∈ N} of metric spaces,

and for each y ∈ Y , there exists a sequence {Vy,n : n ∈ N} of open neighborhoods

of y in Y such that each pn(f−1(Vy,n)) is a compact subset of Xn.
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(3) f is called an s-mapping [2] if, for each y ∈ Y , f−1(y) is a separable subset
of X.

(4) f is called a cs-mapping [21] if, for each compact subset K of Y , f−1(K)
is a separable subset of X.

(5) f is called a sequence-covering mapping [22] if, for each convergent sequence
S of Y , there exists a convergent sequence L of X such that f(L) = S. Note that
a sequence-covering mapping is a strong sequence-covering mapping in the sense
of [14].

(6) f is called a subsequence-covering mapping [17] if, for each convergent
sequence S of Y , there exists a compact subset K of X such that f(K) is a
subsequence of S.

(7) f is called a sequentially-quotient mapping [3] if, for each convergent se-
quence S of Y , there exists a convergent sequence L of X such that f(L) is a
subsequence of S.

For terms which are not defined here, please refer to [6] and [16].
It is well-known that an image of a network (resp. cs-network, cfp-network,

cfp-network, cs∗-network) under a mapping (resp. sequence-covering mapping,
compact-covering mapping, pseudo-sequence-covering mapping, sequentially-
quotient mapping) is a network (resp. cs-network, cfp-network, wcs-network,
cs∗-network). From these facts and Definition 2.5, we have the following.

Lemma 2.7. Let f : X −→ Y be a mapping and
⋃

{Pn : n ∈ N} be a σ-finite
network for X. Then the following hold:

(1)
⋃

{f(Pn) : n ∈ N} is a σ-finite network for Y .
(2) If

⋃

{Pn : n ∈ N} is a σ-finite cs-network (resp. cfp-network, cfp-
network, cs∗-network) for X and f is a sequence-covering (resp. compact-
covering, pseudo-sequence-covering, sequentially-quotient) mapping, then
⋃

{f(Pn) : n ∈ N} is a σ-finite cs-network (resp. cfp-network, wcs-
network, cs∗-network) for Y .

Definition 2.8. Let P =
⋃

{Pn : n ∈ N} be a σ-network for a space X. Assume
that X ∈ Pn ⊂ Pn+1 and Pn is closed under finite intersections for every n ∈ N.
Let Pn = {Pα : α ∈ An}, where each An is endowed with the discrete topology,
then An is a metric space. We define

M =
{

a = (αn) ∈
∏

n∈N

An :

{Pαn : n ∈ N} forms a network at some point xa in X
}

.

Then, M is a metric space, and xa is unique for each a ∈ M . Define f : M −→
X by f(a) = xa for every a ∈ M . Then f is a mapping from the metric space M

onto X. The system (f,M,X, {Pn}) is a σ-Ponomarev-system [5].
If

⋃

{Pn : n ∈ N} is a σ-finite network for X, then a σ-Ponomarev-system
(f,M,X, {Pn}) is a σ-finite Ponomarev-system.

Remark 2.9. For a σ-finite Ponomarev-system (f,M,X, {Pn}), since An is finite
for every n ∈ N, the mapping f is a (Z)-mssc-mapping with Z =

∏

n∈N
An
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and M is a separable metric space. From now on, the mssc-mapping (resp.
msss-mapping) f in a σ-finite Ponomarev-system (f,M,X, {Pn}) is understood
to mean a (Z)-mssc-mapping (resp. (Z)-msss-mapping) with Z =

∏

n∈N
An.

By [5, Lemma 2.11], we have the following.

Lemma 2.10. Let (f,M,X, {Pn}) be a σ-finite Ponomarev-system, a = (αn) ∈
M where {Pαn : n ∈ N} is a network at some point xa in X, and

Un = {b = (βi) ∈ M : βi = αi if i ≤ n},

for every n ∈ N. Then the following hold:

(1) {Un : n ∈ N} is a base at a in M .
(2) f(Un) =

⋂n
i=1 Pαi

for every n ∈ N.

In [5, Theorem 3.2], necessary and sufficient conditions for a mapping f to be a
covering-mapping in a σ-Ponomarev-system (f,M,X, {Pn}) have been obtained
by means of strong networks. Next, we modify these conditions in a σ-finite
Ponomarev-system.

Lemma 2.11. Let (f,M,X, {Pn}) be a σ-finite Ponomarev-system. Then the
following hold:

(1) P is a cs-network for a convergent sequence S in X if and only if Sf(L)
for some convergent sequence L in M .

(2) P is a cfp-network for a compact subset K in X if and only if K = f(L)
for some compact subset L of M .

(3) P is a cs∗-network (wcs-network) for a convergent sequence S in X if
and only if S = f(L) for some compact subset L of M .

Proof. (1). Necessity. Let P be a cs-network for a convergent sequence S in
X. Suppose that S = {xm : m ∈ ω} with the limit point x0. We have that
F = {X} ⊂ P has the property cs(S,X). Since P is countable, {F ⊂ P :
F has the property cs(S,X)} is countable. So we can write

{

F ⊂ P : F has the property cs(S,X)
}

= {Fi : i ∈ N},

and put Fn(1) = {X} ⊂ P1. For each i ≥ 2 if there exists j ∈ N such that

Fj ⊂
(

Pi − {Fn(k) : k = 1, . . . , i − 1}
)

, then we define

n(i) = min
{

j ∈ N : Fj ⊂
(

Pi − {Fn(k) : k = 1, . . . , i − 1}
)}

;

otherwise, put Fn(i){X}. Then {Fn(i) : i ∈ N} = {Fi : i ∈ N}. Suppose that
Fn(i){Pα : α ∈ Bi}, where Bi is a finite set. For every m ∈ ω and i ∈ N,
since Fn(i) has the property cs(S,X), there exists a unique αim ∈ Bi such that
xm ∈ Pαim

∈ Fn(i). Let us put am = (αim) ∈
∏

i∈N
Bi and L = {am : m ∈ ω}.

As in the sufficiency of the proof of (1) of [5, Theorem 3.2], we have that L is a
convergent sequence in M and f(L) = S.

Sufficiency. Let S be a convergent sequence in X and S = f(L) for some
convergent sequence L in M . As in the necessity of the proof of (1) of [5, Theorem
3.2], we have that P is a cs-network for S in X.
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(2). Necessity. Let P be a cfp-network for a compact subset K of X. We
have that F = {X} ⊂ P has the property cfp(K,X). Since P is countable,
{F ⊂ P : F has the property cfp(K,X)} is countable. So we can write

{

F ⊂ P : F has the property cfp(K,X)
}

= {Fi : i ∈ N},

and put Fn(1) = {X} ⊂ P1. For each i ≥ 2 if there exists j ∈ N such that

Fj ⊂
(

Pi − {Fn(k) : k = 1, . . . , i − 1}
)

, then we can define

n(i) = min
{

j ∈ N : Fj ⊂
(

Pi − {Fn(k) : k = 1, . . . , i − 1}
)}

;

otherwise, put Fn(i) = {X}. Then {Fn(i) : i ∈ N} = {Fi : i ∈ N}. Suppose that
Fn(i) = {Pα : α ∈ Bi}, where Bi is a finite set. Let us define

L =
{

a = (αn) ∈
∏

n∈N

Bn :
⋂

n∈N

(Pαn ∩ K) 6= ∅
}

.

As in the sufficiency part of the proof of (2) of [5, Theorem 3.2], L is a compact
subset of M and f(L) = K.

Sufficiency. Let K be a compact subset of X and K = f(L) for some compact
subset L of M . As in the necessity part of the proof of (2) of [5, Theorem 3.2],
P is a cfp-network for K in X.

(3). Necessity. Let P be a cs∗-network for a convergent sequence S in X. Since
P is countable, P is precisely a wcs-network for S in X. This implies that P is
a cfp-network for S in X. As in the necessity part of (2), there exists a compact
subset L of M such that f(L) = S.

Sufficiency. Let S be a convergent sequence in X and S = f(L) for some
compact subset L of M . As in the sufficiency part of (2), P is a cfp-network for
S in X. Since S is a convergent sequence, P is a cs∗-network (wcs-network) for
S in X. �

By Lemma 2.11, we get the following.

Corollary 2.12. Let (f,M,X, {Pn}) be a σ-finite Ponomarev-system and P =
⋃

{Pn : n ∈ N}. Then the following hold:

(1) f is a sequence-covering mapping if and only if P is a cs-network for X.
(2) f is a compact-covering mapping if and only if P is a cfp-network for X.
(3) f is a sequentially-quotient (pseudo-sequence-covering) mapping if and

only if P is a cs∗-network for X.

3. Mappings in ls-σ-finite Ponomarev-systems

Definition 3.1. Let {Xλ : λ ∈ Λ} be a cover for a space X such that each Xλ

has a sequence of covers {Pλ,n : n ∈ N}.
(1) {(Xλ, {Pλ,n}) : λ ∈ Λ} is called a double σ-finite cover for X if for every

λ ∈ Λ,
⋃

{Pλ,n : n ∈ N} is a σ-finite network for Xλ.
(2) A double σ-finite cover {(Xλ, {Pλ,n}) : λ ∈ Λ} is called a point-countable

(resp. locally countable, locally finite, compact-countable) double σ-finite cover
for X if Pn is point-countable (resp. locally countable, locally finite, compact-
countable), where Pn =

⋃

{Pλ,n : λ ∈ Λ} for every n ∈ N. Because each
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Pλ,n is finite, we have that {(Xλ, {Pλ,n}) : λ ∈ Λ} is point-countable (resp.
compact-countable) if and only if {Xλ : λ ∈ Λ} is point-countable (resp. compact-
countable).

Definition 3.2. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double σ-finite cover for X and
Pλ =

⋃

{Pλ,n : n ∈ N} for every λ ∈ Λ.
(1) {(Xλ, {Pλ,n}) : λ ∈ Λ} is called a double σ-finite cs-cover for X if, for each

convergent sequence S converging to x in X, there exists λ ∈ Λ such that S is
eventually in Xλ and Pλ is a cs-network for S ∩ Xλ in Xλ.

(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is called a double σ-finite cfp-cover for X if for
each compact subset K of X the following conditions hold:

i) There exists a finite subset ΛK of Λ such that K =
⋃

{Kλ : λ ∈ ΛK}.
ii) For each λ ∈ ΛK , Kλ is compact.
iii) Pλ is a cfp-network for Kλ in Xλ.
(3) {(Xλ, {Pλ,n}) : λ ∈ Λ} is called a double σ-finite wcs-cover for X if for

each convergent sequence S in X the following conditions hold:
i) There exists a finite subset ΛS of Λ such that S =

⋃

{Sλ : λ ∈ ΛS}.
ii) For each λ ∈ ΛS , Sλ is a convergent sequence.
iii) Pλ is a wcs-network for Sλ in Xλ.
(4) {(Xλ, {Pλ,n}) : λ ∈ Λ} is called a double σ-finite cs∗-cover for X if for each

convergent sequence S in X there exist λ ∈ Λ and a subsequence Sλ of S such
that Pλ is a cs∗-network for Sλ in Xλ.

Lemma 3.3. Let f : X −→ Y be a mapping and {(Xλ, {Pλ,n}) : λ ∈ Λ} be a
double σ-finite cover for X. Then the following hold:

(1) {(f(Xλ), {f(Pλ,n)}) : λ ∈ Λ} is a double σ-finite cover for Y .
(2) If {(Xλ, {Pλ,n}) : λ ∈ Λ} is a σ-finite cs-cover (resp. cfp-cover, wcs-

cover, cs∗-cover) for X and f is a sequence-covering (resp. compact-
covering, pseudo-sequence-covering, sequentially-quotient) mapping, then
{(f(Xλ), {f(Pλ,n)}) : λ ∈ Λ} is a double σ-finite cs-cover (resp. cfp-
cover, wcs-cover, cs∗-cover) for Y .

(3) If {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-countable (resp. compact-countable)
double σ-finite cover for X and f is an s-mapping (resp. cs-mapping),
then {(f(Xλ), {f(Pλ,n)}) : λ ∈ Λ} is a point-countable (resp. compact-
countable) double σ-finite cover for Y .

Proof. (1). By Lemma 2.7.(1).
(2). By (1), {(f(Xλ), {f(Pλ,n)}) : λ ∈ Λ} is a double σ-finite cover for

X. It follows from [1, Lemma 2.13] that whenever f is a sequence-covering
(resp. compact-covering, pseudo-sequence-covering, sequentially-quotient) map-
ping, then {(f(Xλ), {f(Pλ,n)}) : λ ∈ Λ} is a double σ-finite cs-cover (resp. cfp-
cover, wcs-cover, cs∗-cover) for Y .

(3). By (1), {(f(Xλ), {f(Pλ,n)}) : λ ∈ Λ} is a double σ-finite cover for X. For
the un-parenthetic part, see [4, Theorem 2.14]. Also, in view of the proof of [4,
Theorem 2.14], we get the parenthetic part. �



592 NGUYEN VAN DUNG

Definition 3.4. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double σ-finite cover for a space
X, and (fλ,Mλ,Xλ, {Pλ,n}) be the σ-finite Ponomarev-system for each λ ∈ Λ.
We denote by M =

⊕

λ∈Λ Mλ, and f =
⊕

λ∈Λ fλ. Then M is a locally separable
metric space, and f is a mapping from a locally separable metric space M onto
X. The system (f,M,X, {Pλ,n}) is called an ls-σ-finite Ponomarev-system.

Remark 3.5. For every λ ∈ Λ and n ∈ N, we write Pλ,n = {Pα : α ∈ Aλ,n},
and An =

⋃

{Aλ,n : λ ∈ Λ}. Then the space M of an ls-σ-finite Ponomarev-
system (f,M,X, {Pλ,n}) is a subspace of

∏

n∈N
An. From now on, the msss-

mapping (resp. mssc-mapping) f in an ls-σ-Ponomarev-system (f,M,X, {Pλ,n})
is understood to mean a (Z)-msss-mapping (resp. (Z)-mssc-mapping) with Z =
∏

n∈N
An.

In [5, Theorem 3.1], the necessary and sufficient conditions for f to be an s-
mapping (resp. msss-mapping, mssc-mapping) from a metric space M onto a
space X in a σ-Ponomarev-system (f,M,X, {Pn}) have been obtained. Next, we
give necessary and sufficient conditions for f to be an s-mapping (resp. msss-
mapping, mssc-mapping, cs-mapping) from a locally separable metric space M

onto a space X in an ls-σ-finite Ponomarev-system (f,M,X, {Pλ,n}).

Theorem 3.6. Let (f,M,X, {Pλ,n}) be an ls-σ-finite Ponomarev-system. Then
the following hold:

(1) f is an s-mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is point-countable.
(2) f is an msss-mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is locally

countable.
(3) f is an mssc-mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is locally

finite.
(4) f is a cs-mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is compact-

countable.

Proof. (1). Necessity. Let f be an s-mapping. For each x ∈ X, we have that
f−1(x) is a separable subset of X. Then Λx = {λ ∈ Λ : f−1(x) ∩ Mλ 6= ∅} =
{λ ∈ Λ : x ∈ Xλ} is countable. Therefore {Xλ : λ ∈ Λ} is point-countable. This
implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is point-countable.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be point-countable. Then {Xλ : λ ∈
Λ} is also point-countable. For each x ∈ X, we have that Λx = {λ ∈ Λ : x ∈
Xλ} = {λ ∈ Λ : f−1(x)∩Mλ 6= ∅} is countable. Then f−1(x) =

⋃

{f−1(x)∩Mλ :
λ ∈ Λx} is a separable subset of M . This proves that f is an s-mapping.

(2). Necessity. Let f be an msss-mapping. For each x ∈ X, there exists
a sequence {Vx,n : n ∈ N} of open neighborhoods of x in X such that each
pn(f−1(Vx,n)) is a separable subset of An. Then

Λx,n = {λ ∈ Λ : pn(f−1(Vx,n)) ∩ Aλ,n 6= ∅}

= {λ ∈ Λ : f−1(Vx,n) ∩ Mλ 6= ∅} = {λ ∈ Λ : Vx,n ∩ Xλ 6= ∅}
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is countable. For each λ ∈ Λx,n, since Aλ,n is finite, so is Ax,λ,n = {α ∈ Aλ,n :
Vx,n ∩ Pα 6= ∅}. Then

Ax,n = {α ∈ An : Vx,n ∩ Pα 6= ∅} =
⋃

{Ax,λ,n : λ ∈ Λx,n}

is countable. This implies that
⋃

{Pn : n ∈ N} is locally countable. Therefore,
{(Xλ, {Pλ,n}) : λ ∈ Λ} is locally countable.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be locally countable. For each x ∈ X,
there exists a sequence {Vx,n : n ∈ N} of neighborhoods of x such that Ax,n =
{α ∈ An : Vx,n ∩ Pα 6= ∅} is countable. Since f−1(Vx,n) ⊂ Ax,n, f−1(Vx,n) is a
separable subset of An. This implies that f is an msss-mapping.

(3). Necessity. Let f be an mssc-mapping. For each x ∈ X, there exists
a sequence {Vx,n : n ∈ N} of open neighborhoods of x in X such that each

pn(f−1(Vx,n)) is a compact subset of An. Then

Λx,n = {λ ∈ Λ : pn(f−1(Vx,n)) ∩ Aλ,n 6= ∅}

= {λ ∈ Λ : f−1(Vx,n) ∩ Mλ 6= ∅} = {λ ∈ Λ : Vx,n ∩ Xλ 6= ∅}

is finite. For each λ ∈ Λx,n, since Aλ,n is finite, so is Ax,λ,n = {α ∈ Aλ,n :
Vx,n ∩ Pα 6= ∅}. Then

Ax,n = {α ∈ An : Vx,n ∩ Pα 6= ∅} =
⋃

{Ax,λ,n : λ ∈ Λx,n}

is finite. This implies that
⋃

{Pn : n ∈ N} is locally finite. Therefore, {(Xλ, {Pλ,n}) :
λ ∈ Λ} is locally finite.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be locally finite. For each x ∈ X, there
exists a sequence {Vx,n : n ∈ N} of neighborhoods of x such that Ax,n = {α ∈

An : Vx,n ∩ Pα 6= ∅} is finite. Since f−1(Vx,n) ⊂ Ax,n, f−1(Vx,n) is a compact
subset of An. This implies that f is an mssc-mapping.

(4). Necessity. Let f be a cs-mapping. For each compact subset K of X, we
have that f−1(K) is a separable subset of X. Then ΛK = {λ ∈ Λ : f−1(K)∩Mλ 6=
∅} = {λ ∈ Λ : K ∩ Xλ 6= ∅} is countable. Then {Xλ : λ ∈ Λ} is compact-
countable. This implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is also compact-countable.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be compact-countable. Then {Xλ :
λ ∈ Λ} is compact-countable. For each compact subset K of X, we have that
ΛK = {λ ∈ Λ : K ∩ Xλ 6= ∅} = {λ ∈ Λ : f−1(K) ∩ Mλ 6= ∅} is countable. Then
f−1(K) =

⋃

{f−1(K) ∩ Mλ : λ ∈ ΛK} is a separable subset of M . This proves
that f is a cs-mapping. �

In [5, Theorem 3.2], the necessary and sufficient conditions for f to be a
covering-mapping from a metric space M onto a space X in a σ-Ponomarev-
system (f,M,X, {Pn}) have been obtained by means of strong networks. Next,
we give the necessary and sufficient conditions for f to be a covering-mapping
from a locally separable metric space M onto a space X in an ls-σ-finite Ponomarev-
system (f,M,X, {Pλ,n}) by means of double σ-finite cover.

Theorem 3.7. Let (f,M,X, {Pλ,n}) be an ls-σ-finite Ponomarev-system. Then
the following hold:
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(1) f is a sequence-covering mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is
a double σ-finite cs-cover for X.

(2) f is a compact-covering mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is
a double σ-finite cfp-cover for X.

(3) f is a pseudo-sequence-covering mapping if and only if {(Xλ, {Pλ,n}) :
λ ∈ Λ} is a double σ-finite wcs-cover for X.

(4) f is a sequentially-quotient mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ}
is a double σ-finite cs∗-cover for X.

Proof. (1). Necessity. Let f be a sequence-covering mapping. For each conver-
gent sequence S converging to x in X, there exists a convergent sequence L in
M such that f(L) = S. We have that L is eventually in some Mλ. Then S

is eventually in Xλ. Then Lλ = L ∩ Mλ is a convergent sequence in Mλ. It
follows from Lemma 2.11 that

⋃

{Pλ,n : n ∈ N} is a cs-network for f(Lλ) in
Xλ. Then

⋃

{Pλ,n : n ∈ N} is a cs-network for S ∩ Xλ in Xλ. This implies that
{(Xλ, {Pλ,n}) : λ ∈ Λ} is a double σ-finite cs-cover for X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a σ-finite cs-cover for X. For
each convergent sequence S in X, there exists λ ∈ Λ such that S is eventually
in Xλ and Pλ is a cs-network for S ∩ Xλ in Xλ. It follows from Lemma 2.11
that S ∩ Xλ = fλ(Lλ) for some convergent sequence Lλ in Mλ. Since S − Xλ is
finite, S − Xλ = f(F ) for some finite subset F of M . Therefore L = F ∪ Lλ is
a convergent sequence in M and f(L) = S. This implies that f is a sequence-
covering mapping.

(2). Necessity. Let f be a compact-covering mapping. For each compact
subset K of X, there exists a compact subset L of M such that f(L) = K. Since
L is compact, ΛK = {λ ∈ Λ : L ∩ Mλ 6= ∅} is finite and each L ∩ Mλ is compact.
For each λ ∈ ΛK , Let Kλ = fλ(L ∩ Mλ). Then K =

⋃

{Kλ : λ ∈ ΛK}, and for
each λ ∈ ΛK , Kλ is compact and Pλ is a cfp-network for Kλ in Xλ by Lemma
2.11. This proves that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double σ-finite cfp-cover for
X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double σ-finite cfp-cover for
X. For each compact subset K of X, there exists a finite subset ΛK of Λ such
that K =

⋃

{Kλ : λ ∈ ΛK}, and for each λ ∈ ΛK , Kλ is compact and Pλ is a
cfp-network for Kλ in Xλ. For each λ ∈ ΛK , it follows from Lemma 2.11 that
Kλ = fλ(Lλ) for some compact subset Lλ of Mλ. Then L =

⋃

{Lλ : λ ∈ ΛK} is a
compact subset of M and f(L) = K. This implies that f is a compact-covering
mapping.

(3). Necessity. Let f be a pseudo-sequence-covering mapping. For each conver-
gent sequence S of X, there exists a compact subset L of M such that f(L) = S.
Since L is compact, ΛS = {λ ∈ Λ : L∩Mλ 6= ∅} is finite and each L∩Mλ is com-
pact. For each λ ∈ ΛS, we define Sλ = fλ(L ∩ Mλ). Then S =

⋃

{Sλ : λ ∈ ΛS},
and for each λ ∈ ΛS , Sλ is compact. Since Sλ is a compact subset of S, Sλ is a
convergent sequence for every λ ∈ ΛS . Therefore, Pλ is a wcs-network for Sλ in
Xλ by Lemma 2.11. This proves that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double σ-finite
wcs-cover for X.
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Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double σ-finite wcs-cover for X.
For each convergent sequence S of X, there exists a finite subset ΛS of Λ such
that S =

⋃

{Sλ : λ ∈ ΛS}, and for each λ ∈ ΛS , Sλ is a convergent sequence and
Pλ is a wcs-network for Sλ in Xλ. For each λ ∈ ΛS , it follows from Lemma 2.11
that Sλ = fλ(Lλ) for some compact subset Lλ of Mλ. Then L =

⋃

{Lλ : λ ∈ ΛS}
is a compact subset of M and f(L) = S. This proves that f is a pseudo-sequence-
covering mapping.

(4). Necessity. Let f be a sequentially-quotient mapping. For each convergent
sequence S of X, there exists a convergent sequence L of M such that f(L) is a
subsequence of S. As in the necessity of (1), f(L) is eventually in some Xλ and
Pλ is a cs-network for f(L) in Xλ. This proves that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a
double σ-finite cs∗-cover for X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double σ-finite cs∗-cover for X.
For each convergent sequence S of X, there exist λ ∈ Λ and a subsequence Sλ of
S such that Pλ is a cs∗-network for Sλ in Xλ. It follows from Lemma 2.11 that
Sλ = f(Lλ) for some compact subset Lλ of Mλ. Then f is a subsequence-covering
mapping. By [8, Proposition 2.1], f is a sequentially-quotient mapping. �

By Theorem 3.6 and Theorem 3.7, we get the following.

Corollary 3.8. Let (f,M,X, {Pλ,n}) be an ls-σ-finite Ponomarev-system. Then
the following are equivalent:

(1) f is a sequence-covering s-mapping.
(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-countable σ-finite cs-cover for X.

The above statement still holds if we replace the pair (”sequence-covering”, ”cs-
cover”) by any of the following pairs: (”compact-covering”, ”cfp-cover”),
(”pseudo-sequence-covering”, ”wcs-cover”) and (”sequentially-quotient”, ”cs∗-
cover”) and replace the pair (”s-mapping”, ”point-countable”) by any of the
following pairs: (”msss-mapping”, ”locally countable”) and (”mssc-mapping”,
”locally finite”).

Now, we systematically get characterizations of images of locally separable
metric spaces under covering-mappings. For other characterizations of s-images
(resp. cs-images) of locally separable metric spaces, see [1], [18] (resp. [12]). For
a characterization of sequence-covering msss-images of locally separable metric
spaces, see [4].

Corollary 3.9. The following are equivalent for a space X.

(1) X is a sequence-covering s-image (resp. cs-image) of a locally separable
metric space.

(2) X has a point-countable (resp. compact-countable) double σ-finite cs-
cover.

Moreover, the statement still holds if we replace the pair (”sequence-covering”,
”cs-cover”) by any of the following pairs: (”compact-covering”, ”cfp-cover”),
(”pseudo-sequence-covering”, ”wcs-cover”) and (”sequentially-quotient”, ”cs∗-
cover”).
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Proof. (1) ⇒ (2). Let X be a sequence-covering s-image (resp. cs-image) of a
locally separable metric space. Then there exists a sequence-covering s-mapping
(resp. cs-mapping) f : M −→ X from a locally separable metric space M onto
X. Since M is locally separable metric space, M = ⊕λ∈ΛMλ where each Mλ

is a separable metric space by [6, 4.4.F]. Since each Mλ is a separable metric
space, Mλ has a countable base Bλ = {Bλ,n : n ∈ N}. For each n ∈ N, let
Bλ,n = {Bλ,n,Mλ}, then

⋃

{Bλ,n : n ∈ N} is a σ-finite cs-network for Mλ. It
is easy to see that {(Mλ, {Bλ,n}) : λ ∈ Λ} is a double σ-finite cs-cover for M .
By Lemma 3.3, we have that {(f(Mλ), {f(Bλ,n)}) : λ ∈ Λ} is a point-countable
(resp. compact-countable) double σ-finite cs-cover for X.

(2) ⇒ (1). Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a point-countable (resp. compact-
countable) double σ-finite cs-cover for X. Then the ls-σ-finite Ponomarev-system
(f,M,X, {Pλ,n}) exists. By Corollary 3.8, X is a sequence-covering s-image (resp.
cs-image) of a locally separable metric space.

The remaining parts are similarly proved. �

Corollary 3.10. The following are equivalent for a space X.

(1) X is a sequence-covering (resp. compact-covering, pseudo- sequence-
covering, sequentially-quotient) msss-image of a locally separable metric
space.

(2) X has a σ-locally countable cs-network (resp. cfp-network, wcs-network,
cs∗-network) consisting of cosmic subspaces.

(3) X has a σ-locally countable cs-network (resp. cfp-network, wcs-network,
cs∗-network) consisting of ℵ0-subspaces.

(4) X has a locally countable double σ-finite cs-cover (resp. cfp-cover, wcs-
cover, cs∗-cover).

Proof. (1) ⇒ (2). In view of the proof of [4, Theorem 2.8], we have that X has
a σ-locally countable cs-network (resp. cfp-network, wcs-network, cs∗-network)
consisting of cosmic subspaces.

(2) ⇒ (3). Let P =
⋃

{Pn : n ∈ N} be a σ-locally countable cs-network (resp.
cfp-network, wcs-network, cs∗-network) for X consisting of cosmic subspaces.
We shall prove that each P ∈ P is an ℵ0-space.

For each n ∈ N and x ∈ P , since Pn is locally countable, there exists an open
neighborhood Ux,n of x such that Ux,n meets only countably many members of Pn.
Since P is a cosmic space and {Ux,n : x ∈ P} is an open cover for P , there exists a
countable subset C of P such that {Ux,n : x ∈ C} is a countable open cover for P .
Then P meets only countably many members of Pn. This implies that P meets
only countably many members of P. Therefore Q = {Q∩P : Q ∈ P} is countable.
Since P is a cs-network (resp. cfp-network, wcs-network, cs∗-network) for X, Q
is a cs-network (resp. cfp-network, wcs-network, cs∗-network) for P . Then Q
is a countable cs-network (resp. cfp-network, wcs-network, cs∗-network) for P .
This proves that P is an ℵ0-space.

(3) ⇒ (4). Let P =
⋃

{Pn : n ∈ N} be a σ-locally countable cs-network (resp.
cfp-network, wcs-network, cs∗-network) for X consisting of ℵ0-subspaces, where
each Pn = {Pαn : αn ∈ An} is a locally countable family. For each n ∈ N, since
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each Pαn is an ℵ0-space, Pαn has a countable cs-network (resp. cfp-network,
wcs-network, cs∗-network) Pαn = {Pαn,i

: i ∈ N} where Pαn,i
= Pαn for every

i < n. For each i ∈ N, let Qαn,i
= {Pαn}∪{Pαn,j

: j ≤ i}. Then
⋃

{Qαn,i
: i ∈ N}

is a σ-finite cs-network (resp. cfp-network, wcs-network, cs∗-network) for Pαn .
For each n ∈ N, let Qn =

⋃

{Qαi,n
: αi ∈ Ai, i ≤ n}. Since each Pn is locally

countable and each Qαi,n
is finite, Qn is locally countable. This proves that

{(Pαn , {Qαn,i
}) : αn ∈ An, n ∈ N} is a locally countable σ-finite double cs-cover

(resp. cfp-cover, wcs-cover, cs∗-cover) for X.
(4) ⇒ (1). Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a locally countable double σ-

finite cs-cover (resp. cfp-cover, wcs-cover, cs∗-cover) for X. Then the ls-σ-finite
Ponomarev-system (f,M,X, {Pλ,n}) exists. By Corollary 3.8, X is a sequence-
covering (resp. compact-covering, pseudo-sequence-covering, sequentially-quotient)
msss-image of a locally separable metric space. �

Corollary 3.11. The following are equivalent for a space X.

(1) X is a sequence-covering (resp. compact-covering, pseudo-sequence-covering,
sequentially-quotient) mssc-image of a locally separable metric space.

(2) X has a σ-locally finite cs-network (resp. cfp-network, wcs-network, cs∗-
network) consisting of cosmic subspaces.

(3) X has a σ-locally finite cs-network (resp. cfp-network, wcs-network, cs∗-
network) consisting of ℵ0-subspaces.

(4) X has a locally finite double σ-finite cs-cover (resp. cfp-cover, wcs-cover,
cs∗-cover).

Proof. (1) ⇒ (2). Let f : M −→ X be a sequence-covering (resp. compact-
covering, pseudo-sequence-covering, sequentially-quotient) mssc-mapping from a
locally separable metric space M onto X, and let {Xn : n ∈ N} be the family of
metric spaces such that M is a subspace of

∏

n∈N
Xn, and for each x ∈ X, there

exists a sequence {Vx,n : n ∈ N} of open neighborhoods of x in X such that each

pn(f−1(Vx,n)) is a compact subset of Xn. Since M is a locally separable metric
space, M = ⊕λ∈ΛMλ, where each Mλ is a separable metric space by [6, 4.4.F].
Since each Xn is a metric space, Xn has a σ-locally finite base Cn

⋃

{Cn,i : i ∈ N},
where each Cn,i is locally finite. Assume, if necessary, that Cn,i ⊂ Cn,i+1 for every
i ∈ N. For each n ∈ N, we define

Bn =
{

⋂

i≤n

p−1
i (Ci) :

⋂

i≤n

p−1
i (Ci) ⊂ Mλ, Ci ∈

⋃

j≤n

Ci,j, i ≤ n, λ ∈ Λ
}

,

and

B =
⋃

{Bn : n ∈ N},Pn = f(Bn),P =
⋃

{Pn : n ∈ N}.

Then B is a base for M consisting of separable subsets. This implies that B is a cs-
network (resp. cfp-network, wcs-network, cs∗-network) for M consisting of cos-
mic subspaces. Since f is a sequence-covering (resp. compact-covering, pseudo-
sequence-covering, sequentially-quotient) mapping, P is a cs-network (resp. cfp-
network, wcs-network, cs∗-network) for X consisting of cosmic subspaces.
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For x ∈ X and n ∈ N, let Ux,n =
⋂

i≤n Vx,i. Then Ux,n is an open neighborhood

of x in X. For each i ∈ N, since pi(f−1(Vx,i)) is a compact subset of Xi and Ci,j is
locally finite, pi(f

−1(Vx,i)) meets only finitely many members of Ci,j for each j ∈
N. So f−1(Vx,i) meets only finitely many members of {p−1

i (Ci) : Ci ∈
⋃

j≤n Ci,j

}

.

This implies that f−1(Ux,n) meets only finitely many members of Bn. Then Pn

is locally finite. This implies that P is σ-locally finite.
By the above inclusions, P is a σ-locally finite cs-network (resp. cfp-network,

wcs-network, cs∗-network) for X consisting of cosmic subspaces.
(2) ⇒ (3) ⇒ (4) ⇒ (1). In view of the proof (2) ⇒ (3) ⇒ (4) ⇒ (1) of Corollary

3.10. �

Remark 3.12. Since subsequence-covering mappings and sequentially-quotient
mappings are equivalent for metric domains, “sequentially-quotient” in the above
results can be replaced by “subsequence-covering”.
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