
ACTA MATHEMATICA VIETNAMICA 407
Volume 27, Number 3, 2002, pp. 407-424

PLURIPOTENTIAL THEORY ON ANALYTIC SETS

AND APPLICATIONS TO ALGEBRAICITY

A. ZERIAHI

Dedicated to the memory of Le Van Thiem

1. Introduction

Our aim here is first to investigate some aspects of pluripotential theory on ana-
lytic sets and then to give, as an application, a quantitative version of Sadullaev’s
criterion of algebraicity for complex analytic sets ([Sa]) in terms of their local be-
haviour in the spirit of our earlier work on the subject (see [Z2]). By an analytic
subset in C

N we mean a local irreducible analytic subset of C
N and a piece of an

algebraic set will be a local irreducible analytic subset of an irreducible algebraic
subvariety of C

N of the same dimension. Then given an analytic subset X in C
N ,

the fundamental criterion of algebraicity of A. Sadullaev [Sa] states that X is a
piece of an algebraic set if and only if there exists a compact subset K ⊂ X such
that for any subdomain U b X there exists a constant R = R(K;U) > 0 such
that the following polynomial inequalities known as Bernstein-Walsh inequalities
hold:

‖f‖U ≤ ‖f‖K Rd, ∀f ∈ Ad(X), ∀d ∈ N,(1.1)

where Ad(X) :=
{

P |X;P ∈ Pd(C
N )

}

and Pd(C
N ) is the space of polynomials in

N complex variables of degree at most d. Moreover if X is a piece of an algebraic
set then the Bernstein-Walsh inequalities (1.1) hold for any non pluripolar com-
pact subset K ⊂ X and any subdomain U b X. Observe that the best constant
R(K;U) > 0 for which (1.1) holds is given by the following formula

R(K;U)−1 = τ(K;U) := inf
d≥1

τd(K;U)(1.2)

where for each d ∈ N
∗

τd(K;U) := inf
{

‖f‖
1/d
K ; f ∈ Ad(X), ‖f‖U = 1

}

(1.3)

is the Chebyshev constant of order d of the compact set K with respect to the set
U . Then it is possible to formulate Sadullaev’s criterion of algebraicity saying
that X is a piece of an algebraic set if and only if for some compact set K and
some subdomain U b X containing K, the Chebyshev constant τ(K;U) > 0.

Our main goal is to give more precise statement in terms of the behaviour of
the Chebyshev constant defined by (1.3). First we show that these constants can
be localised and expressed as the algebraic multiplicities of the analytic subset
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X at its regular point and then we use these multiplicities in order to estimate
the Hilbert function of X defined as follows

hX(d) := dimC Ad(X), d ∈ N
∗.(1.4)

It turns out that the Hilbert function of X coincides with the Hilbert function of
the following algebraic set

Z(X) := loc(I(X))(1.5)

which is the set locus of the polynomial ideal I(X) of the set X defined as follows

I(X) :=
{

P ∈ C[z1, . . . , zN ];P |X ≡ 0
}

.(1.6)

In deed, from the Nullstellensatz of Hilbert (see [Ha]) if follows that I(Z) ≡
Rad(I(X)) = I(X), since Z = Z(X) := loc(I(X)). Then the following identity
holds

hZ(d) = hX(d), ∀d ∈ N.(1.7)

On the other hand, it is well known in Algebraic Geometry that for d large enough,
the Hilbert function of Z is a polynomial in d of degree p = p(Z) := dimCZ whose
leading coefficient is δ(Z)·dp/p!, where δ(Z) is the degree of algebraicity of Z that
is the number of points of intersection of Z with a generic (N−p)-plane in C

N (see
[Ha]). Thus the asymptotic behaviour of the Hilbert function hX(d) will give us
useful informations about the algebraic subvariety Z(X). In particular we obtain
an estimate of the degree of algebraicity of Z(X) in terms of its minimal graded
multiplicity. Some of the results obtained here are similar to our earlier results
on the subject (see [Z2]), but to make the paper selfcontained we have presented
direct proofs of the main results in the spirit of our paper [Z2]. Furthermore we
show that the criterion of algebraicity obtained here can be easily extended to
real analytic subsets.

2. Chebyshev constants and graded multiplicities

2.1. Chebyshev constants

From our point of view, it is also natural to consider the following induced
class of plurisubharmonic functions on X:

LX := PSH(X) ∩
{

v|X; v ∈ L(CN )
}

.(2.1)

Here we denote by PSH(X) the cone of plurisubharmonic functions on X in the
weak sense, which are not identically −∞ on X. Then PSH(X) ⊂ L1

loc(X) and
it is well known that PSH(X) endowed with the L1

loc topology is a closed subset
(see [Hö 2]).

Define L(X) to be the class of plurisubharmonic functions of restricted loga-
rithmic growth on X, which is the closure of LX in PSH(X). Then the class
L(X) is a convex translation-invariant class on X which contains the real con-
stants (see [Z2]). To each subset E b X we can associate its L(X)-extremal
function defined by the following formula

LE(x) := sup
{

v(x); v ∈ L(X), v|E ≤ 0
}

, x ∈ X(2.2)
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A compact subset B ⊂ X will be called pluriregular in X if for any plurisubhar-
monic function u in a neighbourhood of B the inequality u ≤ 0 quasi-everywhere
on B implies the inequality u ≤ 0 everywhere on B (see [Sic2] for the case of C

N

and [Z1] for the general case).

Let B ⊂ X be a fixed pluriregular compact subset of X. Then for any compact
subset K ⊂ X, the L(X)-capacity of K with respect to B is defined as follows

capL(K;B) := exp
(

− sup
x∈B

LK(x)
)

.(2.3)

On the other hand, for each integer d ∈ N
∗ and each compact subset K ⊂ X, we

can define the dth Chebyshev constant of the compact set K with respect to B as
follows

τd(K;B) := inf
{

‖f‖
1/d
K ; f ∈ Ad(X), ‖f‖B = 1

}

.(2.4)

The relationship between capacity and Chebyshev constants is given by the
following result, which can be proved using a classical argument (see [Sic2]).

Lemma 2.1. Let B be a pluriregular compact subset of X, then for each compact
subset K ⊂ X, the following limit exists

τ(K;B) := inf
d≥1

τd(K;B) = lim
d→+∞

τd(K;B).(2.5)

Moreover the following identity holds:

τ(K;B) = capL(K;B).(2.6)

Proof. We proceed as in [Sic2]. For each d ∈ N
∗, we define the following function

Φd(x) := sup
{

|f(x)|1/d; f ∈ Ad(X), ‖f‖K ≤ 1
}

, x ∈ X.(2.7)

Then it is clear from the definitions (2.4) and (2.7) that the following equation
holds

τd(K;B) =
1

supB Φd
, ∀d ∈ N

∗.(2.8)

Now it is clear from the definition (2.7) that for each x ∈ B, the sequence of real
numbers d 7−→ (Φd(x))

d is logarithmically superadditive and then the following
limit exists

ΦK(x) := lim
d→+∞

Φd(x) = sup
d≥1

Φd(x)(2.9)

in R
+ ∪ {+∞}. Clearly, the equations (2.9) imply that sup

B
ΦK = sup

d≥1

(

sup
B

Φd

)

.

Moreover, for any x ∈ B the following inequalities holds

ΦK(x) ≤ lim
d

inf
(

sup
B

Φd

)

≤ lim
d

sup
(

sup
B

Φd

)

≤ sup
d

(

sup
B

Φd

)

= sup
B

ΦK

and then lim
d→+∞

(

sup
B

Φd

)

= sup
B

ΦK , which proves the identities (2.5). The equa-

tion (2.6) follows from the fact that LK = log ΦK on X (see [Sic1], [Z1].
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We can also use a normalization with respect to a probability measure ϑ on
B as for Alexander’s projective capacity (see [A]). The measures which will be
interesting for us are the so called admissible measures defined as follows.

Definition 2.1. A probability measure ϑ on a compact subset B ⊂ X is called
an admissible measure on B if any u ∈ PSH(X) is ϑ-integrable on B.

This is a variant of the definition introduced by Ciciak C
N (see [Sic2]).

Let us now give some examples.

Example. 1) Let U b Xreg be a coordinate neighbourhood in X such that there
exists a biholomorphic mapping φ from U onto the open unit polydisc in C

n

which extends continuously to U . Then the push-forward by φ of the normalized
Lebesgue measure on the closed unit polydisc in C

n (resp. on the torus T
n) is an

admissible measure on U (resp. on ∂0U := φ−1(Tn)).

2) Let K be a non pluripolar compact subset of X which has a Stein neigh-
borhood D. Then it is known that there exists a locally bounded plurisubhar-
monic function w of D such that the Monge-Ampère measure (ddcw)n puts a
positive mass on K: for example the relative equilibrium measure of the con-
denser (K,D) always has this property (see B-T], [B]). Then it is also known
that any plurisubharmonic function u on X is locally integrable with respect
to the Monge-Ampère measure (ddcw)n (see [D]). Therefore the restriction of
the measure ϑw := (ddcw)n, up to a normalization, gives raise to an admissible
measure on K.

Let

τd(K;B;ϑ) := inf
{

‖f‖
1/d
K ; f ∈ Ȧd(X;B;ϑ)

}

, d ∈ N
∗,(2.10)

where

Ȧd(X;B;ϑ) :=
{

f ∈ Ad(X);

∫

B

log |f |dv = 0
}

.(2.11)

It is clear that τd(K;B) ≤ τd(K;B;ϑ) for any d ∈ N
∗. The main advantage of

this normalization is explained by the following result.

Lemma 2.2. The sequence of real numbers defined by the formula

Td(K;B;ϑ) :=
(

τd(K;B;ϑ)
)d
, d ∈ N

∗(2.12)

satisfies the following logarithmic subadditivity property

Td+d′(K;B;ϑ) ≤ Td(K;B;ϑ) · Td′(K;B;ϑ)(2.13)

for any d ∈ N
∗ and d′ ∈ N∗. Thus the following limit exists

τ(K;B;ϑ) := lim
d→+∞

τd(K;B;ϑ) = inf
d≥1

τd(K;B;ϑ).(2.14)
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The proof of such results is standard and will be be omitted (see [Sic2], [T]).
The constant defined by the formula (2.14) will be called the Chebyshev constant
of K with respect to (B,ϑ).

In order to compare the Chebyshev constants defined by (2.4) and (2.10), we
will need the next theorem, which is an analogue of a result of Siciak (see [Sic
2]).

Lemma 2.3. Let X be an analytic subset and B ⊂ X a pluriregular compact
subset. If ϑ is an admissible measure on B, then for any open subset ω b X
such that B ⊂ ω, there exists a constant C > 0 such that the following inequality
holds:

∣

∣

∣

∫

B

udϑ
∣

∣

∣
≤ C ·

∫

ω

|u|dλ, ∀u ∈ PSH(X).(2.15)

where λ is the induced Lebesgue measure on ω.

Proof. Assume that the inequality (2.15) is not satisfied, then there exists a
sequence (uj) of functions in PSH(X) such that

∫

ω

|uj |dλ = 1 for any j ∈ N
∗ and lim

j→+∞

∣

∣

∣

∫

B

ujdϑ
∣

∣

∣
= +∞

From the submean-value inequality, we easily deduce that for any compact subset
K ⊂ ω, there exists a constant A > 0 such that

max
K

uj ≤ A

∫

ω

|uj |dϑ = A for any j ∈ N
∗.

Hence the sequence (uj) is locally bounded above on ω and then

lim
j→+∞

∫

B

ujdϑ = −∞.

Now fix an arbitrary sequence (εj) of positive numbers such that
∑

j
εj = 1. Then

the function u :=
∑

j
εjuj is plurisubharmonic on X and since the series converge

in L1(ω), we conclude that u ∈ PSH(X). Therefore we have

∑

j

εj

∫

B

ujdϑ =

∫

B

udϑ > −∞.

On the other hand, since

lim
j→+∞

∫

B

ujdϑ = −∞,
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we can choose the sequence (εj) such that

∑

j

εj ·
(

∫

B

ujdϑ
)

= −∞,

which gives a contradiction.

Now we can prove the following result which is a generalisation of a result in
[A] (see also [Sic2]).

Theorem 2.1. Let B be a non pluripolar compact subset of X and ϑ an admis-
sible measure on B. Then for each integer d ≥ 1, there exists a constant γd > 0
such that

1

d
log ‖f‖B ≤

1

d

∫

B

log |f |dϑ+ γd, ∀f ∈ Ad(X).(2.16)

In particular, for any compact subset K ⊂ X, the following estimates holds:

log τd(K;B) ≤ log τd(K;B;ϑ) ≤ log τd(K;B) + γd(2.17)

Moreover if X is a piece of an algebraic set and B ⊂ X is a pluriregular compact
subset then the best constants γd in (2.16) satisfy the condition γ := sup

d
γd < +∞

and the following inequality holds

max
B

u ≤

∫

B

udϑ + γ, ∀u ∈ L(X)(2.18)

Proof. Since B is pluripolar, it follows that ‖.‖B is a norm on the finite dimen-
sional space Ad(X). On the other hand, since an admissible measure cannot have
a pluripolar carrier, the maping

f 7−→

∫

B

log |f |dϑ

is well defined and is continuous on the sphere Ȧd :=
{

f ∈ Ad(X); ‖f‖B = 1
}

,
which is a compact subset of Ad(X). Therefore the positive constant

γd := − inf
{

(1/d)

∫

B

log |f |dϑ; f ∈ Ȧd

}

is finite and satisfies the inequality (2.17). The estimates (2.18) follow from (2.17)
and the definitions (2.4) and (2.10).

Now assume that X is a piece of an algebraic set in C
N , then we know from

[Sa] (see also [Z2]) that the following extremal function

LB(x) := sup
d≥1

{1

d
log |f(x)|; f ∈ Ad(X), ‖f‖B = 1

}

, x ∈ X(2.19)
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is locally bounded on X. Moreover, it follows from [Z2] that the following set

K :=
{

u ∈ L(X);max
B

u = 0
}

is compact in PSH(X) and then the right hand side of (2.15) is bounded on
K, which implies that the left hand side is also bounded on K and proves that
γ := sup

d
γd < +∞.

Let us now prove the estimate (2.18). For every u ∈ L(X) there exists a
sequence (dj) of positive integers and a sequence of holomorphic functions (fj)
with fj ∈ Adj

(X) for any j ∈ N such that

u =
(

lim sup
j

(1/dj) log |fj|
)∗

on X.

Then using the estimate (2.16), the Hartogs lemma and Fatou’s lemma, we obtain
the estimate (2.18) for u.

Corollary 2.1. Let X be a piece of an algebraic set, B ⊂ X a pluriregular
compact subset and ϑ an admissible measure on B. Then there exists a constant
C > 0 such that for any compact subset K ⊂ X the following estimates hold

τ(K;B) ≤ τ(K;B;ϑ) ≤ Cτ(K;B).(2.20)

This means that in the algebraic case, the two capacities are equivalent and
we know that their nul sets are precisely the pluripolar sets in X (see [Z1]).

2.2. Graded multiplicities

Now using the Chebyshev constants defined in the last subsection, we are going
to define for each d ∈ N

∗, a dth graded multiplicity at each regular point a ∈ Xreg

and use it to give an upper bound of the degree of the Hilbert function hX(d) of
the analytic subset X.

Most of the results presented in this section are contained in our previous work
(see [Z2]), but here we give a direct proof. As before, let a ∈ Xreg be a regular

point and φ := U → ∆
n

a regular coordinate system at the point a. Let ∆n
s be

the open polydisc of radius s > 0 centered at the origin in C
n and consider the

sets B := U and Bs := φ−1(∆
n
s ), 0 < s < 1. Then the following result will be

important.

Lemma 2.4. Let a ∈ Xreg be a fixed point and (U, φ) a regular coordinate system
at a. Then the following properties hold:

1) For each integer d ≥ 1, the following limit exists and is finite

κd(a) := lim
s→0

log τd(Bs;B)

log s
;(2.21)

2) For any admissible measure ϑ on B := U , the following formula holds

κd(a) = lim
s→0+

log τd(Bs;B;ϑ)

log s
, ∀d ≥ 1;(2.22)
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3) The sequence of integers d 7−→ λd(a) := d · κd(a) satisfies the following
superadditivity property

λd+d′(a) ≥ λd(a) + λd′(a), ∀d ∈ N∗, ∀d′ ∈ N
∗.(2.23)

So that the following limit exists

κX(a) := lim
d→+∞

κd(a) = sup
d≥1

κd(a)(2.24)

in R
+ ∪ {+∞}.

Proof. From the definition of the dth Chebyshev constant we get the following
formula

log τd(Bs;B)

log s
= sup

{ log ‖f‖Bs

d · log s
; f ∈ Ad(X), ‖f‖B = 1

}

(2.25)

for any s ∈]0, 1[ and any d ∈ N
∗. It is well known that for each f ∈ Ad(X) with

‖f‖B = 1, the function

s 7−→ log ‖f‖Bs = sup
{

log |f ◦ φ−1(z)|; ‖z‖ ≤ s
}

is a convex (increasing) function of log s on the real interval ]0, 1[. Hence the
following function

s ∈]0, 1[7−→
log τd(Bs;B)

log s

is an increasing function with positive real values. Thus the limit in (2.21) exists
and the following formula holds

κd(a) = inf
s>0

(

sup
{ log ‖f‖Bs

d · log s
; f ∈ Ad(X), ‖f‖B = 1

})

(2.26)

for any d ∈ N
∗.

To prove the formula (2.22), one can apply Corollary 2.1 on admissible mea-
sures to obtain the following estimates:

log τd(Bs;B)

log s
+

cd
log s

≤
log τd(Bs;B;ϑ)

log s
≤

log τd(Bs;B)

log s
(2.27)

for any s ∈]0, 1[ and any d ≥ 1. Taking the limit in (2.27) when s → 0+, we
obtain the formula (2.22).

Now to prove the subadditivity property (2.23) of the lemma, apply the formula
(2.22) to the normalized Lebesgue measure ϑ on B := U which is an admissible
measure on B as it was seen in the examples above. Then we obtain the following
formula

κd(a) = lim
s→0+

log τd(Bs;B;ϑ)

log s
, ∀d ≥ 1.(2.28)

From the formula (2.28) and the subadditivity of the sequence

d 7−→ logTd(Bs;B;ϑ) = d · log τd(Bs;B;ϑ)
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it follows that the sequence d 7−→ λd(a) is superadditive and then the limit

κX(a) := lim
d→+∞

κd(a) = sup
d≥1

κd(a)

exists and may be infinite.

Now we can prove the following fundamental result.

Theorem 2.2. Let a ∈ Xreg be a regular point and (U, φ) a regular coordinate
system at the point a. Then the following properties hold:

1) The number defined by (2.21) satisfy the following identity

κd(a) = sup
{

(1/d) ·mf (a); f ∈ Ad(X), f 6≡ 0
}

, ∀d ∈ N
∗(2.29)

where mf (a) is the order of vanishing of the holomorphic function f at the regular
point a. In particular, the numbers defined by the formula (2.21) are rational
numbers which do not dependant on the regular coordinate system at the point a.

2) For each d ≥ 1, the function κd is upper semi-continuous on Xreg.

Proof. From the proof of Lemma 2.4, we get the following formula

κd(a) = inf
s>0

(

sup
{ log ‖f‖Bs

d · log s
; f ∈ Ad(X), ‖f‖B = 1

}

)

(2.30)

for any d ∈ N
∗. On the other hand, we know that for any f ∈ Ad(X) such that

‖f‖B = 1, the number defined by the following formula:

ν(log |f |; a) := inf
s>0

log ‖f‖Bs

log s
(2.31)

is equal to the Lelong number of the plurisubharmonic function log |f | at the point
a (see [Lel], [Ki]) and coincide with the order of vanishing of the holomorphic
function f at the point a ∈ Xreg (see [Hö 1]), that is

ν(log |f |; a) = mf (a).(2.32)

Let us denote by µd(a) the right hand side of the identity (2.29) and by
Ad(X;B) the set of all polynomials f ∈ Ad(X) normalized by the condition
‖f‖B = 1. Then from the expression (2.31) and the equation (2.32), we deduce
the following formula

µd(a) = sup
f∈Ad(X;B)

{

inf
s>0

log ‖f‖Bs

d · log s

}

=
1

d
sup

f∈Ad(X;B)
ν(log |f |; a)(2.33)

for any d ∈ N
∗. Therefore, from the formulas (2.30) and (2.33) it follows that

µd(a) ≤ κd(a).

On the other hand, fix an integer d ∈ N
∗ and let κ < κd(a). Then by the

formula (2.30). it follows that for every s ∈]0, 1[, there exists fs ∈ Ȧd(X;B) such
that

log ‖f‖Bs

log s
> κ.(2.34)
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Taking a decreasing sequence
(

sj

)

j≥0
of numbers in ]0, 1[ converging to 0, we

obtain a sequence
(

fsj

)

j≥0
from the set Ȧd(X;B) satisfying the estimate (2.34)

for s = sj and f = fsj
with j ≥ 1. Since Ad(X) is of finite dimension, the

set Ȧd(X;B) is compact and then, taking a subsequence if necessary, we can
assume that the sequence

(

fsj

)

j≥0
converges uniformly on B to a polynomial

f ∈ Ȧd(X;B). Since the function s 7−→ log ‖f‖Bs/ log s is increasing on [0, 1]
for any holomorphic function f , from the formula (2.34) it follows that for any
t ∈]0, 1[ and any j large enough so that 0 < sj < t, the following inequalities hold

log
∥

∥fsj

∥

∥

Bt

log t
≥

log
∥

∥fsj

∥

∥

Bsj

log sj
> κ.(2.35)

Since log ‖f‖Bt = lim
j→+∞

log
∥

∥fsj

∥

∥

Bt
for any t ∈]0, 1[, it follows from (2.35) that

the following inequality holds:

log ‖f‖Kt

log t
≥ κ, ∀t ∈]0, 1[(2.36)

From the formula (2.33) and the inequality (2.36), we get the inequality µd(a) ≥
κ, which implies that µd(a) ≥ κd(a). Thus we have proved that κd(a) = µd(a).
Therefore we obtain (2.29).

The upper semicontinuity of the function κd on Xreg follows by a standard
argument from the upper semi-continuity of the mapping (f, a) 7−→ ν(log |f |; a)

on Ȧd(X) ×Xreg and the compactness of the set Ȧd(X;B).

The number µd(a) is called the graded multiplicity of order d of X at the point
a and the number µX(a) := sup

d
µd(a) is called the graded multiplicity of X at

the point a. By the last theorem, we have κd(a) = µd(a) for any d.

3. A criterion of algebraicity for analytic subsets

Our goal here is to use the estimate on the Hilbert function of an analytic
subset X in terms of its graded multiplicities at its regular points and to deduce
a version of our previous criterion of algebraicity [Z2] which will be extended to
the real case.

3.1. Asymptotic estimate on the Hilbert function

Let us recall here the main estimate obtained in [Z2] on the Hilbert function
of an analytic subset in terms of the sequence of graded multiplicities of X at a
regular point a ∈ Xreg defined by the following formula

µd(a) := sup
{

(1/d)mf (a); f ∈ Ad(X)
}

, d ∈ N
∗.(3.1)

Theorem 3.1. Let X be an analytic subset of dimension n in C
N . Assume that

the minimal graded multiplicity of X defined by µ(X) := inf
a∈Xreg

µX(a) is finite.
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Then the Hilbert function of X defined by the formula (1.4) satisfy the following
asymptotic estimate

lim sup
d→+∞

hX(d)

dn
≤ µ(X)n.(3.2)

Proof. For convenience, let us recall the main steps of the proof of this theorem.
Fix a regular point a ∈ Xreg, an open neighbourhood U ⊂ X of a and a biholo-
morphic mapping φ from U onto the open unit polydisc ∆n in C

n, which extends
continuously to B := U . For each f ∈ Ad(X), define f̃ := f ◦ φ−1, which is
holomorphic on ∆n and continuous up to the boundary. Let us denote by

Qd :=
{

f̃ ; f ∈ Ad(X)
}

for d ∈ N
∗.

The main idea of the proof, which is the same as in [Z2], is to compare the
dimension of the complex linear space Qd with the dimension of the well known
complex linear space Pm(Cn) for a suitable value of the integer m := m(d) and
d large enough. To this end we will consider these spaces as subspaces of the
Banach space Cs := C(∆

n
s ; C) of complex valued continuous functions on the

compact polydisc ∆
n
s endowed with the norm ‖.‖s of uniform convergence on

∆
n
s . In this way, we will estimate the distance of any element of Qd to the finite

dimensional subspace Pm(Cn) for a fixed integer m ≥ 1. Indeed, each F ∈ Qd is

holomorphic on ∆n and continuous on ∆
n
, so it can be expanded into an entire

series on the polydisc ∆n as follows

F (z) =
∑

α∈Nn

cαz
α, z ∈ ∆n(3.3)

with uniform convergence on compacts subsets of ∆n. Let us consider the Taylor
polynomials of the function F given by the formula Tm(z) :=

∑

|α|≤m

cαz
α, for

m ∈ N.

Fix a real number θ such that 0 < θ < 1/2, take a real number 0 < s < θ and
put t := s/θ < 1. Then an easy computation using Cauchy’s inequalities shows
that there exists a constant cn depending only on the dimension n such that the
following estimates hold:

‖F − Tm‖s ≤ cn(n+m)n−1θm+1‖F‖t, ∀F ∈ Qd, ∀m ∈ N(3.4)

which imply immediately the following estimates:

distCs

(

F ;Pm(Cn)
)

≤ cn(n+m)n−1θm+1‖F‖t(3.5)

for any F ∈ Qd, m ∈ N and d ∈ N, the distance being calculated in the Banach
space Cs. On the other hand, let us consider the numbers

αd(s) := sup
F∈Qd

{ log ‖F‖s − log ‖F‖1

log s

}

=
d · log τd(Us;U)

log s
(3.6)

where the last identity follows immediately from (2.4). Since for each F ∈ Qd,
the function r 7−→ log ‖F‖r is a convex function of the variable log r for r ∈]0, 1],
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it is easy to derive from (3.6) the following fundamental inequality

‖F‖t ≤ ‖F‖sθ
−αd(s), ∀F ∈ Qd.(3.7)

Combining (3.5) with (3.7) we obtain the following fundamental estimates

distCs(F ;Pm(Cn)) ≤ cn(n+m)n−1‖F‖sθ
m+1−αd(s)(3.8)

for any F ∈ Qd and m ∈ N
∗.

Now take a real number µ > µ(X). According to the definition of µ(X), we
can choose the regular point a ∈ Xreg so that µX(a) < µ. Fix ε > 0 and take a
large integer d0 such that

ηd := cn(n+ µd+ εd)n−1θεd < 1, ∀d ≥ d0.(3.9)

Let d ≥ d0 and let md be the unique integer satisfying the inequalities md ≤
(µ+ ε) · d < md + 1. Observe that

lim
s→0+

αd(s) = d · κd(a) ≤ d · µX(a) < d · µ,

thanks to (3.6) and (2.1). Then it is possible to choose s so small that 0 < s < θ
and αd < d · µ, which implies that md + 1− αd(s) ≥ εd. From (3.8) and (3.9) we
deduce the following estimates:

distCs(F ;Pmd
(Cn)) ≤ ηd · ‖F‖s ≤ ‖F‖s, ∀F ∈ Fd \ {0}.(3.10)

Using (3.10) we want to show that dimAd ≤ dimPmd
(Cn). Assume that the

converse is true, that is dimQd > dimPmd
(Cn). Since Pmd

(Cn) is a subspace of
finite dimension of Banach space Cs, we can apply the “projection theorem” in
Banach spaces, known as the Krein-Krasnoselski-Milman theorem (see [Sin]), to
obtain a function F0 ∈ Fd \ {0} which is “orthogonal” to the subspace Pmd

(Cn)
in the Banach space Cs in the sense that

∥

∥F0

∥

∥

s
= distCs(F0;Pmd

(Cn)).

This contradicts (3.10) and proves the following inequality

dimAd = dimQd ≤ dimPmd
(Cn) =

(

md + n
n

)

, ∀d ≥ d0.(3.11)

Since md ∼ (µ + ε)ndn as d → +∞ and µ > µ(X) and ε > 0 are arbitrary, the
estimate (3.11) implies clearly the estimate (3.1), which prove the theorem.

The use of the Krein-Krasnoselski-Milman theorem is originated to W. Plesniak
[P]. This theorem has also been used in our earlier papers on the subject ([Z1],
[Z2]).

3.2. A criterion of algebraicity for complex analytic subsets

From the main theorem of the last section, we will derive some general infor-
mation about the Zariski closure Z(X) of an analytic set X.

The main result of this section will be the following version of our earlier
criterion of algebraicity [Z2].



PLURIPOTENTIAL THEORY ON ANALYTIC SETS 419

Theorem 3.2. Let X be an analytic subset of dimension n in C
N . Then the

following statements are equivalent:

(i) X is a piece of an algebraic set;

(ii) For any regular point a ∈ Xreg, the graded multiplicity of X at a is finite,
i.e. µX(a) := sup

d≥1
µd(a) > +∞;

(iii) For some regular point a ∈ Xreg, the graded multiplicity of X at a is finite,
i.e. µX(a) := sup

d≥1
µd(a) < +∞.

Moreover, if one of these conditions is satisfied then X is a piece of an algebraic
set whose degree of algebraicity δ(Z) satisfies the inequalities µ(X) ≤ δ(Z) ≤
µ(X)n, where µ(X) := inf

a∈Xreg

µX(a) < +∞.

Proof. The equivalence (i) ⇔ (ii) follows from our earlier criterion (see [Z2]) but
let us give here a direct proof using the same ideas as in [Z2]. Assume first that
X is a piece of an algebraic set and let Z := Z(X). By [Ch], Corollary 11.3.1),
there exists an (N − n)-plane Γ in C

N such that the projection π : Z → Z⊥

in a δ-sheeted analytic cover, where δ := δ(Z) is the degree of algebraicity of Z.
Moreover, after a unitary change of variables in C

N , we can assume that for some
constant c > 0 the following inclusion holds

Z ⊂
{

ζ = (ζ ′, ζ ′′) ∈ C
n × CN−n; |ζ ′′| ≤ c(1 + |ζ ′|)

}

,(3.12)

where ζ ′ := π(ζ) = (ζ1, . . . , ζn) and ζ ′′ := (ζn+1, . . . , ζN ).

Let S be the critical set of the projection π. We claim that, for any a ∈ Z \ S
and any w ∈ L(Z), ν(w, a) ≤ δ. Indeed given any w ∈ L(Z) we consider the
functions

π∗w(z) :=
∑

π(ζ)=z

w(ζ), z ∈ C
n.(3.13)

Since π : Z → C
n is a δ-sheeted analytic cover which satisfied (3.12), it follows

that v := π∗w ∈ Lδ(C
n) in the sense that v is plusisubharmonic on C

n and
satisfies the estimate

v(z) ≤ δ log(1 + |z|) + c, ∀z ∈ C
n,(3.14)

where C is a constant depending only on v. Let a ∈ Z \ S and a′ := π(a). Then
there exists an open neighbourhood U ′ of a′ in C

n and an open neighbouhood
U b Z of a such that the restriction πU : U → U ′ is biholomorphic. To estimate
the Lelong number νw(a), we can assume that w ≤ 0 on U . Then estimate the
Lelong number νw(a), we can assume that w ≤ 0 on U . Then it follows from
(3.13) that v = π∗w ≤ w ◦ π−1

U on U ′, which implies the following estimates:

νv(a
′) ≥ νw(a).(3.15)
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It is known that the function r → max
|z|=r

v(z) is a convex function of log r for r > 0.

Then the function

r →

max
|z|=r

v(z) − max
|z|=s

v(z)

log r − log s

is increasing for r > s for any fixed s > 0. By (3.14), this implies that

max
|z|=r

v(z) − max
|z|=s

v(z)

log r − log s
< lim

r→+∞

max
|z|=r

v(z)

log r
≤ δ(3.16)

for any r > s > 0. Letting s → 0 in (3.16) we obtain the inequality ν(v; a′) ≤ δ.
By (3.15) we have νw(a) ≤ δ. This proved our claim. Now if we apply this
inequality to w := (1/d) log |f | ∈ (Z), where f ∈ Ad(Z) \ {0} we obtain the
inequality κd(a) ≤ δ for any d ∈ N

∗, which proves that X has a finite graded
multiplicity at a which is less or equal to δ. This proves (ii) and the estimate
µ(X) ≤ δ. Since the implication (ii) =⇒ (iii) is obvious, it remain to prove
that (iii) −→ (i). Indeed let p := p(Z) be the dimension of the algebraic set
Z := Z(X). Then it is well known that hZ(d) ∼ δ · dp/p! as d tends to +∞,
where δ = δ(Z) is the degree of algebraicity of Z (see [Ha]). On the other hand,
from the identity (1.7) and Theorem 3.1 it follows that

hZ(d) = hX(d) ≤

(

d · µ+ n
n

)

∼ dnµndn/n!,

where µ = µ(X). From these estimates it follows that p ≤ n and δ(Z) ≤ µn/n!.
Since X ⊂ Z we also have p ≤ n which proves that p = n and δ(Z) ≤ µn. The
proof of the theorem is complete.

It is clear from the definitions that if X is a piece of a complex linear space
then µd(a) = 1 for any d ∈ N

∗ and then µX(a) = 1 for any a ∈ X. Surprisingly,
the converse is also true.

Corollary 3.1. Let X be an analytic subset of dimension n in C
n. Suppose that

for some a ∈ Xreg the graded multiplicity of X at a is equal to 1, i.e. µX(a) = 1,
then X is a piece of a complex linear subspace of C

N , i.e. the Zariski closure
Z(X) of X is a complex linear subspace of dimension n = dimX in C

N .

Proof. Indeed, from the last theorem it follows thatX is a piece of an algebraic set
Z of dimension n whose degree of algebraicity satisfies the inequality δ(Z) ≤ µn.
Since µ ≤ µX(a) = 1, this means that Z is a complex linear space of dimension
n = dimX.

From the last theorem, it follows that if X is a transcendental analytic subset
then the sequence of graded multiplities (µd(a)) is unbounded for any a ∈ Xreg.
It is an interesting problem to study the relationship between the transcendency
of an algebraic set X and the growth of the sequence of its graded multiplicities.
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3.3. A criterion an algebraicity for real analytic subsets

Let M ⊂ R
N be a real analytic subset of dimension n, i.e. a local irreducible

real analytic subset of dimension n in R
N . Let us denotes by IR(M) the real

polynomial ideal of M in R
N . Then we want to study the following real algebraic

subvariety:

ZR(M) := loc IR(M)

in terms of the semi-local behaviour of M . More precisely, we want to give
a necessary and sufficient (semi-local) condition on M in order that the real
algebraic subvariety ZR be of real dimension n in R

N in the same spirit as in the
complex case. Let us first define the graded multiplicity of M . Let f : M → C

be an analytic function with f 6∈ 0 and a ∈ M . If f(a) = 0, then we will denote
by mf,M (a) the order of vanishing of f at the point a ∈M . If f(a) 6= 0 then set
mf (a) = 0. We can define the following number

µd(M ; a) := sup
{

mf,M (a)/d; f ∈ Ad(M ; R), f 6≡ 0
}

, d ∈ N
∗,(3.17)

where Ad(M ; R) is the space of restrictions to M of real polynomials of degree at
most d. For each d ∈ N

∗, the number µd(M ; a) will be called the dth real graded
multiplicity of M at the point a and the following (possibly infinite) number

µ(M ; a) := sup
{

µd(M ; a); a ∈M
}

will be called the real graded multiplicity of M at the point a.

Now we can state the main result of this section

Theorem 3.3. Let M ⊂ R
n be a real analytic subset of dimension n in R

N .
Then M is a piece of a real algebraic set of dimension n in R

N if and only if M
is of finite real graded multiplicity, i.e.

µ(M) := inf
{

µ(M ; a); a ∈M
}

< +∞.

In this case, ZR(M) is an irreducible algebraic subvariety of dimension n, whose
degree of algebraicity satisfies the inequality δ(ZR(M)) ≤ µ(M)n.

A natural idea is to complexity M in a neighbourhood of a fixed regular point
and to apply our previous criterion to this complexification. To do so we then
need to compare the real graded multiplicity of M at a fixed point a ∈ M with
the graded multiplicity of its local complexification at the same point a. Before
going into the proof of our theorem, we need some preliminaries.

Let Ω be a connected complex manifold of dimension n and M a real analytic
submanifold of Ω. We say that M is totally real if for any a ∈M TaM ∩JTaM =
{0}, where J is the complex structure of Ω. If M is a totally real submanifold
of Ω of (real) dimension n, then it is generic in the sense that, for each fixed
point a ∈ M we have TaM + JTaM = TaΩ. Moreover, there exists an open
neighbourhood U of a in Ω, a holomorphic isomorphism φ : U → ∆n from U
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onto the unit polydisc in C
n such that φ(a) = 0 and a real analytic mapping

ψ : In = ∆n ∩ R
n → R

n such that

ψ(0) = 0, dψ(0) = 0 and φ(M ∩ U) =
{

x+ iψ(x); ‖x‖ < 1
}

.

Such a coordinate system (U, φ) will be called an adapted coordinate system to
M at the point a and we will write

Ms :=
{

ζ ∈M ∩ U ;ψ(ζ) = x+ iψ(x), ‖x‖ ≤ s
}

for 0 < s < 1. Then it is easy to deduced that if f is complex-valued holomorphic
function on an open subset of X such that f

∣

∣(M ∩ U) ≡ 0 then f ≡ 0 on

U . Therefore if we assume that f 6≡ 0 and f(a) = 0, then f
∣

∣(M ∩ N) 6≡ 0
so that we can define two integers, the multiplicity mf (a) of f at the point a
as a holomorphic function f in a neighbourhood of the point a in X and the
multiplicity mf,M (a) of the function f

∣

∣(M ∩ U) at the point a as a real analytic
function in a neighbourhood of a in M . It is clear that mf (a) ≤ mf,M(a). It is
quite clear that there two numbers are equal since M is generic. However, we
will state and prove this result, since we do not know any explicit reference to it.

Lemma 3.1. Let Ω be a complex manifold of dimension n and M a totally real
analytic submanifold of real dimension n. Let f be a complex-valued holomorphic
function on an open subset U ⊂ Ω such that f 6≡ 0 on U . Let a ∈ M ∩ U such
that f(a) = 0. Then we have the following identity:

mf (a) = mf,M(a).

Moreover, if (U, φ) is an adapted coordinate system to M at the point a then the
following formula holds

mf (a) = lim
s→0+

max
Ms

log |f(z)|

log s
·(3.18)

Proof. Since the problem is local, using an adapted coordinate system at the
point a, we can assume that U = ∆n, a = 0 is the origin in C

n and

M =
{

z = x+ iψ(x) ∈ C
n; ‖x‖ < 1

}

,

where ψ is a real analytic mapping from the unit cube in R
n into R

n vanishing
at order at least 2 at the origin. Then we can expand f into homogenuous
polynomials and get the following approximation:

f(z) = Pm(z) +O(‖z‖m+1)(3.19)

uniformly in a neighbourhood of the origin, where m := mf (a) and Pm is a
homogenuous polynomial of degree m. From this it follows that if Pm(z) 6= 0
then

m = lim
s→0+

log |f(sz)|

log s
= lim

s→0+

max
‖z‖≤s

log |f(z)|

log s
·(3.20)

Now let us take z ∈M then

Pm(z) = Pm(x+ iψ(x)) = Pm(x) +O(‖x‖m+1) for ‖x‖ � 1,
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since ψ vanishes at order at least 2 at the origin. Pluging this in the formula
(3.19), we get that

f(x+ iψ(x)) = Pm(x) +O(‖x‖m+1) for ‖x‖ � 1,

which proves that m = mf,M(0) and implies as before that if Pm(x) 6= 0, then
the following identities hold

m = lim
s→0+

log |f(sx+ iψ(sx))|

log s
= lim

s→0+

max
‖x‖≤x

log |f(x+ iψ(x))|

log s
·(3.21)

This yield (3.13).

Now let X be a complex analytic subset of dimension n in C
N and M ⊂ X a

totally real analytic submanifold of dimension n in some open subset of Xreg. We
will consider M as a real analytic subset of C

N by the usual embedding of R
N

into C
N and denote by I(M) the polynomial ideal of M in C

N . Let us denote
by Z(M) := locI(M) the Zariski closure of M in C

N .

Observe that since M is generic, we have I(M) = I(X) and then Z(M) =
Z(X). From the lemma above, we can easily deduce the following result.

Proposition 3.1. Let X be a complex analytic subset of dimension n in C
N and

M ⊂ X a totally real analytic submanifold of dimension n in some open set in
Xreg such that

µ(M) := inf
{

µ(M ; a); a ∈M
}

< +∞.

Then the Zariski closure Z := Z(M) = Z(X) is an algebraic subvariety of C
N of

dimension n = dimM and of degree of algebraicity δ(Z) ≤ µ(M)n.

Proof. Using the lemma, we get µd(X; a) = µd(M ; a) for any a ∈ M . Then
we deduce that µ(X) ≤ µ(M) < +∞. Therefore, the proposition follows from
Theorem 3.2.

Now let us deduce Theorem 3.3 from the last proposition. Indeed, let X be
a local complexification of M in a neighbourhood ω of a fixed regular point of
M in C

N . Then M ′ := M ∩ ω is a totally real analytic submanifold of real
dimension n of the complex manifold X ′ := X ∩ ω. Assume that µ(M) < +∞.
Since µ(M ′) ≤ µ(M), if follows from Proposition 3.1, that Z(M) = Z(M ′) is
a complex algebraic subvariety of dimension n. It is easy to see that Z(M) is
the complexification of the real algebraic subvariety ZR(M) := locIR(M), where
IR(M) is the real polynomial ideal ofM in R

N . Therefore ZR(M) is an irreducible
real algebraic subvariety of dimension n. The converse follows from Theorem 3.2,
since, by Lemma 3.1, we have µ(M ; a) = µ(X; a) for any regular point of M .

Let us mention the following open problem.

Problem. Let M ⊂ R
N be a real analytic subset. Assume that there exists a

compact subset K ⊂ M and a subdomain U b M containing K, a real constant
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R = R(K;U) ≥ 1 such that the following “real Bernstein-Walsh inequalities”
hold:

‖f‖U ≤ ‖f‖KR
d, ∀f ∈ Ad(M), ∀d ∈ N.

Is M a piece of a real algebraic set ?
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