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ON THE STEIN COVERINGS FOR 1-CONVEX SPACES

VO VAN TAN

Dedicated to the memory of Le Van Thiem

Introduction

Unless the contrary is explicitly stated, all C-analytic spaces considered here
are assumed to be non compact, finite dimensional and of C-dimension n ≥ 1.
Furthermore, 3-dimensional (resp. 2-dimensional) connected C-analytic mani-
folds, will be referred to simply as threefolds (resp. surface).

Let X be a 1-convex space with its exceptional set S. Then it is known [V10]
that X is q-complete with q = dimS + 1; also this bound is sharp; hence, the
natural generalization of such a result could be stated as follows:

Question 0.1. Is it always possible to convex X by q Stein open subsets ?

On the other hand, let M be a compact C-analytic space carrying a normally
ample, effective divisor D. Then X := M \ D is actually a 1-convex space. If
its exceptional set S consists of only finitely many points, then X is an affine
variety. So one would like to raise the following.

Question 0.2. Can such an X be covered by q := dimS + 1 open affine subsets
of M ?

This paper is organized as follows. In Section 1, various notions of positivity of
line bundles over 1-convex spaces will be established. In Section 2, an affirmative
answer to Question 0.1 is given, provided X is embeddable. In Section 3, in the
spirit of Chevalley’s criterion, a positive answer to Question 0.2 is given, provided
M is projective algebraic. Finally, in Section 4 various related problems will be
discussed.

1. The positive line bundles

Definition 1.1. (see [G], [V1]) A C-analytic space X is said to be 1-convex space
(or strongly pseudoconvex) if there exist:

a) a Stein space Y and finitely many points T ⊂ Y ,

b) a surjective, proper and holomorphic map π : X → Y inducing a biholo-
morphism X \ S ∼= Y \ T where S := π−1(T ), and

c) π ∗ OX = OY .
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Henceforth, S will be referred to as the exceptional set of X. Also, in the
special case where dimS = 0, 1-convex spaces are exactly Stein spaces.

Furthermore, a 1-convex space X is said to be embeddable if it can be realized
as a closed C-analytic subvariety in some ambient space C

k × P
ν .

Example 1.1 (see [G]). Let E be a rank q holomorphic vector bundle on some
compact C-analytic manifolds S. Assume that E∗ is ample in the sense of [H].
Let X be the total space of the bundle E. By compactifying each fibre C

q to P
q

one obtains a P
q bundle M over S, and an effective divisor D ⊂ M such that

L|D is ample since E∗ is ample, where L is the holomorphic line bundle on M
determined by D. One can check that X ≡ M \ D is an embeddable 1-convex
manifold with exceptional by D. One can check that X ∼= M \D is an embeddable
1-convex manifold with exceptional set S.

On the other hand, non embeddable 1-convex space are explicitly exhibited in
[V1, 6, 9].

Definition 1.2. Let X be a C-analytic space, let L be a holomorphic line bundle
on X and let {Ui, eij} be a system of 1-cocycles determining L.

Then L is said to be

a) weakly positive if there exists a system {hi} of positive, smooth and real
valued functions on Ui such that on Ui ∩ Uj

hj = |eij |
2hj

and such that the functions gi(z) := − log hi(z) are smooth and strongly plurisub-
harmonic on Ui

b) cohomologically positive if H i(X,LN ⊗ F ) = 0 for any N � 0, any i ≥ 1,
and any F ∈ Coh(X) := the category of analytic coherent sheaves on X.

c) ample if each stalk (LN ⊗ F )X is generated by its global sections for any
x ∈ X, any N � 0 and any F ∈ Coh(X).

It is well known that these 3 notions are equivalent when X is compact [V3].
It is our main purpose here to establish the following generalization.

Theorem 1.1. Let X be a 1-convex space with its exceptional set S and let L be
a holomorphic line bundle on X. Then the following conditions are equivalent:

i) L is weakly positive,

ii) L is cohomologically positive,

iii) L is ample.

Proof. The implication i) ⇒ ii) follows from a result in [AT] (Theorem 1). Mean-
while, the implication ii) ⇒ iii) is trivial. Assume that iii) holds. Then, in view
of a result in [VI] (Extension lemma), by suitably modifying the metric of L, one
can find an integer k(S) such that for any integer n > k(S) the linear system
|nL| will give rise to an embedding morphism Φ|nL| : X → C

k × P
ν and that
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Φ∗
|Λ|

∼= Ln, where Λ is the line bundle on C
k × P

ν determined by the linear hy-

persurface C
k ×E, with E being the hyperplane in P

ν. Since Λ is weakly positive
(see Theorem 2.1 below), our desired conclusion follows.

Definition 1.3. Let L be a holomorphic line bundle on a 1-convex space X.
Then L is said to be positive if it satisfies one of the equivalent conditions in
Theorem 1.1.

Remark 1.1. For arbitrary C-analytic spaces X, the above conditions of posi-
tivity are not equivalent, in general. In fact, let X := C

k × P
ν and let L be the

line bundle on X determined by D := C
k ×E, where E is the hyperplane bundle

on P
ν . Then L is weakly positive (cf. Theorem 2.1 below). However, one can

check that L is not cohomologically positive.

2. The Stein coverings

We are now in a position to provide an affirmative answer to Question 0.1
within the framework of embeddable 1-convex spaces.

Theorem 2.1. Let X be a 1-convex space with its exceptional set S. Assume
that X is embeddable. Then X can be covered by q := dimS + 1 Stein open
subsets of X.

Proof. As notice earlier, X is Stein dimS = 0. So by induction. we will assume
that our theorem holds for embeddable 1-convex spaces with exceptional sets of
C-dimension < dimS. Now, by hypothesis, X can be realized as a closed analytic
subvariety in some C

k × P
ν . Let Λ be the line bundle on C

k × P
ν determined by

Y := C
k × E where E is the hyperplane divisor in P

ν

Claim. Λ is a weakly positive line bundle.

Indeed, let (z1, . . . , zk) ∈ C
k and let (ζ0, . . . , ζν) be homogeneous coordinates

in P
ν. Let

Ui :=
{

(ζ0, . . . , ζν) ∈ P
ν : ζi 6= 0

}

with 0 ≤ i ≤ ν.

Certainly Λ
∣

∣Ui is trivial transition function ζjζ
−1
i . Let

hi :=
(

∑

|ξi|
2
)−1

exp
(

∑

−|zi|
2
)

.

Then one can easily check that hi = |ξjξ
−1
i |2hj and that −∂∂ log hi > 0, and our

claim is proved.

Now let L : Λ|X. Since X is 1-convex, the vanishing of H1(X,Lν ⊗ F) = 0
shows that for a fixed integer ν � 0, one can find, for any point y ∈ D := X ∩Y ,
an element τ ∈ H0(X,Lν) such that τ(y) 6= 0. Let σ ∈ Γ(X,L) be the canonical
section determined by D. Then the function φ := τ/σν is meromorphic on
X, holomorphic on Z := X \ D and has a pole of order ν at y. Since X is
holomorphically convex, so is Z. Since L|S is ample, it follows readily that
S \ (S ∩ Y ) is affine; hence Z is free of compact analytic subvarieties of positive
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dimension. Then Z is Stein. On the other hand, D is 1-convex with exceptional
set of C-dimension < dimS. By induction hypothesis, D can be covered by q − 1
Stein open subsets Uj of D with 1 ≤ j ≤ q − 1. In view of a main result in [S],
one can find q − 1 Stein open subsets Vj in X which cover D. Therefore Z and
Vj are the desired Stein coverings of X.

Corollary 2.1. Any 2-dimensional 1-convex space without 2-dimensional com-
pact, irreducible components, can be covered by 2 Stein open subsets.

Proof. In fact, it follows from [V2] that such a 1-convex space is embeddable.
Hence the conclusion follows.

Corollary 2.2. [B-d] (Theorem (1)) Let X be a relative compact subset of some
surface M . Assume that X is 1-convex. Then X can be covered by 2 Stein open
subsets.

In fact, their proof shows even more; namely those 2 open Stein subsets are
actually Zariski open which will be our motivation for the next section.

Question 2.1. Is the converse of Theorem 2.1 true?̇

Unfortunately, the answer is No; in fact, there exist normal 2-dimensional
Moihezon spaces M , see e.g. [V1], which

i) have exactly 1 isolated singular point

ii) are non projective

and iii) can be covered by 3 Stein open subsets.

Notice that the exceptional S of any 1-convex space is Moishezon [V1]. On
the other hand, a main result in [A], (Theorem 7.3) tells us that there is an
equivalence between the categories of Moishezon spaces and proper C-algebraic
spaces. So from now on we shall adhere to the following notation.

Notations. Let X be a C-algebraic space in the sense of Artin [A] and let
F = Coh(X) := the category of algebraic coherent sheaves on X. Then we
shall denote by Xan (resp. Fan) the underlying C-analytic space of X (resp.
the associated analytic coherent sheaf to F). Furthermore, if π : X → Y is an
algebraic morphism of C-algebraic spaces, then πan : Xan → Yan denotes the
associated analytic morphism of C-analytic spaces.

Remark 2.1. Let X be a C-algebraic space. It is known that, for complete C-
algebraic space X, dimCH i(X, F) < ∞ for all F ∈ Coh(X) and any integer i ≥ 0.
Hence we are ready to establish an analogue of GAGA comparison theorem of
Serre and Grothendieck in this framework.

Theorem 2.2. Let X be a C-algebraic space such that dimCH1(X, F) < ∞ for
all F ∈ Coh(X).

Let A ∈ Coh(X) and let H := Aan. Then

i) X := Xan is a 1-convex space, and



STEIN COVERINGS FOR 1-CONVEX SPACES 387

ii) the natural maps of cohomology groups

αi : H i(X, A) −→ H i(X, H)

are bijective for any i ≥ 1.

Proof. i) It follows from [GH] that X is a proper modification of some C-algebraic
space Y which is affine; precisely, one has a proper morphism π : X → Y such
that

a) π ∗ OX = OY , and

b) the set T := {y ∈ Y |dimπ−1(y) > 0} is finite.

Consequently, we obtain the following commutative diagram

Yan −→ Y

πan

x





x




π(*)

Xan −→ X

Since Yan is Stein, it follows readily that X is 1-convex with exceptional set
S := San where S := π−1(T ).

ii) Now let R be the extension to zero on X \ S of the (set) restriction of A to
S and let G := Ran. Then one has the following commutative diagram

H i(X, R) − βi −→ H i(X, G)

∼=
x





x





∼=(**)

H i(X, A) − αi −→ H i(X, H)

By virtue of (∗), the isomorphisms of the vertical arrows, for any i > 0, follows
from a main result in [N] (Theorem V). In view of (∗∗), it suffices to show that
the induced maps βi are isomorphisms for any i. Notice that R is not, in general,
a coherent sheaf of OS-module.

Claim. There exists a decreasing sequence of algebraic coherent sheaves

0 = Rk ⊂ · · · ⊂ Ri ⊂ · · · ⊂ R0 = R

such that Ri/Ri+1 are algebraic coherent sheaves of OS -module for any i ≥ 0.

In fact, let a(R) be the ideal sheaf of annihilator of R, namely

a(R) :=
{

Kernel of the canonical sheaf morphism OX → Hom(R,R)
}

and let I be the ideal sheaf in OX determined by S. Then, in view of the definition
of R, one has V (a(R)) ⊂ V (I) where V ( ) is the algebraic subvariety of X
determined by the ideal sheaf ( ). From the compactness of S, we infer the
existence of an integer κ ≥ 0 such that Ik.R = 0. Let Ri := IiR. Certainly
Ri/Ri+1 are algebraic coherent sheaves of OS-modules, since I. Ri/Ri+1 = 0 for
any i ≥ 0. Hence our claim is proved.
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Now let Gi := (Ri)an. Following Artin [A], one obtains the isomorphisms

Hν(S,Ri/Ri+1) −→ Hν(S,Gi/Gi+1)(#)

for any ν ≥ 0 and any i ≥ 0. From the following exact sequence

0 −→ Ri/Ri+1 −→ R/Ri+1 −→ R/Ri −→ 0

one deduces, for any fixed integer k ≥ 0 and any i ≥ 0, the following commutative
diagram of cohomology groups, with exact rows

→ Hk(X,Gi/Gi+1) ∼= Hk(S,Gi/Gi+1) → Hk(X,G/Gi+1 → Hk(X,G/Gi) →
∼=↑ ↑ ↑

→ Hk(X,Ri/Ri+1) ∼= Hk(S,Ri/Ri+1) → Hk(X,R/Ri+1) → Hk(X,R/Ri) →

By using the ascending induction on i, (#) and the five-lemma will provide us
the desired conclusion.

Remark 2.2. a) By using the same notation as in the previous proof, one can
check easily that the commutative diagram (∗) will give rise to the following
natural isomorphisms of direct image of analytic coherent sheaves

Rkπ ∗an Fan
∼= Rkπ ∗ (F)an

for any integer k ≥ 1.

b) When X is non singular, a slightly weaker version than Theorem 2.2 has
been established in [H] by using different techniques. Our next goal is to find
necessary and sufficient conditions for a given 1-convex space to be an underlying
C-analytic space of some C-algebraic space.

3. The affine covers

As a first step toward that goal, Example 1.1 is generalized as follows.

Proposition 3.1. (see [V8], Theorem 3.3) Let M be a C-analytic space and let
D be an effective divisor which is normally ample, i.e. L \ D is ample where L
is the holomorphic line bundle on M determined by D. Then

i) X := M \ D is 1-convex, and

ii) M is Moishezon.

In view of this result, we introduce the following

Definition 3.1. Let X be a C-algebraic space (resp. a non singular C-algebraic
space). Then X is said to an algebraic 1-convex (resp. a non singular algebraic
1-convex) model if X is algebraically isomorphic to M \ D where M is some
complete C-algebraic space (resp. some non singular complete C-algebraic space),
and D ⊂ M a normally ample effective divisor. If furthermore M can be selected
to be projective algebraic, then we say that X is projectivizable.
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The motivation for the terminology in Definition 3.1 stems from the following
results.

Proposition 3.2. Let X be a C-algebraic space. Then the following conditions
are equivalent:

(a) X is an algebraic 1-convex model,

(b) X is a modification in the sense of [GH] of some affine C-algebraic space
A,

(c) dimCH1(X,J) < ∞ for any J ∈ Coh(X).

Proof. (a) ⇒ (b) Let M be a complete C-algebraic space with a normally ample
divisor D ⊂ M such that X is algebraically isomorphic to M \ D. In view of
Proposition 3.1, X := Xan is a 1-convex C-analytic space with an exceptional
set S ⊂ X. Since S can be contracted to finite points, one obtains a compact
C-analytic space Y , a finite set T ⊂ Y , and a proper, surjective holomorphic
morphism Π : M → Y which induces a biholomorphism M \ S ∼= Y \ T . Let
D := Π(D). Since X is 1-convex, Y \D is free of compact subvarieties of positive
dimensions. Therefore the normally ample divisor D is actually the support of an
ample divisor [G]. Consequently, Y is in fact projective algebraic and A := Y \D is
affine. We infer that Π is actually an algebraic morphism and π := Π|X : X → A
is the desired algebraic modification.

(b) ⇒ (a) Assume that π : X → A a modification of some affine variety A;
let T ⊂ A be a finite subset, such that U := X \ S ∼= A \ T where S := π−1(T ).
Then X is an algebraic 1-convex model. Indeed, since A is affine one can find a
complete C-algebraic space Z and an effective ample divisor E ⊂ Z, such that
Z \E ∼= A. By gluing Z and X along U , one obtains a complete C-algebraic space
M , a surjective and algebraic morphism π : M → Z. Now let D := π−1(E) ⊂ M .
It is obvious that D is an effective normally ample divisor on M such that X is
algebraically isomorphic to M \D. Finally, the equivalence of (b) and (c) follows
from the results in [GH].

Definition 3.2. a) A C-analytic space (resp. a C-analytic manifold) X is said to
be algebraically 1-convex if there exists a algebraic 1-convex (resp. a non singular)
model X such that X is biholomorphic to Xan. Furthermore, X is said to be
projectivizable if X is projectivizable in the sense of Definition 3.1.

b) An 1-convex space X is said to be quasi-algebraic if there exists a C-algebraic
space X such that X is biholomorphic to Xan.

Remark 3.1. a) Any 2-dimensional algebraically 1-convex surface X is always
projectivizable.

b) From the proof of Proposition 3.2, one notices that M is birational to some
projective variety Y ; yet M itself is not so in general, as shown by the following
example.

Example 3.1. (see [V9]) There exist Moishezon 3-folds M which is a small res-
olution of some normal 3-dimensional projective variety Y with only one isolated
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singular point, and a normally ample divisor D ⊂ M such that X := M \ D is
1-convex. Yet X is not even Kahlerian.

Confronted with this state of affairs, we have the following theorem.

Theorem 3.1. (Chevalley’s criterion) Let M be a Moishezon space. Then M is
projective algebraic iff any finite set of points in M is contained in some open
affine subsets of M .

This result was first established by Kleiman for complete varieties with only
factorial singularities, see e.g. [H]. This version was established by C. Horst in
her thesis [Ho]. With this in mind, Question 0.2 can be answered as follows.

Theorem 3.2. Let X be an irreducible algebraic 1-convex space with its ex-
ceptional set S. Then X is projectivizable if and only if X can be covered by
q := dimS + 1 (Zariski) open affine subsets.

Proof. i) Let M be an irreducible compact C-analytic space with a normally
ample divisor D such that X ∼= M \ D.

Step 1. Assume that dim S = 0. Then D is the support of some ample divisor
say D. Consequently, for some integer n � 0, the linear system |nD| will embed
M into some Pm such that D = H0 ∩ M , where H0 is some hyperplane divisor
in Pm. Hence X can be covered by the affine open set Pm \ H0.

Step 2. Assume that X is projectivizable and dimS > 0. By hypothesis,
one can assume that M is embedded in some Pm. Let us select q − 1 := dim S
hyperplane divisor Hi, 0 ≤ i ≤ q − 1, which intersect S transversally. Let X
(resp. M , S and D) be the intersection of X (resp. M , S and D) with

⋂

i

Hi

(1 ≤ i ≤ q − 1). Obviously, the exceptional set S of the algebraic 1-convex space
X ∼= M \D consists of only finite many points. Hence we infer from Step 1 that
X can be covered by the affine open set Pm \ Hq for some suitable hyperplane
divisor Hq. Consequently, X can be covered by q affine subsets Vj := Pm \ Hj

with 1 ≤ j ≤ q.

ii) Assume that C − dimS = 0. It follows readily that X is projectivizable.
Now, by a tedious inductive argument, one can infer from Theorem 3.1 that X
is indeed projectivizable.

4. Epilogue

From the prototypes of the previous sections, we would like to discuss for a
given 1-convex space X, the connection between its various algebraic structures.
First of all, a new basic definitions are in order.

Definition 4.1. A C-analytic space (resp. C-analytic manifold) X is said to
be compactifiable if there exists a compact C-analytic space (resp. compact C-
analytic manifold) M and a compact analytic subvariety Γ ⊂ M such that X ∼=
M \ Γ. Furthermore, if M is projective algebraic, then X is said to be quasi
projective.
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We have the following characterization.

Proposition 4.1. (see [Gi], Theorem 3.1) Let X be an algebraic 1-convex man-
ifold. Then X is projectivizable if and only if X is quasi projective.

Problem 4.1. Is Proposition 4.1 still true for arbitrary algebraic 1-convex
spaces ?

On the other hand, one of our main concerns would be

Problem 4.2. Are quasi-algebraic 1-convex spaces always algebraic 1-convex ?

We are ready to formulate the central theme for further investigations.

Problem 4.3. Let X be a compatifiable 1-convex space.

i) Is X always quasi-algebraic ?

ii) Is X always algebraically 1-convex ?

The motivation behind this problem stems from

Theorem 4.1. (see [V4, 5]) Let X be a compactifable 1-convex surface. Then X
is quasi projective.

On the basis of this result, one would like to implement Proposition 4.1 as
follows.

Problem 4.4. Let X be a compactifiable 1-convex surface. Is X always alge-
braically 1-convex ?

In fact, one can prove the following result.

Proposition 4.2. (see also [V5]) Let X be a compactifiable Stein space. Then
X is algebraically 1-convex if and only if X carries some affine structure.

On the other hand, we have the following example.

Example 4.1. (see [V11]) There exists (minimal) ruled surface M of genus g > 1
and a section D ⊂ M with D2 = 0 such that X := M \ D is a Stein surface and
X does not carry any affine structures so X is not algebraically 1-convex.

However, as noted in [V4, 5] there are significant differences between the struc-
ture of compactifiable Stein surfaces and those of compactifiable 1-convex sur-
faces. Thus Problem 4.4 still remains open for (minimal) 1-convex surfaces which
are not Stein; in which case, algebraic 1-convexity is equivalent for X to acquire
some pseudo-affine structure in the sense of [V4]. As far as the compactifiable
1-convex and Stein 3-folds are concerned. The situation is getting more compli-
cated, due to the lack of classification of compact 3-folds, so we refer to [V6, 7]
for further discussions. To round off this discussion, for the reader’s convenience,
we would like to present the following scheme to summarize the current status of
our investigation.

Let X be a given 1-convex space. Then, upon which, the potential additional
structures introduced in this paper are distributed as follows:
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Projectivizable ⊂
6=Ex. 3.1

Algebraic ⊂ Quasi-algebraic

⋂

6=Ex. 4.1

⋂

Quasi projective ⊂
6= Ex. 3.1

(= for 1-convex surfaces, Theorem 4.1)

Compactifiable

The symbol ⊂ with 6= means strict inclusion, in view of the existence of coun-
terexamples. Otherwise, the problem remains open.
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