DEGENERACY OF HOLOMORPHIC CURVES IN \mathbb{P}^n

NGUYEN THANH QUANG

Dedicated to the memory of Le Van Thiem

ABSTRACT. By using the Nevanlinna-Cartan theory we establish some conditions for degeneracy of holomorphic curves in the complex projective space \mathbb{P}^n .

1. INTRODUCTION

Let $X \subset \mathbb{P}^n$ be a projective subvariety of \mathbb{P}^n , by which we mean an irreducible algebraic subset. A holomorphic curve in the projective subvariety $X \subset \mathbb{P}^n$ is said to be degenerate if it is contained in some proper algebraic subset of X. In 1979, M. Green and Ph. Griffths [3] conjectured that every holomorphic curve in a complex projective hypersurface of general type is degenerate. M. Green [2] proved the degeneracy of holomorphic curves in the Fermat variety of large degree. In [8], A. M. Nadel showed the validity of Green-Griffth's conjecture for some classes of hypersurfaces and applied this result to construct some explicit examples of hyperbolic surfaces in P^3 of degree $3e \ge 21$. Recently, H. H. Khoai [4] proved the conjecture for other classes of hypersurfaces, and gave examples of hyperbolic surfaces of arbitrary degree ≥ 22 .

It is well-known that every holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n$ omiting n+2 hyperplanes in general position, is linearly degenerate (Bloch-Cartan). That is $f(\mathbb{C})$ is contained in some proper linear subspace of \mathbb{P}^n . In [10] again by using Borel's lemma, M. Ru proved that every holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n$ omiting at least three distinct hyperplanes which are linearly dependent, is linearly degenerate.

In this paper, by using the Nevanlinna-Cartan theory we obtain some conditions for the degeneracy of holomorphic curves in \mathbb{P}^n . The condition "omiting hyperplanes" of Bloch-Cartan and M. Ru can be weakened by the condition "ramifying over hyperplanes with large degree".

2. Generalized Bloch-Cartan's Theorem

Let f be a holomorphic curve in the complex projective space, i.e., a holomorphic map from complex plane \mathbb{C} into the *n*-dimensional complex projective space \mathbb{P}^n . Suppose that X is represented by a collection of holomorphic functions on \mathbb{C} :

$$f = (f_0, \dots, f_n),$$

where the functions f_i , $0 \le i \le n$, have no common zeros.

Definition 2.1. The curve f is said to be *linearly non-degenerate* if the image of f is not contained in any linear subspace of \mathbb{P}^n of dimension less than n.

Now let $H_1, H_2, ..., H_q$ be hyperplanes in P^n in general position. This means that these hyperplanes are linearly independent if $q \leq n$, and any (n+1) of these hyperplanes are linearly independent if $q \geq n + 1$.

Definition 2.2. Let f be a holomorphic curve from \mathbb{C} into \mathbb{P}^n and let H be a hyperplane of P^n such that $H \not\supseteq f(\mathbb{C})$.

Assume that the hyperplane H is defined by the linear equation L = 0. Then we define the *pull-backed divisor of* f over H by

$$f^*H = \sum \operatorname{ord}_a(L \circ f)a,$$

where the sum is taken on all of zeros a of $L \circ f(z)$. Let $\deg_z f^*H$ denote the degree of the pull-backed divisor f^*H at $z \in \mathbb{C}$.

Definition 2.3. We say that f ramifies at least d (d > 0) over H if $\deg_z f^*H \ge d$ for all $z \in f^{-1}H$. This means every zero of the entire function $L \circ f$ has multiplicity at least d. In the case $f^{-1}H = \emptyset$, we set $d = \infty$.

Let H_j , j = 1, 2, ..., q, be hyperplanes of \mathbb{P}^n in general position. Then the following statement is valid.

Lemma 2.1. (H. Cartan [1]) Assume that f is linearly non-degenerate and ramifies at least d_j over H_j , $1 \le j \le q$. Then

$$\sum_{j=1}^{q} \left(1 - \frac{n}{d_j}\right) \le n+1.$$

We will apply Lemma 2.1 to prove following theorem.

Theorem 2.1. (Generalized Bloch-Cartan's Theorem) Let $H_0, ..., H_{n+1}$ be n+2hyperplanes of \mathbb{P}^n in general position. Assume that f ramifies at least d_j over $H_j, 0 \le j \le n+1$. Suppose that

(1)
$$\sum_{j=0}^{n+1} \frac{1}{d_j} < \frac{1}{n}, \quad (n \ge 2).$$

Then f is linearly degenerate.

Proof. Let $L_0(x), ..., L_{n+1}(x)$ denote the linear forms defining the hyperplanes.

Because any set of n+2 hyperplanes in \mathbb{P}^n is linearly dependent over \mathbb{C} , there exist constants c_i not all zeros such that

$$\sum_{j=0}^{n+1} c_j L_j(x) = 0$$

Since $H_0, ..., H_{n+1}$ are in general position in \mathbb{P}^n , we have $c_j \neq 0, 0 \leq j \leq n+1$. Moreover, (n+1) is the smallest number such that we have such a relation.

Hence

$$\sum_{j=0}^{n+1} c_j L_j(f) \equiv 0.$$

We now prove that $L_j(f) = L_j \circ f$, $0 \le j \le n$, are linearly dependent. Assume that $L_j(f) = L_j \circ f$, $0 \le j \le n$, are linearly independent. We define a holomorphic curve g in \mathbb{P}^n by setting

$$g(z) = (L_0(f)(z), ..., L_n f(z)) \quad \forall z \in \mathbb{C}.$$

Then g is linearly non-degenerate. Consider the following hyperplanes in general position in \mathbb{P}^n :

$$H_0 = \{x_0 = 0\}, ..., H_n = \{x_n = 0\}, H_{n+1} = \{c_0x_0 + ... + c_nx_n = 0\}.$$

By the hypothesis, g ramifies at least d_j over H_j , $0 \le j \le n$. It follows from Lemma 2.1 that

$$\sum_{j=0}^{n+1} \left(1 - \frac{n}{d_j}\right) \le n+1.$$

Hence

$$\sum_{j=0}^{n+1} \frac{1}{d_j} \ge \frac{1}{n} \cdot$$

We have arrived at a contradiction, because $\sum_{j=0}^{n+1} \frac{1}{d_j} < \frac{1}{n}$. So there is a non-trivial linear relation

$$c'_0L_0 \circ f + \ldots + c'_nL_n \circ f \equiv 0, \quad c'_j \in \mathbb{C}.$$

Then the image of f is contained in the linear subspace (hyperplane) defined by the equation

$$\sum_{j=0}^{n} c_j' L_j(x) = 0$$

By the minimality of n + 1, this subspace is proper. The proof is complete. \Box

Corollary 2.1. (Bloch-Cartan [6]) Let $f : \mathbb{C} \to \mathbb{P}^n$ be a non-constant holomorphic curve with $n \geq 2$. Let $H_0, ..., H_{n+1}$ be n+2 hyperplanes in general position. If the image of f lies in the complement of $H_0 \cap ... \cap H_{n+1}$, then it lies in some hyperplane.

Proof. It suffices to apply Theorem 2.1 with $d_j = \infty$, $0 \le j \le n+1$.

Example. It is clear that

$$f: \mathbb{C} \longrightarrow \mathbb{P}^2,$$
$$z \longmapsto (z^5, -z^5, 1)$$

is a holomorphic curve in the complex projective plane \mathbb{P}^2 . Take 4 hyperplanes of \mathbb{P}^2 in general position:

$$H_0 = \{x_0 = 0\}, \quad H_1 = \{x_1 = 0\}, \quad H_2 = \{x_2 = 0\}, \quad H_3 = \{x_0 + x_1 + x_2 = 0\}$$

Note that f does not omit H_0 and H_1 . Since $\frac{2}{5} < \frac{1}{2}$, f is linearly degenerate (Theorem 2.1). The image of f is contained in the hyperplane defined by the equation $x_0 + x_1 = 0$.

3. Degeneracy of holomorphic curves

Definition 3.1. A projective variety $X \subset \mathbb{P}^n$ is said to be *Brody hyperbolic* if every holomorphic curve $f : \mathbb{C} \longrightarrow X$ is constant. Similarly, if Y is a subset of X, we say that Y is *Brody hyperbolic* (in X) if every holomorphic curve $f : \mathbb{C} \to X$, whose image is contained in Y, is constant.

Recent studies suggest that the hyperbolicity of a complex space X is related to the finiteness of the number of rational or integral points of X (see [10]).

It is well-known that the complement of 2n + 1 hyperplanes in general position in \mathbb{P}^n is Brody hyperbolic (Bloch, Dufresnoy, Green, Fujimoto, see [6]). The question is that given a set \mathcal{H} of hyperplanes in \mathbb{P}^n (not necessarily in general position), what is necessary and sufficient condition for \mathcal{H} such that $\mathbb{P}^n - |\mathcal{H}|$ is Brody hyperbolic and how do we verify it? In [10], M. Ru answered this question by providing an algorithm (in term of linear algebra) to determine whether or not $\mathbb{P}^n - |\mathcal{H}|$ is Brody hyperbolic. Here $|\mathcal{H}|$ denotes the finite union of hyperplanes in \mathcal{H} .

Definition 3.2 ([10]). Let \mathcal{H} be a set of hyperplanes in \mathbb{P}^n . Let V be a linear subspace of \mathbb{P}^n . V is called \mathcal{H} - *admissible* if V is not contained in any hyperplane in \mathcal{H} . \mathcal{H} is said to be *nondegenerate* (over \mathbb{C}) if for every \mathcal{H} - admissible subspace V of \mathbb{P}^n of projective dimension greater than or equal to one, $\mathcal{H} \cap V$ contains at least three distinct hyperplanes of V which are linearly dependent over \mathbb{C} .

In [10], M. Ru proved that the complement of \mathcal{H} in \mathbb{P}^n is Brody hyperbolic if and only if \mathcal{H} is nondegenerate over \mathbb{C} . This means that every holomorphic curve $f: \mathbb{C} \to \mathbb{P}^n - |\mathcal{H}|$ is constant if and only if \mathcal{H} nondegenerate (over \mathbb{C}). In this section we study the degeneracy of holomorphic curves ramifying over hyperplanes in \mathcal{H} .

Defenition 3.3. Let $\mathcal{H} = \{H_1, H_2, ..., H_q\}, q \geq 3$, be a set of q hyperplanes in \mathbb{P}^n . We say that a holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n$ ramifies with large degree over \mathcal{H} if the image of f is not contained in the intersection of any three hyperplanes in \mathcal{H} and for every j = 1, ..., q, f ramifies at least d_j over $H_j \in \mathcal{H}$ such that

(2)
$$\sum_{j=1}^{q} \frac{1}{d_j} < \frac{1}{q-2}$$

Theorem 3.1. Let $\mathcal{H} = \{H_1, ..., H_q\}$ be a set of q hyperplanes of \mathbb{P}^n with $q \geq 3$. Let $f : \mathbb{C} \to \mathbb{P}^n$ be a holomorphic curve in \mathbb{P}^n . Assume that f ramifies with large degree over \mathcal{H} . Then f linearly degenerate if \mathcal{H} contains at least three distinct hyperplanes which are linear dependent over \mathbb{C} .

Proof. Let $L_1(x), ..., L_q(x)$ $(q \ge 3)$ be the linear forms defining the hyperplanes in \mathcal{H} . By the linear dependence assumption, there exist non-zero constants a_i such that

$$\sum_{i=1}^{q} a_i L_i(x) \equiv 0.$$

Without loss of generality, by shrinking the set of hyperplanes, we can assume that q is the smallest integer such that we have such a relation (i.e. $a_i \neq 0$ for all i). Since the hyperplanes are distinct, we have $q \geq 3$. Now

$$\sum_{i=1}^{q} a_i L_i \circ f \equiv 0$$

We are going to prove that the functions $L_1 \circ f, ..., L_{q-1} \circ f$ are linearly dependent. Assume that $L_j \circ f$, $1 \leq j \leq q-1$, are linearly independent. Because the image of f is not contained in the intersection of any three distinct hyperplanes in \mathcal{H} , we can define a holomorphic curve g in \mathbb{P}^{q-2} by

$$g: z \in \mathbb{C} \longmapsto (L_1 \circ f(z), ..., L_{q-1} \circ f(z)).$$

Consider the following hyperplanes in general position in \mathbb{P}^{q-2} :

$$H_1 = \{z_1 = 0\}, ..., H_{q-1} = \{z_{q-1} = 0\}, H_q = \{a_1z_1 + ... + a_{q-1}z_{q-1} = 0\}.$$

By the hypothesis, g ramifies at least d_j over H_j , $1 \le j \le q$. It follows from Lemma 2.1 that

$$\sum_{j=1}^{q} \left(1 - \frac{q-2}{d_j}\right) \le q - 1.$$

Hence

$$\sum_{j=1}^{q} \frac{1}{d_j} \ge \frac{1}{q-2}$$

This contracdicts our assumption. Thus there is a non-trivial linear relation.

$$a_1'L_1 \circ f + \dots + a_{q-1}'L_{q-1} \circ f \equiv 0.$$

So the image of f is contained in the linear subspace (hyperplane) defined by the equation

$$\sum_{j=1}^{q-1} c_j L_j(x) = 0,$$

and this is a proper subspace of \mathbb{P}^n by the condition that q is minimal.

Corollary 3.1. (M. Ru's Theorem, see [10]). Let $f : \mathbb{C} \to \mathbb{P}^n$ be a holomorphic curve. If $f(\mathbb{C})$ omits at least three dictinct hyperplanes in \mathbb{P}^n which are linearly dependent over \mathbb{C} , then f must be linearly degenerate.

Proof. Apply Theorem 3.1 with q = 3, $d_1 = d_2 = d_3 = \infty$.

Theorem 3.2. Let \mathcal{H} be a set of q hyperplanes in \mathbb{P}^n , $q \geq 3$. Then \mathcal{H} is nondegenerate over \mathbb{C} if and only if every holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n$ ramifying with large degree over \mathcal{H} , is constant.

Proof. Let \mathcal{H} be nondegenerate over \mathbb{C} . Then \mathcal{H} contains at least three distinct hyperplanes which are linearly dependent. By Theorem 3.1, every holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n$ ramifying with large degree over \mathcal{H} , is linearly degenerate. This means that the image of f is contained in some proper linear subspace Wof \mathbb{P}^n . We have dim W < n. Since f ramifies at least d_j over all H_j in \mathcal{H} , W is \mathcal{H} -admissible. By the assumption that \mathcal{H} is nondegenerate over \mathbb{C} , $\mathcal{H} \cap W$ still contains at least three distinct hyperplanes of W which are linearly dependent.

By $\operatorname{Im} f \subset W$ we have $H_j \cap \operatorname{Im} f = (H_j \cap W) \cap \operatorname{Im} f$ for all $H_j \in \mathcal{H}$. It follows that $f^*H = f^*(H_j \cap W)$ for all $H_j \in \mathcal{H}$. Hence

$$\deg_z f^*(H_j \cap W) = \deg_z f^*H_j \ge d_j$$

for all $z \in f^{-1}(H_j \cap W)$. Therefore f still ramifies at least d_j over $H_j \cap W$ in $\mathcal{H} \cap W$ for all j = 1, ..., q. We know that inequality (2) still holds in this case. So we can apply Theorem 3.1 again. By induction, we conclude that f is constant.

Conversely, if \mathcal{H} is not degenerate over \mathbb{C} , then we will construct a nonconstant holomorphic curve $f: \mathbb{C} \to \mathbb{P}^n - |\mathcal{H}|$. Since \mathcal{H} is not degenerate, there exists an \mathcal{H} -admissible subspace V of \mathbb{P}^n of projective dimension greater than or equal to one such that $\mathcal{H} \cap V$ does not contain at least three distinct hyperplanes which are linearly dependent over \mathbb{C} . Without loss of generality, we can assume that W = \mathbb{P}^n . Then $q \leq n + 1$, and H_1, \ldots, H_q are linearly independent. We may assume that H_1, \ldots, H_q are the first q coordinate planes, then the holomorphic curve frepresented by $f = (1, e^z, \ldots, e^z)$ is non-constant and satifies our conditions. \Box

Corollary 3.2. (M. Ru's Theorem; see [10]). $\mathbb{P}^n - |\mathcal{H}|$ Brody hyperbolic if and only if $|\mathcal{H}|$ is nondegenerate over \mathbb{C} .

Proof. Note that every holomorphic curve $f : \mathbb{C} \to \mathbb{P}^n - |\mathcal{H}|$, is a holomorphic curve in \mathbb{P}^n ramifying with large degree over \mathcal{H} .

4. The Fermat Variety

By using Theorem 2.1 we can prove Green's theorem (in [6]). The Fermat variety X in \mathbb{P}^n , of degree d, is defined by the equation

$$x_0^d + \dots + x_n^d = 0.$$

Theorem 4.1. (Green [6]). Let $f = (f_0, ..., f_n) : \mathbb{C} \to \mathbb{P}^n$ with $n \ge 2$ be a holomorphic curve in the Fermat variety X, so

$$f_0^d + \dots + f_n^d \equiv 0.$$

If $d \ge n^2$ then the functions $f_0^d, ..., f_{n-1}^d$ are linearly dependent.

Proof. We define a holomorphic curve g in \mathbb{P}^{n-1} by the relation

$$z \in \mathbb{C} \longmapsto (f_0^d(z), ..., f_{n-1}^d(z)) \in \mathbb{P}^{n-1}.$$

Consider the following (n+1) hyperplanes in general position in \mathbb{P}^{n-1} :

$$H_0 = \{x_0 = 0\}, ..., H_{n-1} = \{x_{n-1} = 0\}, H_n = \{x_0 + ... + x_{n-1} = 0\}.$$

We know that g ramifies at least $d_j \ge d$ over H_j , $0 \le j \le n$, and the following condition holds

$$\sum_{j=0}^{n} \frac{1}{d_j} \le \sum_{j=0}^{n} \frac{1}{d} = \frac{n+1}{d} \le \frac{n+1}{n^2} < \frac{n+1}{n^2-1} = \frac{1}{n-1} \cdot \frac{1}{n}$$

By Theorem 2.1, g is linearly degenerate. The proof is complete.

Acknowledgment

The author would like to thank the Association Aubonne, Culture and Education France-Vietnam for financial support.

References

- Cartan, Sur les zéros de combinaisons linéaires de fonctions holomorphes données, Mathematica 7 (1993), 5-31.
- [2] M. Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43-75.
- M. Green and Ph. Griffiths, Two applications of algebraic geometry to entire holomorphic mapings, In: The Chern Symposium 1979 (Proc. Inter. Sympos. Beckeley, California (1979), Springer - Verlag, New York, (1980), 41-74.
- [4] Ha Huy Khoai, *Hyperbolic surfaces in* P³(C), Proc. Amer. Math. Soc. **125** (1997), 3527-3532.
- [5] Ha Huy Khoai, Borel's curves in projective hyperpsurfaces, Publications of the Center of Functional and Complex Analysis 1 (1997), 79-86.
- [6] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York Berlin -Heidelberg, 1987.
- [7] K. Masuda and J. Moguchi, A construction of hyperbolic hypersurface of Pⁿ(C), Math. Ann. 304 (1996), 339-362.

NGUYEN THANH QUANG

- [8] A. Nadel, Hyperbolic surfaces in P³, Duke Math. 58 (1989), 749-771.
 [9] Nguyen Thanh Quang, p-adic hyperbolicity of the complement of hyperplanes in Pⁿ(C_p), Acta Math. Vietnam. 23 (1998), 143-149.
- [10] M. Ru, Geometric and arithmetic aspects of \mathbb{P}^n minus hyperplanes, Amer. J. Math. 117 (1995), 307-321.

DEPARTMENT OF MATHEMATICS, PEDAGOGICAL UNIVERSITY OF VINH, VINH, NGHE AN, VIETNAM