ACTA MATHEMATICA VIETNAMICA 375
Volume 27, Number 3, 2002, pp. 375-382

DEGENERACY OF HOLOMORPHIC CURVES IN P"
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Dedicated to the memory of Le Van Thiem

ABSTRACT. By using the Nevanlinna-Cartan theory we establish some con-
ditions for degeneracy of holomorphic curves in the complex projective space
P".

1. INTRODUCTION

Let X C P” be a projective subvariety of P”, by which we mean an irreducible
algebraic subset. A holomorphic curve in the projective subvariety X C P" is
said to be degenerate if it is contained in some proper algebraic subset of X. In
1979, M. Green and Ph. Griffths [3] conjectured that every holomorphic curve
in a complex projective hypersurface of general type is degenerate. M. Green
[2] proved the degeneracy of holomorphic curves in the Fermat variety of large
degree. In [8], A. M. Nadel showed the validity of Green-Griffth’s conjecture for
some classes of hypersurfaces and applied this result to construct some explicit
examples of hyperbolic surfaces in P3 of degree 3e > 21. Recently, H. H. Khoai
[4] proved the conjecture for other classes of hypersurfaces, and gave examples of
hyperbolic surfaces of arbitrary degree > 22.

It is well-known that every holomorphic curve f : C — P™ omiting n+ 2 hyper-
planes in general position, is linearly degenerate (Bloch-Cartan). That is f(C)
is contained in some proper linear subspace of P". In [10] again by using Borel’s
lemma, M. Ru proved that every holomorphic curve f : C — P" omiting at least
three distinct hyperplanes which are linearly dependent, is linearly degenerate.

In this paper, by using the Nevanlinna-Cartan theory we obtain some condi-
tions for the degeneracy of holomorphic curves in P". The condition “omiting
hyperplanes” of Bloch-Cartan and M. Ru can be weakened by the condition
“ramifying over hyperplanes with large degree”.

2. GENERALIZED BLOCH-CARTAN’S THEOREM

Let f be a holomorphic curve in the complex projective space, i.e, a holomor-
phic map from complex plane C into the n-dimensional complex projective space
P™. Suppose that X is represented by a collection of holomorphic functions on

C:
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f = (f07 () fn)a

where the functions f;, 0 < i < n, have no common zeros.

Definition 2.1. The curve f is said to be linearly non-degenerate if the image
of f is not contained in any linear subspace of P" of dimension less than n.

Now let Hy, Ho, ..., H; be hyperplanes in P" in general position. This means
that these hyperplanes are linearly independent if ¢ < n, and any (n+ 1) of these
hyperplanes are linearly independent if ¢ > n + 1.

Definition 2.2. Let f be a holomorphic curve from C into P™ and let H be a
hyperplane of P" such that H 2 f(C).

Assume that the hyperplane H is defined by the linear equation L = 0. Then
we define the pull-backed divisor of f over H by

= ordq(L o f)a
> orda(

where the sum is taken on all of zeros a of Lo f(z). Let deg,f*H denote the
degree of the pull-backed divisor f*H at z € C.

Definition 2.3. We say that f ramifies at least d (d > 0) over H if deg, f*H >
d for all z € f~'H. This means every zero of the entire function L o f has
multiplicity at least d. In the case f~'H = (), we set d = oo.

Let Hj, j = 1,2,...,q, be hyperplanes of P" in general position. Then the
following statement is valid.

Lemma 2.1. (H. Cartan [1]) Assume that f is linearly non-degenerate and ram-
ifies at least d; over Hj, 1 < j < q. Then

q
S (1- —) <n+l.
7=1
We will apply Lemma 2.1 to prove following theorem.

Theorem 2.1. (Generalized Bloch-Cartan’s Theorem) Let Hy, ..., Hy+1 be n+2
hyperplanes of P™ in general position. Assume that f ramifies at least d; over
H;, 0<j<n+1. Suppose that

3|H

< (n>2).

1
d;

M+

(1)

<.
Il
=)

Then f is linearly degenerate.

Proof. Let Ly(x), ..., Ly1(x) denote the linear forms defining the hyperplanes.
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Because any set of n + 2 hyperplanes in P" is linearly dependent over C, there
exist constants c¢; not all zeros such that

n+1

Z Cij(l‘) = 0.

j=0
Since Hy, ..., H, 41 are in general position in P", we have ¢; #0, 0 < j < n + 1.
Moreover, (n + 1) is the smallest number such that we have such a relation.
Hence
n+1

> eiL(f) =0.

§=0
We now prove that L;(f) = L;jo f, 0 < j < n, are linearly dependent. Assume
that L;(f) = Ljof, 0 < j <n, are linearly independent. We define a holomorphic
curve g in P" by setting
9(2) = (Lo(f)(2), .., La f(2)) Vz €C.
Then g is linearly non-degenerate. Consider the following hyperplanes in general
position in P™:
Hy={zy=0},..,H, ={x, =0}, Hp41 = {coxo + ... + cpzy =0}.

By the hypothesis, g ramifies at least d; over H;, 0 < j < n. It follows from
Lemma 2.1 that

n+1
1——)< 1.
Z( dj n 4+
J=0
Hence
Wiy
E —>_.
d; n

.
Il
o

So there is a non-trivial

;w

ntl ]

We have arrived at a contradiction, because E d_
linear relation

coLoof+..+cLyof=0, ¢ eC.

Then the image of f is contained in the linear subspace (hyperplane) defined by
the equation

n

Z c;Lj(x) = 0.

J=0

By the minimality of n + 1, this subspace is proper. The proof is complete. [
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Corollary 2.1. (Bloch-Cartan [6]) Let f : C — P" be a non-constant holomor-
phic curve with n > 2. Let Hy, ..., Hyy1 be n+ 2 hyperplanes in general position.
If the image of f lies in the complement of Hy N ...N Hyy1, then it lies in some
hyperplane.

Proof. It suffices to apply Theorem 2.1 with d; =00, 0 < j <n+ 1. O

Example. It is clear that
f:C— P2
2 (2°,=2°1),

is a holomorphic curve in the complex projective plane P?. Take 4 hyperplanes
of P? in general position:

H():{JJ():O}, le{x1:O}, HQZ{%QZO}, H3={l‘0+$1+$2=0}

2 1
Note that f does not omit Hg and H;. Since — < o f is linearly degenerate

(Theorem 2.1). The image of f is contained in the hyperplane defined by the
equation xg + x1 = 0.

3. DEGENERACY OF HOLOMORPHIC CURVES

Definition 3.1. A projective variety X C P" is said to be Brody hyperbolic if
every holomorphic curve f : C — X is constant. Similarly, if Y is a subset of X,
we say that Y is Brody hyperbolic (in X) if every holomorphic curve f: C — X,
whose image is contained in Y, is constant.

Recent studies suggest that the hyperbolicity of a complex space X is related
to the finiteness of the number of rational or integral points of X (see [10]).

It is well-known that the complement of 2n + 1 hyperplanes in general position
in P" is Brody hyperbolic (Bloch, Dufresnoy, Green, Fujimoto, see [6]). The
question is that given a set H of hyperplanes in P™ (not necessarily in general
position), what is necessary and sufficient condition for H such that P — |H| is
Brody hyperbolic and how do we verify it ? In [10], M. Ru answered this question
by providing an algorithm (in term of linear algebra) to determine whether or not
P™ — |'H| is Brody hyperbolic. Here |H| denotes the finite union of hyperplanes
in H.

Definition 3.2 ([10]). Let H be a set of hyperplanes in P". Let V' be a linear
subspace of P™. V is called H- admissible if V' is not contained in any hyperplane
in H. H is said to be nondegenerate (over C) if for every H- admissible subspace
V of P" of projective dimension greater than or equal to one, H NV contains at
least three distinct hyperplanes of V' which are linearly dependent over C.

In [10], M. Ru proved that the complement of H in P" is Brody hyperbolic if
and only if H is nondegenerate over C. This means that every holomorphic curve
f:C— P —|H]| is constant if and only if H nondegenerate (over C).
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In this section we study the degeneracy of holomorphic curves ramifying over
hyperplanes in H.

Defenition 3.3. Let H = {H1, Ho, ..., Hy}, q > 3, be a set of ¢ hyperplanes in
P"™. We say that a holomorphic curve f : C — P™ ramifies with large degree over
‘H if the image of f is not contained in the intersection of any three hyperplanes
in H and for every j = 1,...,q, f ramifies at least d; over H; € ‘H such that

1 1
(2) Zg<q_—2‘
j=1"7

Theorem 3.1. Let H = {Hq,..., Hy} be a set of ¢ hyperplanes of P™ with ¢ > 3.
Let f : C — P™ be a holomorphic curve in P". Assume that f ramifies with large
degree over H. Then f linearly degenerate if H contains at least three distinct
hyperplanes which are linear dependent over C.

Proof. Let Li(z),...,Ly(x) (¢ > 3) be the linear forms defining the hyperplanes
in ‘H. By the linear dependence assumption, there exist non-zero constants a;
such that

q
i=1

Without loss of generality, by shrinking the set of hyperplanes, we can assume
that ¢ is the smallest integer such that we have such a relation (i.e. a; # 0 for all
i). Since the hyperplanes are distinct, we have ¢ > 3. Now

q
> aiLio f=0.
=1

We are going to prove that the functions Liof, ..., Ly_io f are linearly dependent.
Assume that L;jo f, 1 < j < g — 1, are linearly independent. Because the image
of f is not contained in the intersection of any three distinct hyperplanes in H,
we can define a holomorphic curve g in P7~2 by

g:2€Cr— (Lyo f(2),....Lg—10 f(2)).
Consider the following hyperplanes in general position in P92
H, = {2’1 = 0}, ...,Hq,1 = {Zq,1 = 0},H = {(112’1 + ot ag_12¢g-1 = 0}

By the hypothesis, g ramifies at least d; over H;, 1 < j < ¢. It follows from
Lemma 2.1 that

Hence
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This contracdicts our assumption. Thus there is a non-trivial linear relation.
ayLiof+..4+ay 1Ly 10 f=0.

So the image of f is contained in the linear subspace (hyperplane) defined by the
equation

q—1
D ¢iLi(x) =0,
j=1

and this is a proper subspace of P by the condition that ¢ is minimal. ]

Corollary 3.1. (M. Ru’s Theorem, see [10]). Let f : C — P™ be a holomorphic
curve. If f(C) omits at least three dictinct hyperplanes in P which are linearly
dependent over C, then f must be linearly degenerate.

Proof. Apply Theorem 3.1 with ¢ = 3, dy = do = d3 = 0. O

Theorem 3.2. Let H be a set of q hyperplanes in P, ¢ > 3. Then H is non-
degenerate over C if and only if every holomorphic curve f : C — P™ ramifying
with large degree over 'H, is constant.

Proof. Let 'H be nondegenerate over C. Then H contains at least three distinct
hyperplanes which are linearly dependent. By Theorem 3.1, every holomorphic
curve f : C — P" ramifying with large degree over H, is linearly degenerate.
This means that the image of f is contained in some proper linear subspace W
of P*. We have dim W < n. Since f ramifies at least d; over all H; in H, W is
‘H-admissible. By the assumption that H is nondegenerate over C, H N W still
contains at least three distinct hyperplanes of W which are linearly dependent.

By Imf C W we have H; NImf = (H; N W) NImf for all H; € H. It follows
that f*H = f*(H; " W) for all H; € H. Hence

deg. f*(H;NW) =deg.f"H; > d;

for all z € f~1(H; N W). Therefore f still ramifies at least d; over H; N W in
HNW for all j =1,...,q. We know that inequality (2) still holds in this case. So
we can apply Theorem 3.1 again. By induction, we conclude that f is constant.

Conversely, if H is not degenerate over C, then we will construct a nonconstant
holomorphic curve f: C — P™ — |H|. Since H is not degenerate, there exists an
‘H-admissible subspace V' of P" of projective dimension greater than or equal to
one such that HNV does not contain at least three distinct hyperplanes which are
linearly dependent over C. Without loss of generality, we can assume that W =
P". Then ¢ < n+1, and Hy,..., H, are linearly independent. We may assume
that Hy,..., H; are the first ¢ coordinate planes, then the holomorphic curve f
represented by f = (1,€?,...,e?) is non-constant and satifies our conditions. [

Corollary 3.2. (M. Ru’s Theorem; see [10]). P" — |H| Brody hyperbolic if and
only if |H| is nondegenerate over C.
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Proof. Note that every holomorphic curve f : C — P — |H|, is a holomorphic
curve in P” ramifying with large degree over H. O

4. THE FERMAT VARIETY

By using Theorem 2.1 we can prove Green’s theorem (in [6]). The Fermat
variety X in P", of degree d, is defined by the equation

xg—l—...—i—xfll:O.

Theorem 4.1. (Green [6]). Let f = (fo,...., fu) : C — P" with n > 2 be a
holomorphic curve in the Fermat variety X, so

fi+..+fi=o.

If d > n? then the functions f(‘)i, . f,‘ffl are linearly dependent.

Proof. We define a holomorphic curve g in P! by the relation
2 €C s (f32), o 11 () € PP,
Consider the following (n + 1) hyperplanes in general position in P*~1:
Hy={z9=0},...Hp1 ={xp_1 =0}, H, = {z0 + ... + zp—1 = 0}.

We know that g ramifies at least d; > d over H;, 0 < j < n, and the following
condition holds

n n
1 1 n+1 n+1 n+1 1
dj_Zd d — n? n2—-1 n-1
=0 7=0
By Theorem 2.1, g is linearly degenerate. The proof is complete. O
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