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DEGENERACY OF HOLOMORPHIC CURVES IN P
n

NGUYEN THANH QUANG

Dedicated to the memory of Le Van Thiem

Abstract. By using the Nevanlinna-Cartan theory we establish some con-
ditions for degeneracy of holomorphic curves in the complex projective space
P

n.

1. Introduction

Let X ⊂ P
n be a projective subvariety of P

n, by which we mean an irreducible
algebraic subset. A holomorphic curve in the projective subvariety X ⊂ P

n is
said to be degenerate if it is contained in some proper algebraic subset of X. In
1979, M. Green and Ph. Griffths [3] conjectured that every holomorphic curve
in a complex projective hypersurface of general type is degenerate. M. Green
[2] proved the degeneracy of holomorphic curves in the Fermat variety of large
degree. In [8], A. M. Nadel showed the validity of Green-Griffth’s conjecture for
some classes of hypersurfaces and applied this result to construct some explicit
examples of hyperbolic surfaces in P 3 of degree 3e ≥ 21. Recently, H. H. Khoai
[4] proved the conjecture for other classes of hypersurfaces, and gave examples of
hyperbolic surfaces of arbitrary degree ≥ 22.

It is well-known that every holomorphic curve f : C → P
n omiting n+2 hyper-

planes in general position, is linearly degenerate (Bloch-Cartan). That is f(C)
is contained in some proper linear subspace of P

n. In [10] again by using Borel’s
lemma, M. Ru proved that every holomorphic curve f : C → P

n omiting at least
three distinct hyperplanes which are linearly dependent, is linearly degenerate.

In this paper, by using the Nevanlinna-Cartan theory we obtain some condi-
tions for the degeneracy of holomorphic curves in P

n. The condition “omiting
hyperplanes” of Bloch-Cartan and M. Ru can be weakened by the condition
“ramifying over hyperplanes with large degree”.

2. Generalized Bloch-Cartan’s theorem

Let f be a holomorphic curve in the complex projective space, i.e, a holomor-
phic map from complex plane C into the n-dimensional complex projective space
P

n. Suppose that X is represented by a collection of holomorphic functions on
C:
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f = (f0, ..., fn),

where the functions fi, 0 ≤ i ≤ n, have no common zeros.

Definition 2.1. The curve f is said to be linearly non-degenerate if the image
of f is not contained in any linear subspace of P

n of dimension less than n.

Now let H1,H2, ...,Hq be hyperplanes in Pn in general position. This means
that these hyperplanes are linearly independent if q ≤ n, and any (n+1) of these
hyperplanes are linearly independent if q ≥ n + 1.

Definition 2.2. Let f be a holomorphic curve from C into P
n and let H be a

hyperplane of Pn such that H 6⊃ f(C).

Assume that the hyperplane H is defined by the linear equation L = 0. Then
we define the pull-backed divisor of f over H by

f∗H =
∑

orda(L ◦ f)a,

where the sum is taken on all of zeros a of L ◦ f(z). Let degzf
∗H denote the

degree of the pull-backed divisor f∗H at z ∈ C.

Definition 2.3. We say that f ramifies at least d (d > 0) over H if degzf
∗H ≥

d for all z ∈ f−1H. This means every zero of the entire function L ◦ f has
multiplicity at least d. In the case f−1H = ∅, we set d = ∞.

Let Hj, j = 1, 2, ..., q, be hyperplanes of P
n in general position. Then the

following statement is valid.

Lemma 2.1. (H. Cartan [1]) Assume that f is linearly non-degenerate and ram-

ifies at least dj over Hj, 1 ≤ j ≤ q. Then

q
∑

j=1

(

1 −
n

dj

)

≤ n + 1.

We will apply Lemma 2.1 to prove following theorem.

Theorem 2.1. (Generalized Bloch-Cartan’s Theorem) Let H0, ...,Hn+1 be n+2
hyperplanes of P

n in general position. Assume that f ramifies at least dj over

Hj, 0 ≤ j ≤ n + 1. Suppose that

n+1
∑

j=0

1

dj

<
1

n
, (n ≥ 2).(1)

Then f is linearly degenerate.

Proof. Let L0(x), ..., Ln+1(x) denote the linear forms defining the hyperplanes.
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Because any set of n + 2 hyperplanes in P
n is linearly dependent over C, there

exist constants cj not all zeros such that

n+1
∑

j=0

cjLj(x) = 0.

Since H0, ...,Hn+1 are in general position in P
n, we have cj 6= 0, 0 ≤ j ≤ n + 1.

Moreover, (n + 1) is the smallest number such that we have such a relation.

Hence

n+1
∑

j=0

cjLj(f) ≡ 0.

We now prove that Lj(f) = Lj ◦ f , 0 ≤ j ≤ n, are linearly dependent. Assume
that Lj(f) = Lj◦f , 0 ≤ j ≤ n, are linearly independent. We define a holomorphic
curve g in P

n by setting

g(z) = (L0(f)(z), ..., Lnf(z)) ∀z ∈ C.

Then g is linearly non-degenerate. Consider the following hyperplanes in general
position in P

n:

H0 = {x0 = 0} , ...,Hn = {xn = 0} ,Hn+1 = {c0x0 + ... + cnxn = 0} .

By the hypothesis, g ramifies at least dj over Hj, 0 ≤ j ≤ n. It follows from
Lemma 2.1 that

n+1
∑

j=0

(

1 −
n

dj

)

≤ n + 1.

Hence

n+1
∑

j=0

1

dj

≥
1

n
·

We have arrived at a contradiction, because
n+1
∑

j=0

1

dj

<
1

n
. So there is a non-trivial

linear relation

c′0L0 ◦ f + ... + c′nLn ◦ f ≡ 0, c′j ∈ C.

Then the image of f is contained in the linear subspace (hyperplane) defined by
the equation

n
∑

j=0

c′jLj(x) = 0.

By the minimality of n + 1, this subspace is proper. The proof is complete.
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Corollary 2.1. (Bloch-Cartan [6]) Let f : C → P
n be a non-constant holomor-

phic curve with n ≥ 2. Let H0, ...,Hn+1 be n + 2 hyperplanes in general position.

If the image of f lies in the complement of H0 ∩ ... ∩ Hn+1, then it lies in some

hyperplane.

Proof. It suffices to apply Theorem 2.1 with dj = ∞, 0 ≤ j ≤ n + 1.

Example. It is clear that

f : C −→ P
2,

z 7−→ (z5,−z5, 1),

is a holomorphic curve in the complex projective plane P
2. Take 4 hyperplanes

of P
2 in general position:

H0 = {x0 = 0}, H1 = {x1 = 0}, H2 = {x2 = 0}, H3 = {x0 + x1 + x2 = 0}

Note that f does not omit H0 and H1. Since
2

5
<

1

2
, f is linearly degenerate

(Theorem 2.1). The image of f is contained in the hyperplane defined by the
equation x0 + x1 = 0.

3. Degeneracy of holomorphic curves

Definition 3.1. A projective variety X ⊂ P
n is said to be Brody hyperbolic if

every holomorphic curve f : C 7−→ X is constant. Similarly, if Y is a subset of X,
we say that Y is Brody hyperbolic (in X) if every holomorphic curve f : C → X,
whose image is contained in Y , is constant.

Recent studies suggest that the hyperbolicity of a complex space X is related
to the finiteness of the number of rational or integral points of X (see [10]).

It is well-known that the complement of 2n+1 hyperplanes in general position
in P

n is Brody hyperbolic (Bloch, Dufresnoy, Green, Fujimoto, see [6]). The
question is that given a set H of hyperplanes in P

n (not necessarily in general
position), what is necessary and sufficient condition for H such that P

n − |H| is
Brody hyperbolic and how do we verify it ? In [10], M. Ru answered this question
by providing an algorithm (in term of linear algebra) to determine whether or not
P

n − |H| is Brody hyperbolic. Here |H| denotes the finite union of hyperplanes
in H.

Definition 3.2 ([10]). Let H be a set of hyperplanes in P
n. Let V be a linear

subspace of P
n. V is called H- admissible if V is not contained in any hyperplane

in H. H is said to be nondegenerate (over C) if for every H- admissible subspace
V of P

n of projective dimension greater than or equal to one, H ∩ V contains at
least three distinct hyperplanes of V which are linearly dependent over C.

In [10], M. Ru proved that the complement of H in P
n is Brody hyperbolic if

and only if H is nondegenerate over C. This means that every holomorphic curve
f : C → P

n − |H| is constant if and only if H nondegenerate (over C).
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In this section we study the degeneracy of holomorphic curves ramifying over
hyperplanes in H.

Defenition 3.3. Let H = {H1,H2, ...,Hq}, q ≥ 3, be a set of q hyperplanes in
P

n. We say that a holomorphic curve f : C → P
n ramifies with large degree over

H if the image of f is not contained in the intersection of any three hyperplanes
in H and for every j = 1, ..., q, f ramifies at least dj over Hj ∈ H such that

q
∑

j=1

1

dj

<
1

q − 2
·(2)

Theorem 3.1. Let H = {H1, ...,Hq} be a set of q hyperplanes of P
n with q ≥ 3.

Let f : C → P
n be a holomorphic curve in P

n. Assume that f ramifies with large

degree over H. Then f linearly degenerate if H contains at least three distinct

hyperplanes which are linear dependent over C.

Proof. Let L1(x), ..., Lq(x) (q ≥ 3) be the linear forms defining the hyperplanes
in H. By the linear dependence assumption, there exist non-zero constants ai

such that
q

∑

i=1

aiLi(x) ≡ 0.

Without loss of generality, by shrinking the set of hyperplanes, we can assume
that q is the smallest integer such that we have such a relation (i.e. ai 6= 0 for all
i). Since the hyperplanes are distinct, we have q ≥ 3. Now

q
∑

i=1

aiLi ◦ f ≡ 0.

We are going to prove that the functions L1◦f, ..., Lq−1◦f are linearly dependent.
Assume that Lj ◦ f , 1 ≤ j ≤ q − 1, are linearly independent. Because the image
of f is not contained in the intersection of any three distinct hyperplanes in H,
we can define a holomorphic curve g in P

q−2 by

g : z ∈ C 7−→ (L1 ◦ f(z), ..., Lq−1 ◦ f(z)).

Consider the following hyperplanes in general position in P
q−2:

H1 = {z1 = 0}, ...,Hq−1 = {zq−1 = 0},Hq = {a1z1 + ... + aq−1zq−1 = 0}.

By the hypothesis, g ramifies at least dj over Hj, 1 ≤ j ≤ q. It follows from
Lemma 2.1 that

q
∑

j=1

(

1 −
q − 2

dj

)

≤ q − 1.

Hence
q

∑

j=1

1

dj

≥
1

q − 2
·
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This contracdicts our assumption. Thus there is a non-trivial linear relation.

a′1L1 ◦ f + ... + a′q−1Lq−1 ◦ f ≡ 0.

So the image of f is contained in the linear subspace (hyperplane) defined by the
equation

q−1
∑

j=1

cjLj(x) = 0,

and this is a proper subspace of P
n by the condition that q is minimal.

Corollary 3.1. (M. Ru’s Theorem, see [10]). Let f : C → P
n be a holomorphic

curve. If f(C) omits at least three dictinct hyperplanes in P
n which are linearly

dependent over C, then f must be linearly degenerate.

Proof. Apply Theorem 3.1 with q = 3, d1 = d2 = d3 = ∞.

Theorem 3.2. Let H be a set of q hyperplanes in P
n, q ≥ 3. Then H is non-

degenerate over C if and only if every holomorphic curve f : C → P
n ramifying

with large degree over H, is constant.

Proof. Let H be nondegenerate over C. Then H contains at least three distinct
hyperplanes which are linearly dependent. By Theorem 3.1, every holomorphic
curve f : C → P

n ramifying with large degree over H, is linearly degenerate.
This means that the image of f is contained in some proper linear subspace W

of Pn. We have dim W < n. Since f ramifies at least dj over all Hj in H, W is
H-admissible. By the assumption that H is nondegenerate over C, H ∩ W still
contains at least three distinct hyperplanes of W which are linearly dependent.

By Imf ⊂ W we have Hj ∩ Imf = (Hj ∩ W ) ∩ Imf for all Hj ∈ H. It follows
that f∗H = f∗(Hj ∩ W ) for all Hj ∈ H. Hence

degzf
∗(Hj ∩ W ) = degzf

∗Hj ≥ dj

for all z ∈ f−1(Hj ∩ W ). Therefore f still ramifies at least dj over Hj ∩ W in
H∩W for all j = 1, ..., q. We know that inequality (2) still holds in this case. So
we can apply Theorem 3.1 again. By induction, we conclude that f is constant.

Conversely, if H is not degenerate over C, then we will construct a nonconstant
holomorphic curve f : C → P

n − |H|. Since H is not degenerate, there exists an
H-admissible subspace V of P

n of projective dimension greater than or equal to
one such that H∩V does not contain at least three distinct hyperplanes which are
linearly dependent over C. Without loss of generality, we can assume that W =
P

n. Then q ≤ n + 1, and H1, ...,Hq are linearly independent. We may assume
that H1, ...,Hq are the first q coordinate planes, then the holomorphic curve f

represented by f = (1, ez , ..., ez) is non-constant and satifies our conditions.

Corollary 3.2. (M. Ru’s Theorem; see [10]). P
n − |H| Brody hyperbolic if and

only if |H| is nondegenerate over C.
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Proof. Note that every holomorphic curve f : C → P
n − |H|, is a holomorphic

curve in P
n ramifying with large degree over H.

4. The Fermat variety

By using Theorem 2.1 we can prove Green’s theorem (in [6]). The Fermat
variety X in P

n, of degree d, is defined by the equation

xd
0 + ... + xd

n = 0.

Theorem 4.1. (Green [6]). Let f = (f0, ..., fn) : C → P
n with n ≥ 2 be a

holomorphic curve in the Fermat variety X, so

fd
0 + ... + fd

n ≡ 0.

If d ≥ n2 then the functions fd
0 , ..., fd

n−1 are linearly dependent.

Proof. We define a holomorphic curve g in P
n−1 by the relation

z ∈ C 7−→ (fd
0 (z), ..., fd

n−1(z)) ∈ P
n−1.

Consider the following (n + 1) hyperplanes in general position in P
n−1:

H0 = {x0 = 0}, ...,Hn−1 = {xn−1 = 0},Hn = {x0 + ... + xn−1 = 0}.

We know that g ramifies at least dj ≥ d over Hj, 0 ≤ j ≤ n, and the following
condition holds

n
∑

j=0

1

dj

≤
n

∑

j=0

1

d
=

n + 1

d
≤

n + 1

n2
<

n + 1

n2 − 1
=

1

n − 1
·

By Theorem 2.1, g is linearly degenerate. The proof is complete.
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