
ACTA MATHEMATICA VIETNAMICA 359
Volume 27, Number 3, 2002, pp. 359-363

ONE DIMENSIONAL MODELS FOR QUANTUM

OSCILLATORS

FRÉDÉRIC PHAM

Dedicated to the memory of Le Van Thiem

The subject I will review here has been the “organizing center” of my research
during the last ten years or so. It takes its roots as far as the middle of the
19th century (Airy, Stokes), and is characterized by strong interaction between
mathematics and physics.

1. The objects of study: some more or less
“special” functions

The seminal example is the Airy function, a remarkable solution of the differ-
ential equation

( d2

dX2
− X

)

U = 0.(Airy eq.)

It was originally introduced by the British astronomer G. Airy in 1837 for mod-
elizing the rainbow phenomenon, and more generally for modelizing light waves
near a generic point of a caustic.

Second after the Airy model (in increasing complexity) comes the Weber model,
given by the differential equation

( d2

dX2
− X2 + E

)

U = 0.(Weber eq.)

As in the Airy case, remarkable solutions of this equation can be written under
simple integral form (the Weber integral): these special functions are the so-called
“parabolic cylinder functions” (cf. e.g. [14], Chap. XVI). A remarkable feature
of this equation is the fact that there is a discrete set of values of the parameter
E (E = 1, 3, 5, 7, . . . , 2n + 1) for which the equation has “bound states”, i.e.
solutions which tend to zero rapidly for X → ∞ and also for X → −∞ along the
real axis. This is one of the simplest examples of the “quantization of energy” in
wave mechanics (the Weber equation is the Schrödinger equation for the so-called
harmonic oscillator, and the parameter E is the energy of the oscillator).

My main efforts during the last ten years have been directed towards studying
“higher order analogs” of the Airy and Weber models, all of which given by
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differential equations of the form
( d2

dX2
− F (X)

)

U = 0(1)

with F a polynomial function, the degree m of which I shall call the order of the
model (in particular, the sine or exponential function may be called a model of
order zero !).

Famous among physicists is the anharmonic oscillator, corresponding to F (X) =
X2 + λX4 − E, which physicists like to consider as a “toy model” for the more
sophisticated “perturbation expansion” problems of QED (Quantum Electrody-
namics). For positive λ there is again a discrete sequence of “bound state ener-
gies” E0(λ), E1(λ), . . . , En(λ), . . . which physicists like to expand in powers of
the “perturbation parameter” λ:

En(λ) = (2n + 1) + E(1)
n λ + E(2)

n λ2 + . . .(2)

(the Rayleigh Schrödinger perturbation series, as physicists call them). These
expansions are known to be divergent, and physicists have spent much effort
analysing the nature of that divergence. It is not difficult to show that the En’s
are analytic functions of λ for λ > 0, and can be analytically continued in large
sectors of the complex λ-plane. In 1969 and 1973 Bender and Wu ([2], [3]) tried
to analyze in detail the singular structure near λ = 0, suggesting by various
heuristic arguments that E0, E2, E4, . . . on the one hand, E1, E3, E5, . . . on the
other hand, are just branches of one multivalued analytic function of λ with a
discrete set of square-root branch points accumulating at the origin of the complex
λ-plane in imaginary directions. These conjectures were made more precise and
proved in 1997 by E. Delabaere and myself ([5])1. Notice that the anharmonic
oscillator corresponds to choosing for F the generic even polynomial of degree 4
(an obvious rescaling allows one to rewrite F as X4 + αX2 − E). In [5] we also
studied, although less extensively, the case when F is the generic polynomial of

degree 4 (F = X4 +αX2 +βX −E), analysing in particular the so-called avoided

crossing phenomenon, which can be interpreted in terms of square-root branch
points close to the real β-axis, for fixed negative real α.

More recently we started investigating the cubic oscillator, where F is the
generic polynomial of degree 3. In that case bound states occur only for com-

plex F . Of special interest for physicists are “PT-symmetric” bound states, cor-

responding to the case where F (−X) = F (X). For instance Zinn-Justin and
Bessis conjectured a long time ago (on the basis of numerical evidence) that for
F = iX3 +X2−E bound states occur only a discrete sequence (En) of real values
of E. In [6] we proved an analogous statement with iX3 replaced by iλX3, λ real
and small. Actually we have good reasons to believe that the statement holds
true for arbitrary real λ. Our program of proof involves precise conjectures (sim-
ilar to Bender and Wu’s) on the ramified structure of the bound state energies
En as functions of the complex parameter λ. Our thesis student Trinh Duc Tai
(from Dalat) has started working on this program.

1Actually we only proved them for small enough |λ|
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2. The tools: resurgence theory

In order to study the differential equation (1), we rewrite it in apparently
more general forms, depending on a “scale parameter” ~ (the notation comes

from physics: ~ is Planck’s constant): we write ~
2 d2

dx2
instead of

d2

dX2
, and

also make the coefficients of the polynomial F depend (possibly) on ~ in various
“natural” ways, thus yielding various “rescalings” of the differential equation
(1) (which yield again (1) for ~ = 1). Actually the gain of generality is only
apparent: inasmuch as the coefficients of the polynomial F are considered as free
parameters, the rescaled equation can be obtained from (1) by multiplying X

with a suitable fractional power of ~, and making the coefficients of F depend
on ~ in a suitable way. Intuitively, every such way of “rescaling” (1) can be
thought of as way of “looking at the solutions of (1) through a magnifying glass”,
the parameter ~ being the inverse of the amplitude of magnification (~ can be
thought of as “small”).

In order to study the solutions of the rescaled equation, one tries to expand
them in formal power series of ~. Such expansions (which are divergent) are known
to physicists under the name of WKB expansions (WKB stands for Wentzel,
Kramers and Brillouin), and their study is called semi-classical asymptotics. Af-
ter the works of Voros [13] and Ecalle [8], we know that these expansions belong to
the class of so-called resurgent expansions introduced by J. Ecalle around 1980.
This implies that although divergent they can be resummed, defining analytic
functions of ~ in complex sectors of the form2 θ0 < arg ~ < θ1 (with θ1 − θ0 < π),
|~| < ρ. Ecalle’s resummation procedure is a very natural variant of Borel’s
resummation procedure: the main difference is that instead of defining the re-
summed function by means of a Laplace integral along the positive real axis
one may integrate along any half-line [0, eiθ∞[ which meets no singularities of
the “Borel transform”3. If two such “non singular” half-lines are separated by
singularities of the Borel transform, the resulting resummations differ by small
exponentials, which may be called Stokes discontinuities4. In all natural appli-
cations of the theory these “Stokes discontinuities” can be described in closed
form by so-called “resurgence equations”, which express them explicity in terms
of the original expansions (in the same way as a differential equation expresses
the derivative of a function in terms of the function itself).

Precise control of small exponential effects has been an important challenge
for asymptoticians (whether physicists or applied mathematicians) in the recent
years. Around 1990 the British physicist Michael Berry noticed that the ideas
of Ecalle bore deep connection with some ideas of Dingle (whose book [7] is a

2In our case these functions also depend analytically on x and on the coefficients of the
polynomial F .

3For a brief account on Borel resummation, and its connection with the topics discussed here,
cf. e.g. [11].

4Cf. the seminal article of Stokes on the Airy function ([12]), which can be understood as a
first step into Ecalle’s theory.
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great classics among applied asymptoticians). More precisely, Berry noticed that
in the examples studied by Dingle (which obviously belonged to the class intro-
duced by Ecalle), the resurgence equations of Ecalle accounted for a phenomenon
noticed by Dingle, namely the fact that if one truncates the divergent expansion
in a suitable way (“truncating to the least term”) the remainder term can be re-
expressed explicitly in terms of the initial expansion. This allows us to iterate the
“evaluation by truncation” process, yielding an impressively accurate scheme for
numerical computation (for which M. Berry coined the term “hyperasymptotics”
[1]). This way of understanding resurgences is now quite popular among a larger
and larger community of applied asymptoticians, so that at the present time word
resurgence is used by two communities, in two senses which are certainly deeply
connected to each other (although this connection is not yet completely eluci-
dated): a (small) community of geometers (pure mathematicians, if you prefer),
who use Ecalle’s theory to prove theorems; a (larger) community of “applied as-
ymptoticians”, who use the word “resurgence” in the sense of M. Berry, putting
emphasis on numerical results. My works with Delabaere pertain to the first
category, although numerical esperimentation is not absent from them.

3. The hierarchy of models

Comming back to the so-called “models” of Section 1, what I call the “hierarchy
of models” is the following observation:

Looking at a model of arbitrary order with a suitable magnifying glass, one

“sees” a model of lower order.

This vague and intuitive statement can be made precise in various ways. “Looking
through a magnifying glass” means rescaling the differential equation in one of the
ways mentioned at the beginning of Section 2. Depending on how the coefficients
of F are rescaled, the limit of F as ~ → 0 may have zeros of various orders
(each such zero is called a turning point of the rescaled differential equation).
Outside turning points, the solutions of the rescaled equation “look like” sine or
exponential functions models of order 0, in the terminology of Section 1; near a
turning point of order 1, they “look like” solutions of the Airy equation; near a
turning point of order 2, they “look like” solutions of the Weber equation; etc.

Apart from the “etc.”. i.e. just considering turning point of order 1 or 2, the
above idea is essentially well known, and has been extensively used by applied
asymptoticians (who express it by saying that the Airy resp. Weber equation
provides good “uniform approximations” for solutions of scaled differential equa-
tions near a turning point of order 1 resp. 2). The first exact (i.e. non approxi-
mate) formulation - using resurgence theory - has been given by Ahmedou ould
Jidoumou in his thesis [9], and then improved by Eric Delabaere and myself [4].

In [10] I proposed a generalization for turning points of arbitrary order. Un-
fortunately the statement of that generalization was a bit technical. Nowadays I
have a much better statement (stronger and simpler), which I found last Novem-
ber (two months after this colloquium) while delivering a postgraduate course in
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Dalat on these questions: the statement (with a sketch of proof) can be found
in the typewritten notes of my Dalat course (written by Trinh Duc Tai, in Viet-
namese); a more detailed version will appears in the proceedings of the conference
held in Kyoto in December 1998; Towards the exact WKB analysis of differen-

tial equations..., edited by T. Kawai and Y. Takei (to be published by Kyoto
University Press).
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