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A NEW ALEXANDER-EQUIVALENT ZARISKI PAIR

MUTSUO OKA

Dedicated to the memory of Le Van Thiem

1. Statement of the result

Consider a moduli M(σ;n) of plane curves with a given degree n and having
prescribed set of finite singularities σ. Let C,C ′ ∈ M. The pair of curves (C,C ′)
is called a Zariski pair if the pairs of spaces (P2, C) and (P2, C ′) are not home-
omorphic. A Zariski pair (C,C ′) is called Alexander-equivalent if their generic
Alexander polynomials coincide. The first example of Alexander-equivalent Zariski
pair (C,C ′) for irreducible plane curves are given in [5]. They are plane curves
of degree 12 with 27 cusps. Here C is a generic (3, 3)-covering of a three cuspidal
quartic and C ′ is constructed using a six cuspidal non-conical sextic.

The purpose of this note is to construct an Alexander-equivalent Zariski pair
(D,D′) of irreducible curves of degree 8 with 12 cusps. We give a brief recipe for
the construction. Consider the moduli space M(cA2;n) plane curves of degree
n with c cusps of type y2 − x3 = 0. As we only consider cuspidal curves in this
note, we simply denote M(c;n) in stead of M(cA2;n). It is well-known that
M(3; 4) is irreducible. In fact, its dual is the moduli of plane curves of degree
3 with one node by the Plücker’s formula (see [N]). The fundamental group of
the complement P2 − C, C ∈ M(3; 4), is a finite non-abelian group of order 12
([8, 3]).

The first curve D is given by the generic (2,2)-cyclic covering C2,2(Z) of a

quartic Z in M(3; 4). Thus the fundamental group π1(P
2 −D) is a finite group

of order 24 and the Alexander polynomial ∆D(t) is equal to that of C by [4] and
therefore it is trivial. Actually we know that the generic Alexander polynomials
of any cuspidal curves of degree 2m, m = 1, 2, . . . are trivial by [1]. Thus the
cuspidal curves of degree 8 is also interesting in this sense.

To construct the second curve D′, we start from a two cuspidal quartic Q
i.e., Q ∈ M(2; 4). If Q is generic, it has 8 flexes and a bi-tangent line by the
Plücker’s flex formula ([7, 2, 6]). Namely the dual curve is a 8 cuspidal sextic
with one node. Let L∞ be the line at infinity. We choose a generic line at infinity
L∞ and two flexes P1, P2 with tangent line L1 and L2 respectively such that
L1 ∩ L2 ∩ L∞ = ∅. Then in the affine space C2 := P2 − L∞ we take the change
of linear coordinates so that L1 and L2 are given by the coordinate axis x = 0
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and y = 0. Let f(x, y) = 0 be the defining polynomial of Q and let P1, P2 be the
cusps and let R1 = (α2, 0) and R2 = (0, β2) be the flex points. First take the flex

double covering at R1 and let Q′ := F (2)(R1) ( [5]). Namely Q′ is the pull-back
of Q by the covering mapping (x, y) 7→ (x, y2) and Q′ is defined by f(x, y2) = 0.
Q′ has 5 cusps: two cusps Pi,± from each Pi, i = 1, 2 and one cusp comes from
R1 and two flexes R2,± on x = 0 coming from R2. They have the same tangent
line x = 0. Then we take the flex double covering along x = 0 and let D′ be the
pull-back of Q′. We see that D′ is defined by f(x2, y2) = 0 and it has 12 cusps: 10
cusps come from the five cusps of Q′ and two cusps come from flexes R2,±. More
precisely, we have 4 cusps coming from each cusp of Q and four cusps coming
from flex points R1, R2, which are given by (±α, 0), (0,±β). We will show that
π1(P

2 −D′) ∼= Z8 by a direct computation using the Zariski’s pencil method.

2. Fundamental groups

2.1. Construction. For the practical computation of flex coverings, we need
to know the locus of flex points explicitly. To construct a such two cuspidal
qurtic, we start from a curve C of type (1,2;4) with one cusp and a flex with the
tangent line y = 0. We denote the moduli of such curve by M1. By the action of
automorphisms, we may assume that the cusp is at (3, 1) and the flex is at (2, 0).
Then the generic curve is described by one parameter family

g(x, y) = y2 + (52 − 48s + 9s2)y + (34s − 36 − 6s2)xy + (−6s+ 6 + s2)x2y − 80

+ 48s + (144 − 88s)x+ (60s − 96)x2 + (28 − 18s)x3 + (2s − 3)x4.

Now take a generic curve C in M1 which is defined by g(x, y) = 0. We take
the symmetric double covering ϕ : C2 → C2, defined by ϕ(u, v) = (u+v, uv) ([3])
and let S2(C) be the quartic defined by the pull-back of C. The branching locus
of the symmetric covering is given by ∆ = {(x, y);x2 − 4y = 0}. Thus we must
assume that any cusps or the marked flex point of C are not located on ∆. S2(C)
is defined by the symmetric polynomial g′(u, v) = 0 where g′(u, v) := g(u+ v, uv)
and S2(C) has two cusps at (β1, β2) and (β2, β1) where β1, β2 are the root of
t2−3t+1 = 0. The flex at (2, 0) splits into two flexes R1 = (2, 0) and R2 = (0, 2)
in S2(C). Their tangent lines are given by y = 0 and x = 0 respectively. See [3]
for the detail about symmetric coverings.

Remark. We remark here that the pull-back of a flex of C is not necessarily a flex
of S2(C) in general, as the pull-back of the tangent line is not a line in general.
However this is the case if the flex is on x-axis with the tangent line y = 0 as the
pull-back of y = 0 is the the union of two lines u = 0 and v = 0.

We denote by M2 the set of symmetric quartic with two cusps and two marked
flexes whose tangent lines are coordinate axis. Note that S2(C) ∈ M2 for any
C ∈ M1 and conversely any Q ∈ M2 is presented as a symmetric double covering
S2(C) of some C ∈ M1.

We construct a correspondence ϕ : M2 → M(12; 8). For any quartic Q ∈ M2

defined by f(x, y) = 0, we take twice flex covering and we define Q 7→ Q̂, where Q̂
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of degree 8 with 12 cusps which is defined by f(x2, y2) = 0. We denote the image
of M2 in M(12; 8) by M3 and the image of M(3; 4) by the generic (2,2)-covering
by MZar. So MZar = {C2,2(Q);Q ∈ M(3; 4)}.
Theorem 2.1. (1) For any D′ ∈ M3, we have π1(P

2−D′) ∼= Z8 and the generic

Alexander polynomial ∆D′(t) is trivial.

(2) For any D ∈ MZar, π1(P
2 −D) is a finite non-abelian group of order 24 and

the generic Alexander polynomial is trivial.

In particular, the pair of irreducible curves (D,D′) is a Alexander-equivalent

Zariski pair for D′ ∈ M3 and D ∈ MZar and therefore the moduli space M(12; 8)
is not irreducible.

Remark. Any generic curve C ∈ M(2; 4) has 8 flexes and a bi-tangent line by
the flex formula (see [7, 2],[6]). Thus the dual curves have degree 6 and the
singularities are 8 cusps and a node. It is easy to show that M(2; 4) is irreducible
variety. Let M′ be the moduli of two cuspidal quartics with two marked flexes.
There is a surjective forgetting morphism ψ : M′ → M(2; 4). There exists a
canonical (but not unique) rational mapping from M′ to M(12; 8) as follows.
For any C ′ ∈ M′, we have a linear change of coordinates so that C is defined by
f(x, y) = 0 and two marked flex tangents are given by y = 0 and x = 0. Then

we can take the mapping C 7→ ϕ(C) := Ĉ where Ĉ is defined by f(x2, y2) = 0 as
above. The mapping ϕ is unique if we fix the line at infinity and is well-defined on
C if two tangent lines at marked flex points intersect outside of the line at infinity.
By a direct computation, it seems that M′ has two irreducible components and
one components is equal to the PSL(3;C)-orbit of M2. We do not know whether
the image of these components are in a same component of the moduli M(12; 8)
or not.

2.2. Computation of the fundamental group. The second assertion of The-
orem 2.1 follows from Theorem 5.5 of [4]. To prove the assertion (1), we consider
the following symmetric polynomial

f(x, y) := (xy − 3

2
(x+ y − 2)2)2 + xy − 2(x+ y − 2)3 +

3

4
(x+ y − 2)4

which is the pull-back of

g(x, y) = (y − 3

2
(x− 2)2)2 + y − 2(x− 2)3 +

3

4
(x− 2)4

by the symmetric covering. Let C1 := Ca(f) and C2 := {(x, y); f(x, y2) = 0} and
C3 := {(x, y); f(x2, y2) = 0}. The quartic C1 has two cusps at P1 := (β2, β1) and

P2 := (β1, β2) where β1 = D(3 −
√

5)/2, β2 = (3 +
√

5)/2 and two flex points
at R1 := (2, 0) and R2 := (0, 2) where the tangent lines are given by y = 0 and
x = 0. The discriminant polynomial of f with respect to y is given by

∆y(f)(x) = x2(3x− 8)(111x3 − 441x2 + 311x+ 216)(x2 − 3x+ 1)3

For the computation of the fundamental group, we consider the vertical pencil
lines Lη = {x = η}, η ∈ C. The three roots of 111x3 − 441x2 + 311x + 216 = 0,
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which we denote by α1, α2, α3, and x = 8/3 corresponds to the singular pencil
lines which are simply tangent to C1. They are real numbers which are given
by α1 = −0.419..., α2 = 1.771..., α3 = 2.620.... The roots x2 − 3x + 1 = 0
corresponds to cusps and they are given by β1 and β2. We note that β2 = 2.618...
is slightly smaller than α3 = 2.620.... See Figure 2. The graph of f is given in
Figure 1 and the local enlarged graph is given in Figure 2.

Figure 1. Graph of C1

We are going to show that π1(P
2−C3) ∼= Z8 using the pencil x = η, η ∈ C and

the information for C1. This implies also the commutativity: π1(P
2 −C2) ∼= Z8.

The singular pencils of Ci, i = 1, 2, 3 corresponds to Σi which are given by Lemma
2.4 of [5] as

Si1 = {0, α1, α2, α3, 8/3, β1, β2}, Σ2 = Σ1 ∪ {2} Σ3 = {±√
η; η ∈ Σ2}

We use the same notation as in [4] and [5]. Thus the bullets in the following
Figures are the intersections of C3 (of C1 in Figure 4) and the pencil lines. A path
ending to a bullet denotes a small loop going around that intersection counter-
clockwise (which is called a lasso in [4]). Monodromy relations are read from the
behavior of four points Lη ∩ C1 over the real line, which is sketched in Figure 4.
For η ∈ Σi, we denote η± = η ± ε where ε > 0 is sufficiently small.
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x = α2

x = 2

x = β2

x = α3

x = 8/3

Figure 2. Local graph of C1

O

ρ1ρ2ρ3

ρ4

ξ1
ξ2

ξ3

ξ4

Figure 3. Generators (x = 0+)

We take generators ρ1, . . . , ρ4, ξ1, . . . , ξ4 of π1(L0+ − L0+ ∩ C3) as in Figure
3. The base point is chosen to be [0, 1, 0] which is the base point of the pencil
Lη, η ∈ C and also equal to the point at infinity of Lη

∼= P1. Note that ρ1, . . . , ρ4

are symmetric to ξ1, . . . , ξ4 with respect to the origin. Thus any relation in
ρ1, . . . , ρ4 is also true for ξ1, . . . , ξ4. First we have the relation:

ξ4 . . . ξ1ρ4 . . . ρ1 = e.(2.2)
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x = α+
1 x = 0+ x = β+

1

x = α+
2 x = β−2 x = α−

3

Figure 4. Deformation of C1 ∩ Lη

The monodromy relation at x = 0 is the cusp relation and it is given by

ρ2 = ρ4, {ρ2, ρ3} = e, ξ2 = ξ4, {ξ2, ξ3} = e,(2.3)

where {a, b} = abab−1a−1b−1 as in [4]. The relation from the singular line x = α1

is equivalent to:

ρ1 = ρ−1
3 ρ4ρ3, ξ1 = ξ−1

3 ξ4ξ3.(2.4)

At this point, we have reduced our generators to {ρ2, ρ3, ξ2, ξ3}. Now the main
point is the following observation. Let y1(x), y2(x) be the roots of f(x, y) = 0 for
β1 < x < α2 such that =(yi(x)) > 0, i = 1, 2. The other two roots are given by
their complex conjugates. We may assume that <(y1(β

+
1 )) < <(y2(β

+
1 )). Then

Assertion 1. The inequality <(y1(x)) < <(y2(x)) is preserved on the interval
(β1, α2).

Assuming this, the monodromy relation at x = α2 is given as

ρ3 = ξ′′4 = (ξ3ξ2ξ1)
−1ξ4(ξ3ξ2ξ1), ξ3 = ρ′′4 = (ρ3ρ2ρ1)

−1ρ4(ρ3ρ2ρ1)(2.5)

where ρ′4, ρ
′′
4 , ξ

′
4, ξ

′′
4 are defined as in Figure 5 and we have

ρ′4 = ρ−1
3 ρ4ρ3, ξ′4 = ξ−1

3 ξ4ξ3, ξ′′4 = ξ2, ρ′′4 = ρ2(2.6)

by (2.3) and (2.4).These relations reduce to

ρ3 = ξ2, ξ3 = ρ2.(2.7)

The monodromy relations at x = 2 and β2 do not give any new relations. At
x = β+

2 , we consider the generators as in Figure 6 where ρ̂4 is defined as in Figure

6. By an easy computation we have ρ̂4 = ρ−1
3 ρ2ρ3.
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ρ2

ρ1

ρ3 ρ′4

ξ1

ξ2

ξ′′4

ξ3

ξ′4

ρ′′4

Figure 5. Generators (x = β+
1 )

The monodromy relation at x = α3 is given by ρ̂4 = ρ1 which reduces to ρ2ρ3 =
ρ3ρ2. Using the cusp relation ρ2ρ3ρ2 = ρ3ρ2ρ3 we get the relation ρ2 = ρ3. Thus
the generators ρ2, ρ3, ξ2, ξ3 reduces to the single element ρ2, which implies that
π1(P

2 − C3) ∼= Z8.

2.3. Appendix: Proof of Assertion 1. We give a brief proof of Assertion 1.
First, the four roots of f(x, y) = 0 in y, with a real x being fixed, are closed by
complex conjugation. So we look at those roots with positive imaginary part, say
y1(x) and y2(x). Assume that there exists a x0 ∈ (β1, α2) such that <(y1(x0)) =
<(y2(x0)) and put u0 = <(y1(x0)) and v1, v2 be the imaginary parts. Consider
f(x, u + iv) and put fe(x, u, v) and fo(x, u, v) be the real and the imaginary
parts. By an easy computation, fe and fo are polynomials of v of degree 4 and 3
respectively and

fe(x, u, v) = 3v4 + 3(xu− 3

2
(x+ u− 2)2)v2 − (xv − 3(x+ u− 2)v)2

+ 6(x+ u− 2)v2 − 9

2
(x+ u− 2)2v2 + (xu− 3

2
(x+ u− 2)2)2

+ xu− 2(x+ u− 2)3 +
3

4
(x+ u− 2)4

fo(x, u, v) = v3(−9x+ 26 − 12u) + v(157x + 12u3 − 78u2 − 120

+ 27xu2 − 132xu+ 9x3 + 168u − 66x2)
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ρ1

ρ2
ρ′4

ρ̂4

ρ3

ξ1

ξ2

ξ′′4

ξ3

Figure 6. Generators (x = β+
2 )

By the assumption, fe(x0, u0, v) = 0 and fo(x0, u0, v) = 0 has four common
solutions ±v1,±v2. As degv fo(x0, u0, v) = 3, we must to have fo(x0, u0, v) ≡ 0.
For this, it is necessary that the coefficients c3 := −9x + 26 − 12u and c1 :=
157x + 12u3 − 78u2 − 120 + 27xu2 − 132xu + 9x3 + 168u − 66x2 should vanish
at (x, u) = (x0, u0). Thus u0 = −3/4x0 + 13/6 and x0 is the solution of c1 =
−1/9 − 3/8x3 − 3/2x + 19/12x2 = 0. Thus the only possibility for x0 in the
interval (β1, α2) is x0 = 1.590... However fe(x0,−3/4x0 + 13/6, v) = 0 does not
have four real solutions in this case. By contradiction, this completes the proof
of Assertion 1.
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