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A SURVEY ON THE P-ADIC NEVANLINNA

THEORY AND RECENT ARTICLES

HA HUY KHOAI

Dedicated to the memory of Le Van Thiem

Abstract. We give a brief survey of the Nevanlinna theory over non-archimedean
fields and its applications in the study of p-adic hyperbolic spaces, the unique
range sets for meromorphic functions.

1. Introduction

The Nevanlinna theory studies the problem “How many times does a mero-
morphic fonction f(z) take the value a ∈ P

1 ?”, in other words, “how to measure
the set f−1(a)”?.

The first results in this direction belong to Hadamard.

Hadamard’s theorem. Let f(z) be a holomorphic function in C. Then

(the number of zeros of f in {|z| ≤ r}) ≤ log max
|z|≤r

|f(z)| +O(1),

where O(1) depends on f , but not on r.

This result is not yet “ideal” because of the following two deficiencies.

a) When f is a meromorphic function, we have the infinity in the right hand
side of the inequality, and in this case the Hadamard theorem does not give an
estimation of the number of zeros of f .

b) There are functions, for example, f(z) = ez, which do not have the zeros,
and in this case Hadamard’s inequality becomes trivial.

For eliminating the above deficiencies, R. Nevanlinna defines the following
functions.

1.1. Counting function. Let a ∈ C. We set

n(a, r) = ]{zeros of f(z) − a in {|z| < r}, with multiplicity},
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N(a, r) =

r
∫

o

n(a, t) − n(a, 0)

t
dt+ n(a, 0) log r.

1.2. Characteristic function. Instead of log|z|≤r |f(z)| we consider the func-
tion

T (r) =
1

2π

2π
∫

o

log+ |f(reiθ)|dθ +N(∞, r).

Using these two functions one gets the following inequality:

N(0, r) ≤ T (r) +O(1).

This inequality is valid and non-trivial for meromorphic functions.

For eliminating the second deficiency one notices that while the function ez

does not have the zeros, it takes many values “approching to zero”. Then one
can “measure” this set by using

1.3. Mean proximity function.

m(a, r) =
1

2π

2π
∫

o

log+
∣

∣

∣

1

f(reiθ) − a

∣

∣

∣dθ,

where log+ = max(0, log).

It is clear that m(a, r) becomes “bigger” when f(z) approches to a.

There are two “Main Theorems” and defect relations which occupy a central
place in the Nevanlinna theory.

1.4. First Main theorem of Nevanlinna. There is a function T (f) such that
for any a ∈ P

1 we have

m(a, r) +N(a, r) = T (r) +O(1).

As T (r) does not depend on a, one can say that a meromorphic function takes
every value a ∈ P

1 (and “approche to a” values) with the same frequency.

1.5. Second Main theorem of Nevanlinna. For an arbitrary q ∈ N and
distinct points ai ∈ P1, i = 1, . . . , q,

q
∑

i=1

m(ai, r) < 2T (r) +O(log(rT (r))),

where the inequality is valid beside a set of finite measure.

If we set

δ(a) = lim
r→∞

m(a, r)

T (r)
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then
∑

a∈P1

δ(a) ≤ 2.(1)

We say that δ(a) is the defect value at the point a and (1) is the “defect relation”.
Precisely, δ(a) = 0 for almost all a (except a countable set).

1.6. Why to study the p-adic Nevanlinna Theory ? In the famous paper
“De la métaphysique aux mathématiques” ([W]) A. Weil discussed the role of
analogies in mathematics. For illustrating he analysed a “metaphysics” of Dio-
phantine Geometry: the resemblance between Algebraic Numbers and Algebraic
Functions. However, the striking similarity between Weil’s theory of heights and
Cartan’s Second Main Theorem for the case of hyperplanes is pointed out by P.
Vojta only after 50 years! P. Vojta observed the resemblance between Algebraic
Numbers and Holomorphic Functions, and gave a “dictionary” for translating
the results of Nevanlinna Theory in the one-dimensional case to Diophantine
Approximations. Due to this dictionary one can regard Roth’s Theorem as an
analogue of the Nevanlinna Second Main Theorem. P. Vojta has also made quan-
titative conjectures which generalize Roth’s theorem to higher dimensions. One
can say that P. Vojta proposed a “new metaphysics” of Diophantine Geometry:
Arithmetic Nevanlinna Theory in higher dimensions. On the other hand, in the
philosophy of Hasse-Minkowski principle one hopes to have an “arithmetic result”
if one had have it in p-adic cases for all prime numbers p, and in the real and
complex cases. Hence one would naturally have interest to determine how the
Nevanlinna Theory would look in the p-adic case.

2. Two main theorems

Let p be a prime number, Qp the field of p-adic numbers, and Cp the p-adic
completion of the algebraic closure of Qp. The absolute value in Qp is normalized
so that |p| = p−1. We further use the notion v(z) for the additive valuation on
Cp which extends ordp.

We define the counting function in the same way as in the classical Nevanlinna
theory. That is, given a meromorphic function f , we let n(f,∞, r) denote the
number of poles in {|z| ≤ r}, and we let

N(f,∞, r) =

r
∫

o

[n(f,∞, t) − n(f,∞, 0)]
dt

t
+ n(f,∞, 0) log r

=
∑

|z|≤r,z 6=0

max{0,−ordzf} log
r

|z|
+ max{0,−ordof} log r,

where ordzf denotes the order of vanishing of f at z, and negative numbers
indicate poles. Counting functions for other values are defined similarly.
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For the mean proximity function, note that the norms | |r are multiplicative
on entire functions and they extend to meromorphic functions. Thus we define

m(f,∞, r) = log |f |r,

and for finite a,

m(f, a, r) = log
1

|f − a|r
.

Note that there is no need to do any sort of “averaging” over |z| = r, since by the
strong maximum modulus principle, for suitable generic z with |z| = r, we have
|f(z)| = |f |r. Finally, just as in the classical Nevanlinna theory, the characteristic
function is given by

T (f, a, r) = m(f, a, r) +N(f, a, r).

The properties of the valuation polygon imply that

log |f |r =
∑

|z|≤r,z 6=0

(ordzf) log
r

|z|
+ (ordof) log r + 0(1),

where the 0(1) term depends on the size of the first non-zero coefficient in the
Laurent axpansion for f at 0. This is of course a non-Archimedean Jensen formula
which can be written as

m(f,∞, r) +N(f,∞, r) = m(f, 0, r) +N(f, 0, r) + 0(1).

From this formula the non-Archimedean analogue to the Nevanlinna first Main
Theorem follows easily.

The Second Main Theorem. Let f be a non-constant meromorphic function
on Cp, and let a1, a2, . . . , aq be q distinct points on Cp ∪ {∞}. Then, for all
r ≥ ro > 0,

(q − 2)T (f, r) −

q
∑

j=1

N(f, aj , r) −NRam(f, t) ≤ − log r + 0(1),

where

NRam(f, a) = N(f ′, 0, r) + 2N(f,∞, r) −N(f ′,∞, r)

measures the growth of the ramification of f , and the 0(1) term depends only on
the aj, the function f , and the number ro.

Corollary. Let f and a1, a2, . . . , aq be as in the preceding theorem. Then for all
r ≥ ro

(q − 2)T (f, r) ≤

q
∑

j=1

N1(f, aj , r) − log r + 0(1),

where N1(f, aj, r) denotes a modified counting function in that each point where
f = a is counted only with multiplicity 1, and again 0(1) term depends on the
aj, f, ro.
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3. The height function

In the p-adic case we can use the so-called “the height function”. Note that
the Newton polygon gives expression to one of the most basic diffrences between
p-adic analytic functions and complex analytic functions. Namely, the modulus of
a p-adic analytic function depends only on the modulus of the argument, except
for a discrete set of values of the modulus of argument. This fact often makes it
easier to prove the p-adic analogues of classical results. Now we give the definition
of the height function.

Let f(z) be an analytic function on Cp, which is represented by a convergent
power series

f(z) =

∞
∑

n=0

anz
n.

For each n we draw the graph Γn which depicts v(anz
n) as a function of v(z) = t.

This graph is a straight line with slope n. Since we have lim
n→∞

{v(an)+nt} = ∞ for

all t, it follows that for every t there exists an n for which v(an) + nt is minimal.
Let h(f, t) denote the boundary of the intersection of all of the half-planes lying
under the lines Γn. Then in any finite segment [r, s], there are only finitely many
Γn which appear in h(f, t). Thus h(f, t) is a polygonal line. This line is what we
call the height of the function f(z). The points t at which h(f, t) has vertices are
called the critical points of f(z). A finite segment contains only finitely many
critical points. If t is a critical point, then v(an) + nt attains its minimum at
least at two values of n. If v(z) = t is not a critical point, then |f(z)| = p−h(f,t).

The height of a function f(z) gives complete information about the number
of zeros of f(z). Namely, f has zeros when v(z) = ti (a critical point) and the
number of zeros of f such that v(z) = ti is equal to the difference ni+1 − ni

between slopes of h(f, t) at ti−0 and ti+0

For a meromorphic function f =
φ

ψ
, the height of f is defined by h(f, t) =

h(φ, t) − h(ψ, t). We also use the notation

h+(f, t) = −h(f, t).

Theorem 3.1. Let f be a meromorphic function and let a1, a2, . . . , aq be q distinct
points in Cp ∪ {∞}. Then for t sufficiently small,

(q − 2)h+(f, t) ≤

q
∑

j=1

N1(f, aj, t) + t+ 0(1),

where N1(f, a, t) denotes a modified function in that each point where f = a is
counted only with multiplicity 1, and the 0(1) is a bounded value as t −→ −∞.

The height function is applied to the interpolation problem (see [K1]). Let
u = {u1, u2, . . . } be a sequence of points in Cp. In what follows we shall consider
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only sequences u for which the numbers of points ui satisfying v(ui) ≥ t is finite
for every t. We shall always assume that v(ui) ≥ v(ui+1), (i = 1, 2, . . . ).

Definition 3.1. The sequence u = {ui} is called an interpolating sequence of f
if the sequence of interpolating polynomials for f on u converges to f .

For every sequence u we define a holomorphic function Φu as follows. Let

Nu(t) = #{ui|v(ui) ≥ t}.

Write the sequence u in the form

u = {u1, u2, . . . , un1
, un1+1, . . . , un2

, . . . },

where

v(ui) = tk for nk−1 < i ≤ nk

(we take uo = 0), and

lim
k→∞

tk = −∞.

We choose a sequence ak with the property

v(ao) = −n1t1, v(ak+1) = v(ak) + (nk − nk+1)tk+1, (k = 1, 2, . . . ).

We set

Φu(z) = 1 +

∞
∑

k=1

akz
nk .

Then the series converges for z ∈ Cp and determines an analytic function Φu(z)
on Cp, for which the number of zeros in each region {z|v(z) > t} is equal to
Nu(t), and

h(Φu, t) =

∫ t

∞
Nu(t)dt.

Theorem 3.2. The sequence u = {ui} is an interpolating sequence of the func-
tion f(z) if and only if

lim
t→∞

{h(f, t) − h(Φu, t)} = ∞.

Remark 3.1. This is the first interpolation theorem for p-adic analytic functions
not necessarily bounded. A similar theorem for analytic functions in the unit disc
implies that the p-adic L-functions associated to modular forms are uniquelly
defined by the values on Dirichlet characters (see [K2]).

Remark 3.2. We can use the interpolation theorem to recover a p-adic mero-
morphic function if we know the preimages (with multiplicity) of two points (see
[K3]).

For high dimensions, as well as in the complex case, instead of the study the
preimage of a point, we should consider the preimage of a divisor of codimension
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one. The reason is that in the p-adic case there exist also Fatou-Bieberbach
domains (see [S]).

Now let f = (f1, . . . , fn+1) : Cp → Pn(Cp) be a p-adic holomorphic curve,
where the functions fj have no common zeros.

Definition 3.2. The height of the holomorphic curve f is defined by

h(f, t) = min
1≤j≤n+1

h(fj , t),

where h(fj , t) is the height of p-adic holomorphic function on Cp.

Notes that the height of a curve is well defined up to a bounded value.

The following theorem is a p-adic version of the Second Main Theorem in the
case of holomorphic curves.

Theorem 3.3. ([KT) Let H1, . . . ,Hq be q hyperplanes in general position, and
let f be a non-degenerate holomorphic curve in Pn(Cp). Then we have

(q − n− 1)h+(f, t) ≤

q
∑

j=1

Nn(f.Hj, t) +
n(n+ 1)

2
.t+ 0(1),

where 0(1) is bounded when t → −∞ and h+(h, t) = −h(f, t).

Cherry and Ye [CY] extend the theorem to several variables. Moreover, they
considered the case of degenerate curves by using the so-called Nochka’s weights
([N]). Recenly, Hu and Yang [HY] obtain similar results for moving targets.

For the case of hypersurfaces we have the following result

Theorem 3.4. ([KA1]) Let H1, . . . ,Hq be hypersurfaces of degree d in P
n(Cp)

in general position. Let f be a non-degenerate holomorphic curve. Then

(q − n)h+(f, t) ≤

q
∑

j=1

N(f ◦Hj, t

d
+ 0(1),

where 0(1) is bounded when t → −∞.

This is a p-adic version of Eremenko-Sodin’s theorem ([ES]).

A holomorphic curve f is called k-non-degenerate if the image of f is contained
in a linear subspace of dimension k and is not contained in any linear subspace
of dimension k − 1.

We conclude this section by the following conjecture.

Conjecture 3.1. Let H1, . . . ,Hq be hypersurfaces of degree dj , j = 1, . . . , q in
P

n(Cp) in general position. Let f be a k-non-degenerate holomorphic curve. Let
s be an integer ≥ k, or s = ∞. Then

(q − 2n+ k − 1)h+(f, t) ≤

q
∑

j=1

Ns(Hj ◦ f, t)

dj

+ 0(1).
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Remark 3.3. In the complex case the above conjecture corresponds to the
following cases:

1. Nevanlinna’s Second Main Theorem: n = 1, k = 1, dj = 1, s = ∞.

2. Cartan Theorem: ∀n, k = n, dj = 1, s = n.

3. Nochka Theorem (Cartan’s conjecture): ∀n, ∀k ≤ n, s = k, d = 1.

4. Eremenko-Sodin’s theorem: ∀n, k = n, ∀dj , s = ∞.

4. Defect relation and Borel’s Lemmas

Let H be a hyperplane of P
n(Cp) such that the image of f is not contained in

H. We say that f ramifies at least d (d > 0) over H if for all z ∈ f−1H the degree
of the pull-back divisor f∗H, degzf

∗H ≥ d. In case f−1H = ∅ we set d = ∞.

Theorem 4.1. Let H1, . . . ,Hq be q hyperplanes in general position. Assume f
is linearly non-degenerate and ramifies at least dj over Hj. Then

q
∑

j=1

(1 −
n

dj
) < n+ 1.

Remark 4.1. In the complex case we have a similar inequality, but with the sign
≤. The reason is that in the p-adic case, the error term in Second Main Theorem
is simpler that the complex one. This is important for applications.

From Theorem 4.1 one can deduce the following p-adic version of Borel’s
Lemma.

Theorem 4.2. (p-adic Borel’s Lemma [Q]). Let f1, f2, . . . , fn (n ≥ 3) be p-adic
holomorphic functions without common zeros on Cp such that f1+f2+...+fn = 0.
Then the functions f1, . . . , fn−1 are linearly dependent if for j = 1, . . . , n every
zero of fj is of multiplicity at least dj and the following condition holds:

n
∑

j=1

1

dj
≤

1

n− 2
.

By using the defect relation one can prove some generalizations of Borel’s
lemma.

Let

Mj = z
αj,1

1 . . . z
αj,n+1

n+1 , 1 ≤ j ≤ s,

be distinct monomials of degree l with non-negative exponents. Let X be a
hypersurface of degree dl of P

n(Cp) defined by

X : c1M
d
1 + . . . csM

d
s = 0,

where cj ∈ C
∗
p are non-zero constants.
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Theorem 4.3. (p-adic analogue of Masuda-Noguchi’s Theorem [M-N]). Let f =
(f1, .., fn+1) : Cp −→ X be a non-constant holomorphic curve such that any
fj 6≡ 0. Assume that

d ≥ s(s− 2).

Then there is a decomposition of indices {1, 2, ..., s} = ∪Iγ such that

(i) Every Iγ contains at least 2 indices;

(ii) The ratio of Md
j ◦ f(z) and Mk

j ◦ f(z) is constant for j, k ∈ Iγ;

(iii)
∑

j∈Iγ

cjM
d
j ◦ f(z) ≡ 0 for all γ.

Corollary 4.1. For d ≥ 3 there is no solutions of the following equation in the
set of p-adic non-constant holomorphic functions having no common zeros:

xd + yd = zd.

5. P -adic hyperbolic spaces

Recall that a complex space is said to be hyperbolic if every holomorphic
curve in it is a constant curve. In the complex case, the Borel Lemma is often
used to establish the hyperbolicity of a complex space. In what follows we show
some applications of p-adic Borel’s Lemma in the study of p-adic hyperbolic
hypersurfaces.

Although the set of hyperbolic hypersurfaces of degree d large enough with
respect to n is conjectured to be Zariski dense ([Ko]), it is not easy to construct
explicit examples of hyperbolic hypersurfaces.

The first example of smooth hyperbolic surfaces of even degree d ≥ 50 was
given by R. Brody and M. Green ([BG]). Now we show how to use p-adic Borel’s
Lemmas to construct explicit examples of p-adic hyperbolic hypersurfaces.

Let X be a hypersurface defined as above, and let d ≥ s(s− 2). Suppose that
X is not hyperbolic, and let

f = (f1, ..., fn+1) : Cp −→ X

be a nonconstant holomorphic curve in X. We are going to show that {cj}
belongs to an algebraic subset of (C∗

p)
s. We can assume that fj 6≡ 0 for every j.

By Theorem 4.3, there is a decomposition of indices {1, . . . , s} = ∪Iξ such that

(i) every Iξ contains at least 2 indices,

(ii) the ratio of Md
j ◦ f(z) and Md

k ◦ f(z) is constant for j, k ∈ Iξ,

(iii)
∑

j∈Iξ

cj M
d
j ◦ f(z) ≡ 0 for all ξ.

Now for a decomposition of {1, . . . , s} as above, we set bjk = Md
j ◦ f(z) /Md

k ◦
f(z). Then the linear system of equations

AY = B ,
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where A is the matrix {αj` − αk`}, Y =







y0
...
yn






, B = {logbjk}, has the solution

{logf0, ..., logfn}. Thus, the matrix A satisfies certain conditions on the rank.
On the other hand, by condition (iii) there exist (A0, ..., An) ∈ P

n such that
(ci) ∈ (C∗

p)
s

∑

i∈Iξ

ciA
αio
o · · ·Aαin

n = 0.

Hence, (ci) ∈ (C∗
p)

s belongs to the projection Σ ⊂ (C∗
p)

s of an algebraic subset in
(C∗

p)
s × P

n. If we take (ci) 6∈ Σ, then we have a hyperbolic hypersurface.

Examples 5.1. Let N = 4n− 3, k = N(N − 2) = 16(n − 1)2. Then for generic
linear functions Hj(z0, . . . , zn) ∈ C

n+1
p (1 ≤ j ≤ n) the hypersurface

X :

N
∑

j=1

Hk
j = 0

is hyperbolic. This is p-adic version of a recent result of Siu and Yeung ([SY],
1997).

Proof. By p-adic Borel’s lemma, if f : Cp −→ X is a non-constant holomorphic
curve then Imf ⊂ ∩ξXξ, where

Xξ :
∑

j∈Iξ

Hk
j = 0.

The genericity of {Hj} implies ∩Xξ = ∅.

For the case of surfaces in P
3 we can use the following method. Take at first

a surface X ⊂ P
3 such that every holomorphic curve in X is degenerate. This

means that the image of a holomorphic map f : Cp −→ X from Cp into X is
contained in a proper algebraic subset of X. If one could prove that the image
f(Cp) is contained in a curve of genus at least 1, then f is a constant map
(Bercovich’s theorem).

Example 5.2. Let X be a surface in P
3(Cp) defined by the equation

X : zd
1 + zd

2 + zd
3 + zd

4 + czα1

1 zα2

2 zα3

3 zα4

4 = 0,

where c 6= 0,
4
∑

i=1
αi = d, and if there is an exponent αi = 0, then the others must

be 6= 1. Then X is hyperbolic if d ≥ 24.

Example 5.3. Let X be a curve in P
2(Cp) defined by the equation:

X : zd
1 + zd

2 + zd
3 + czα1

1 zα2

2 zα3

3 = 0,
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where d ≥ 24, d > αi ≥ 0,
∑

αi = d. Then the complement of X is p-adic
hyperbolic in P

2(Cp).

6. Unique range set of meromorphic functions

For a non-constant meromorphic function f on C and a set S ⊂ C ∪ {∞} we
define

Ef (S) = ∪a∈S{(m, z)|f(z) = a with multiplicity m},

and

Ēf (S) = ∪a∈S{z|f(z) = a ignoring multiplicities}.

A set S ⊂ C∪{∞} is call an unique range set for meromorphic functions (URSM)
if for any pair of non-constant meromorphic functions f and g on C, the condition
Ef (S) = Eg(S) implies f = g. A set S ⊂ C ∪ {∞} is called an unique range
set for entire functions (URSE) if for any pair of non-constant entire functions f
and g on C, the condition Ef (S) = Eg(S) implies f = g. The classical theorems
of Nevanlinna show that f = g if Ēf (aj) = Ēg(aj) for distinct values a1, . . . , a5,
and that f is a Möbius transformation of g if Ef (aj) = Eg(aj) for distinct values
a1, . . . , a4. Gross and Yang show that the set

S = {z ∈ C|z + ez = 0}

is an URSE. Recently, URSE and also URSM with finitely many elements have
been found by Yi ([Y1], [Y2]), Li and Yang ([LY1], [LY2]), Mues and Reinders
[MR], Frank and Reinders [FR]. Li and Yang introduced the notation

λM = inf{#S|S is a URSM},

λE = inf{#S|S is a URSE},

where #S is the cardinality of the set S. The best lower and upper bounds known
so far are

5 ≤ λE ≤ 7, 6 ≤ λM ≤ 11.

For p-adic meromorphic or entire function f on Cp, similarly we can define Ef (S)
and Ēf (S) for a set S ⊂ Cp ∪ {∞} and introduce the notation λM and λE.
By using p-adic Nevanlinna theory and theory of singularities we can prove the
following theorems:

Theorem 6.1. Let P be a generic polynomial of degree at least 5. Let f and
g be p-adic meromorphic functions such that P (f) = CP (g) with a constant C.
Then f ≡ g.

Theorem 6.2. Let S = {a1, a2, a3, a4} be a generic set of 4 points in Cp. Then
for p-adic meromorphic functions f and g, the conditions Ef (S) = Eg(S) and
Ef (∞) = Eg(∞) imply f ≡ g.

For the proof, see [K7].



332 HA HUY KHOAI

Conjecture 6.1. A generic set of 5 points in Cp ∪ {∞} is a URS for p-adic
meromorphic functions.
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