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Abstract. Let f and g be two permutable transcendental entire functions.
We shall prove that they have the same Julia set (i.e., J(f) = J(g)) if the
set of the asymptotic values and critical values of f and g is bounded. This
relates to a result and an open problem of Baker in the Fatou-Julia theory. In
addition, for any positive integers n and m, we show that J(f ◦g) = J(fn

◦gm).

1. Introduction and main results

Let f be a nonconstant meromorphic function. The sequence of the iterates of
f is defined by setting

f0 = id, f1 = f, . . . , fn+1 = fn(f), . . . .

Let

F = F (f) =
{

z ∈ C : the sequence {fn} is defined and normal at z
}

and

J = J(f) = C − F (f).

These sets are called the Fatou set and the Julia set of f , respectively. Here the
concept “normal” is in the sense of Montel. According to the definition, F is
open (possibly empty) and J is closed.

Let f and g be two nonconstant meromorphic functions. If

f(g) = g(f),(1)

then we say that f and g are permutable.

Fatou [4] proved the following result.

Theorem A. For two given rational functions R1 and R2, if they are permutable,

then F (R1) = F (R2).

The following question is natural (see Baker [1]):

Question. For two given permutable transcendental entire functions f and g,
does it follows that F (f) = F (g)?
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In some special cases, this question was affirmatively solved.

Theorem B (Baker [1]). Suppose that f and g are permutable transcendental

entire functions, and f = g + c for some constant c. Then F (f) = F (g).

A point a is called a singular value if it is either a critical value or an asymptotic
value. We denote by sing(f−1) the set of all finite singular values of f . If the
set sing(f−1) is bounded, then we say f is of bounded type, in particular, if the
set sing(f−1) is finite, then f is called to be of finite type. We denote them by
f ∈ B and f ∈ S respectively (cf. [2]).

Theorem C (Poon and Yang [6]). Suppose that f and g are permutable tran-

scendental entire functions. If both sing(f−1) and sing(g−1) are isolated in the

finite complex plane, then F (f) = F (g).

Remark. Theorem C includes the case that f and g are of finite type. This
conclusion was also proved independently by Ren and Li [7].

In this paper, by using a result due to Erememko and Lyubich [3], we shall
prove the following theorem.

Theorem 1. Let f and g be two permutable transcendental entire functions. If

f and g are of bounded type, then

J(f) = J(g).

In the general case, we have the following statement.

Theorem 2. If f and g are two permutable transcendental entire functions, then

J(f ◦ g) = J(fn ◦ gm), ∀m,n ≥ 1.

2. Preliminaries

Let f be a transcendental entire function, a ∈ C. If there exist a polynomial
p(z) and a nonconstant entire function h(z) such that

f(z) = p(z)eh(z) + a,

then we call a a big Picard exceptional value of f , and we denote the set of
all such values by PV ∗(f). Furthermore, if p(z) = (z − a)k for some integer
k ≥ 0 then a is said to be a Fatou exceptional value of f . In particular, if k = 0
then a is a Picard exceptional value of f . We denote by FV (f) and PV (f) the
Fatou exceptional values and the Picard exceptional values of f , respectively. By
the Picard Theorem, each of the above three sets contains at most one point.
Obviously,

PV (f) ⊂ FV (f) ⊂ PV ∗(f).

For two permutable transcendental entire functions f and g, we have

PV (f ◦ g) = PV (f) ∪ PV (g).



DYNAMICS OF ENTIRE FUNCTIONS 303

In fact, if PV (f ◦ g) contains a point x and x /∈ PV (f), then there exists a point
z0 such that f(z0) = x. Note that f ◦ g(z) 6= x for any z ∈ C, thus g(z) 6= z0, i.e.,
z0 ∈ PV (g) ⊂ PV ∗(g). Since f(g) = g(f), from x ∈ PV (g ◦ f) we deduce that
x ∈ PV ∗(g). Thus x, z0 ∈ PV ∗(g). Since PV ∗(g) contains at most one element,
we have z0 = x, so x ∈ PV (g). Thus PV (f ◦ g) ⊂ PV (f) ∪ PV (g). The reverse
inclusion is obvious.

Lemma 1. ([8]) Let f be a transcendental entire function. Then

f−1(F (f)) = F (f) = f(F (f)) ∪ {PV (f) ∩ F (f)},

f−1(J(f)) = J(f) = f(J(f)) ∪ {PV (f) ∩ J(f)}.

Lemma 2. (Baker [1]) Let f and g be two permutable transcendental entire func-

tions. Then g(J(f)) ⊂ J(f) and f(J(g)) ⊂ J(g).

We define

I(f) = {a : a ∈ C, fn(a) → ∞ as n → ∞}.

Lemma 3. ([3]) If f ∈ B be a transcendental entire function, then J(f) = I(f).

Lemma 4. (cf. [5]) Let f be a transcendental entire function, b ∈ C\FV (f).
We have

J(f) ⊂

(

∞
⋃

n=0

f−n(b)

)

.

Furthermore, if b ∈ J(f)\FV (f) then

J(f) =

(

∞
⋃

n=0

f−n(b)

)

.

Lemma 5. Let f1 and f2 be two permutable transcendental entire functions.

Then

F (f1 ◦ f2) ⊂ F (f1) ∩ F (f2).(2)

Proof. Since f1 and f2 are permutable, we have

f1 ◦ f1(f2) = f1(f2) ◦ f1, f2 ◦ f1(f2) = f1(f2) ◦ f2.

It follows from Lemma 2 that

f1(J(f1(f2))), f2(J(f1(f2))) ⊂ J(f1(f2)).(3)

This and Lemma 1 imply that

J(f1(f2)) = f1 ◦ f2(J(f1(f2))) ∪ {PV (f1(f2)) ∩ J(f1(f2))}

= f2 ◦ f1(J(f1(f2))) ∪ {PV (f1(f2)) ∩ J(f1(f2))}

⊂ f2(J(f1(f2))) ∪ {PV (f1(f2)) ∩ J(f1(f2))}

⊂ J(f1(f2)).
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Thus

f2(J(f1(f2))) ∪ {PV (f1(f2)) ∩ J(f1(f2))} = J(f1(f2)).(4)

Similarly we have

f1(J(f1(f2))) ∪ {PV (f1(f2)) ∩ J(f1(f2))} = J(f1(f2)).(5)

Next we shall prove that

f−1
2 (J(f1(f2))) = J(f1(f2))(6)

and

f−1
1 (J(f1(f2))) = J(f1(f2)).(7)

In fact, for any a ∈ f−1
2 (J(f1(f2))), i.e., f2(a) ∈ J(f1(f2)), from (3) we deduce

that f1(f2(a)) ∈ J(f1(f2)). Applying Lemma 1 to the function f1(f2) we obtain
a ∈ J(f1(f2)). Hence

f−1
2 (J(f1(f2))) ⊂ J(f1(f2)).

The converse follows from (4). Thus (6) holds.

The equation (7) can be proved similarly. It follows from (4)-(7) that

f−1
2 (F (f1(f2))) = F (f1(f2)) = f2(F (f1(f2))) ∪ {PV (f2) ∩ F (f1(f2))}.(8)

In fact, if b ∈ F (f1(f2))\PV (f2), then there exists c ∈ C such that f2(c) = b.
From (4) we see that c ∈ F (f1(f2)), and so b ∈ f2(F (f1(f2))). Thus

F (f1(f2)) ⊂ f2(F (f1(f2))) ∪ {PV (f2) ∩ F (f1(f2))}.

All other relations can be proved similarly.

Similarly we have

f−1
1 (F (f1(f2))) = F (f1(f2)) = f1(F (f1(f2))) ∪ {PV (f1) ∩ F (f1(f2))}.(9)

It follows from (8) and (9) that, for any positive integer k,

F (f1(f2)) = fk
2 (F (f1(f2))) ∪

{

k
⋃

j=0

f j
2 (PV (f2)) ∩ F (f1(f2))

}

(10)

and

F (f1(f2)) = fk
1 (F (f1(f2))) ∪

{

k
⋃

j=0

f j
1 (PV (f2)) ∩ F (f1(f2))

}

.(11)

In fact, to prove (10) we need only to show that

F (f1(f2)) ⊂ fk
2 (F (f1(f2))) ∪

{

k
⋃

j=0

f j
2 (PV (f2)) ∩ F (f1(f2))}.(12)

The reverse inclussion follows from (8). Let

a ∈ F (f1(f2))\
k
⋃

j=0

f j
2 (PV (f2)).
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Then by (8), a ∈ f2(F (f1(f2))). Thus there exists a point y1 ∈ F (f1(f2)) such
that a = f2(y1). Since

y1 ∈ F (f1(f2))\

k−1
⋃

j=0

f j
2 (F (f1(f2)),

there exists a point y2 ∈ F (f1(f2)) such that y1 = f2(y2), hence a = f2
2 (y2). By

induction, there exists a point yk ∈ F (f1(f2)) such that a = fk
2 (F (f1(f2))), hence

(12) holds. This proves (10). The proof of (11) is the same.

Combining (10), (11) and Montel’s theorem, {fk
2 } and {fk

1 } are normal in
F (f1(f2)). We thus get (2).

Lemma 6. (cf. [5]) Let f be a transcendental entire function, n ≥ 1. Then we

have F (f) = F (fn).

3. Proof of Theorem 1

At first we prove that

g−1[I(f)] ⊂ I(f).(13)

Let a ∈ g−1[I(f)], that is, g(a) ∈ I(f). Then fn(g(a)) −→ ∞ as n → ∞. Note
that fn(g) = g(fn) for any positive integer n. We thus have g(fn(a)) −→ ∞ as
n → ∞. This implies that fn(a) −→ ∞ as n → ∞. Therefore a ∈ I(f) and (13)
holds.

We now take a point a ∈ I(f) such that a is not a Fatou exceptional value of
f . From (13) it follows that

g−n(a) ⊂ I(f), ∀n ≥ 1,

consequently

∞
⋃

n=1

g−n(a) ⊂ I(f).

By Lemmas 3 and 4,

J(g) ⊂
∞
⋃

n=1

g−n(a) ⊂ I(f) = J(f).

Similarly we can get J(f) ⊂ J(g). Thus J(g) = J(f).

The proof of Theorem 1 is complete.

4. Proof of Theorem 2

For two given positive integers n and m, we shall prove that

F (f ◦ g) = F (fn ◦ gm).(14)
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Let t > max{n,m}. From Lemma 6 we get

F (f ◦ g) = F ((f ◦ g)t).(15)

Now by (1),

(f ◦ g)t = (f t−n ◦ gt−m) ◦ (fn ◦ gm) = (fn ◦ gm) ◦ (f t−n ◦ gt−m).

Applying Lemma 5 to f1 = fn ◦ gm and f2 = f t−n ◦ gt−m we get

F ((f ◦ g)t) ⊂ F (fn ◦ gm).(16)

Similarly, by (1) we have

fn ◦ gm = (f ◦ g) ◦ (fn−1 ◦ gm−1) = (fn−1 ◦ gm−1) ◦ (f ◦ g).

Applying Lemma 5 to f1 = f ◦ g and f2 = fn−1 ◦ gm−1 we obtain

F (fn ◦ gm) ⊂ F (f ◦ g).

Combining this with (15) and (16) we get (14).

The proof is complete.
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