DYNAMICS OF PERMUTABLE TRANSCENDENTAL ENTIRE FUNCTIONS

XINHOU HUA AND XIAOLING WANG

Dedicated to the memory of Le Van Thiem

ABSTRACT. Let f and g be two permutable transcendental entire functions. We shall prove that they have the same Julia set (i.e., $J(f) = J(g)$) if the set of the asymptotic values and critical values of f and g is bounded. This relates to a result and an open problem of Baker in the Fatou-Julia theory. In addition, for any positive integers n and m, we show that $J(f \circ g) = J(f^n \circ g^m)$.

1. Introduction and main results

Let f be a nonconstant meromorphic function. The sequence of the iterates of f is defined by setting

$$
f^0 = id
$$
, $f^1 = f$, ..., $f^{n+1} = f^n(f)$, ...

Let

 $F = F(f) = \{ z \in \mathbb{C} : \text{ the sequence } \{ f^n \} \text{ is defined and normal at } z \}$

and

$$
J = J(f) = \mathbb{C} - F(f).
$$

These sets are called the Fatou set and the Julia set of f, respectively. Here the concept "normal" is in the sense of Montel. According to the definition, F is open (possibly empty) and J is closed.

Let f and g be two nonconstant meromorphic functions. If

$$
(1) \t\t f(g) = g(f),
$$

then we say that f and g are permutable.

Fatou [4] proved the following result.

Theorem A. For two given rational functions R_1 and R_2 , if they are permutable, then $F(R_1) = F(R_2)$.

The following question is natural (see Baker [1]):

Question. For two given permutable transcendental entire functions f and g , does it follows that $F(f) = F(g)$?

In some special cases, this question was affirmatively solved.

Theorem B (Baker [1]). Suppose that f and g are permutable transcendental entire functions, and $f = g + c$ for some constant c. Then $F(f) = F(g)$.

A point a is called a singular value if it is either a critical value or an asymptotic value. We denote by $\operatorname{sing}(f^{-1})$ the set of all finite singular values of f. If the set sing (f^{-1}) is bounded, then we say f is of bounded type, in particular, if the set $\text{sing}(f^{-1})$ is finite, then f is called to be of finite type. We denote them by $f \in B$ and $f \in S$ respectively (cf. [2]).

Theorem C (Poon and Yang $[6]$). Suppose that f and g are permutable transcendental entire functions. If both $\text{sing}(f^{-1})$ and $\text{sing}(g^{-1})$ are isolated in the finite complex plane, then $F(f) = F(g)$.

Remark. Theorem C includes the case that f and g are of finite type. This conclusion was also proved independently by Ren and Li [7].

In this paper, by using a result due to Erememko and Lyubich [3], we shall prove the following theorem.

Theorem 1. Let f and g be two permutable transcendental entire functions. If f and g are of bounded type, then

$$
J(f) = J(g).
$$

In the general case, we have the following statement.

Theorem 2. If f and g are two permutable transcendental entire functions, then

$$
J(f \circ g) = J(f^n \circ g^m), \quad \forall m, n \ge 1.
$$

2. Preliminaries

Let f be a transcendental entire function, $a \in \mathbb{C}$. If there exist a polynomial $p(z)$ and a nonconstant entire function $h(z)$ such that

$$
f(z) = p(z)e^{h(z)} + a,
$$

then we call a a big Picard exceptional value of f , and we denote the set of all such values by $PV^*(f)$. Furthermore, if $p(z) = (z - a)^k$ for some integer $k \geq 0$ then a is said to be a Fatou exceptional value of f. In particular, if $k = 0$ then a is a Picard exceptional value of f. We denote by $FV(f)$ and $PV(f)$ the Fatou exceptional values and the Picard exceptional values of f, respectively. By the Picard Theorem, each of the above three sets contains at most one point. Obviously,

$$
PV(f) \subset FV(f) \subset PV^*(f).
$$

For two permutable transcendental entire functions f and g , we have

$$
PV(f \circ g) = PV(f) \cup PV(g).
$$

In fact, if $PV(f \circ q)$ contains a point x and $x \notin PV(f)$, then there exists a point z_0 such that $f(z_0) = x$. Note that $f \circ g(z) \neq x$ for any $z \in \mathbb{C}$, thus $g(z) \neq z_0$, i.e., $z_0 \in PV(g) \subset PV^*(g)$. Since $f(g) = g(f)$, from $x \in PV(g \circ f)$ we deduce that $x \in PV^*(g)$. Thus $x, z_0 \in PV^*(g)$. Since $PV^*(g)$ contains at most one element, we have $z_0 = x$, so $x \in PV(g)$. Thus $PV(f \circ g) \subset PV(f) \cup PV(g)$. The reverse inclusion is obvious.

Lemma 1. ([8]) Let f be a transcendental entire function. Then

$$
f^{-1}(F(f)) = F(f) = f(F(f)) \cup \{PV(f) \cap F(f)\},
$$

$$
f^{-1}(J(f)) = J(f) = f(J(f)) \cup \{PV(f) \cap J(f)\}.
$$

Lemma 2. (Baker [1]) Let f and g be two permutable transcendental entire functions. Then $g(J(f)) \subset J(f)$ and $f(J(g)) \subset J(g)$.

We define

$$
I(f) = \{a : a \in \mathbb{C}, f^n(a) \to \infty \text{ as } n \to \infty\}.
$$

Lemma 3. ([3]) If $f \in B$ be a transcendental entire function, then $J(f) = \overline{I(f)}$. **Lemma 4.** (cf. [5]) Let f be a transcendental entire function, $b \in \mathbb{C} \backslash FV(f)$. We have

$$
J(f) \subset \overline{\left(\bigcup_{n=0}^{\infty} f^{-n}(b)\right)}.
$$

Furthermore, if $b \in J(f)\FveV(f)$ then

$$
J(f) = \overline{\left(\bigcup_{n=0}^{\infty} f^{-n}(b)\right)}.
$$

Lemma 5. Let f_1 and f_2 be two permutable transcendental entire functions. Then

$$
(2) \tF(f_1 \circ f_2) \subset F(f_1) \cap F(f_2).
$$

Proof. Since f_1 and f_2 are permutable, we have

$$
f_1 \circ f_1(f_2) = f_1(f_2) \circ f_1, \quad f_2 \circ f_1(f_2) = f_1(f_2) \circ f_2.
$$

It follows from Lemma 2 that

(3)
$$
f_1(J(f_1(f_2))), f_2(J(f_1(f_2))) \subset J(f_1(f_2)).
$$

This and Lemma 1 imply that

$$
J(f_1(f_2)) = f_1 \circ f_2(J(f_1(f_2))) \cup \{PV(f_1(f_2)) \cap J(f_1(f_2))\}
$$

= $f_2 \circ f_1(J(f_1(f_2))) \cup \{PV(f_1(f_2)) \cap J(f_1(f_2))\}$
 $\subset f_2(J(f_1(f_2))) \cup \{PV(f_1(f_2)) \cap J(f_1(f_2))\}$
 $\subset J(f_1(f_2)).$

Thus

(4)
$$
f_2(J(f_1(f_2))) \cup \{PV(f_1(f_2)) \cap J(f_1(f_2))\} = J(f_1(f_2)).
$$

Similarly we have

(5)
$$
f_1(J(f_1(f_2))) \cup \{PV(f_1(f_2)) \cap J(f_1(f_2))\} = J(f_1(f_2)).
$$

Next we shall prove that

(6)
$$
f_2^{-1}(J(f_1(f_2))) = J(f_1(f_2))
$$

and

(7)
$$
f_1^{-1}(J(f_1(f_2))) = J(f_1(f_2)).
$$

In fact, for any $a \in f_2^{-1}(J(f_1(f_2)))$, i.e., $f_2(a) \in J(f_1(f_2))$, from (3) we deduce that $f_1(f_2(a)) \in J(f_1(f_2))$. Applying Lemma 1 to the function $f_1(f_2)$ we obtain $a \in J(f_1(f_2))$. Hence

 $f_2^{-1}(J(f_1(f_2))) \subset J(f_1(f_2)).$

The converse follows from (4). Thus (6) holds.

The equation (7) can be proved similarly. It follows from $(4)-(7)$ that

(8)
$$
f_2^{-1}(F(f_1(f_2))) = F(f_1(f_2)) = f_2(F(f_1(f_2))) \cup \{PV(f_2) \cap F(f_1(f_2))\}.
$$

In fact, if $b \in F(f_1(f_2)) \backslash PV(f_2)$, then there exists $c \in \mathbb{C}$ such that $f_2(c) = b$. From (4) we see that $c \in F(f_1(f_2))$, and so $b \in f_2(F(f_1(f_2)))$. Thus

$$
F(f_1(f_2)) \subset f_2(F(f_1(f_2))) \cup \{PV(f_2) \cap F(f_1(f_2))\}.
$$

All other relations can be proved similarly.

Similarly we have

(9)
$$
f_1^{-1}(F(f_1(f_2))) = F(f_1(f_2)) = f_1(F(f_1(f_2))) \cup \{PV(f_1) \cap F(f_1(f_2))\}.
$$

It follows from (8) and (9) that, for any positive integer k,

(10)
$$
F(f_1(f_2)) = f_2^k(F(f_1(f_2))) \cup \{ \bigcup_{j=0}^k f_2^j(PV(f_2)) \cap F(f_1(f_2)) \}
$$

and

(11)
$$
F(f_1(f_2)) = f_1^k(F(f_1(f_2))) \cup \{ \bigcup_{j=0}^k f_1^j(PV(f_2)) \cap F(f_1(f_2)) \}.
$$

In fact, to prove (10) we need only to show that

(12)
$$
F(f_1(f_2)) \subset f_2^k(F(f_1(f_2))) \cup \{ \bigcup_{j=0}^k f_2^j(PV(f_2)) \cap F(f_1(f_2)) \}.
$$

The reverse inclussion follows from (8). Let

$$
a \in F(f_1(f_2)) \setminus \bigcup_{j=0}^k f_2^j(PV(f_2)).
$$

Then by (8), $a \in f_2(F(f_1(f_2)))$. Thus there exists a point $y_1 \in F(f_1(f_2))$ such that $a = f_2(y_1)$. Since

$$
y_1 \in F(f_1(f_2)) \setminus \bigcup_{j=0}^{k-1} f_2^j(F(f_1(f_2)),
$$

there exists a point $y_2 \in F(f_1(f_2))$ such that $y_1 = f_2(y_2)$, hence $a = f_2(y_2)$. By induction, there exists a point $y_k \in F(f_1(f_2))$ such that $a = f_2^k(F(f_1(f_2)))$, hence (12) holds. This proves (10). The proof of (11) is the same.

Combining (10), (11) and Montel's theorem, $\{f_2^k\}$ and $\{f_1^k\}$ are normal in $F(f_1(f_2))$. We thus get (2).

Lemma 6. (cf. [5]) Let f be a transcendental entire function, $n \geq 1$. Then we have $F(f) = F(f^n)$.

3. Proof of Theorem 1

At first we prove that

(13)
$$
g^{-1}[I(f)] \subset I(f).
$$

Let $a \in g^{-1}[I(f)]$, that is, $g(a) \in I(f)$. Then $f^{n}(g(a)) \longrightarrow \infty$ as $n \to \infty$. Note that $f^{n}(g) = g(f^{n})$ for any positive integer n. We thus have $g(f^{n}(a)) \longrightarrow \infty$ as $n \to \infty$. This implies that $f^{n}(a) \longrightarrow \infty$ as $n \to \infty$. Therefore $a \in I(f)$ and (13) holds.

We now take a point $a \in I(f)$ such that a is not a Fatou exceptional value of f. From (13) it follows that

$$
g^{-n}(a) \subset I(f), \quad \forall n \ge 1,
$$

consequently

$$
\bigcup_{n=1}^{\infty} g^{-n}(a) \subset I(f).
$$

By Lemmas 3 and 4,

$$
J(g) \subset \overline{\bigcup_{n=1}^{\infty} g^{-n}(a)} \subset \overline{I(f)} = J(f).
$$

Similarly we can get $J(f) \subset J(g)$. Thus $J(g) = J(f)$. The proof of Theorem 1 is complete.

4. Proof of Theorem 2

For two given positive integers n and m , we shall prove that

(14)
$$
F(f \circ g) = F(f^n \circ g^m).
$$

 \Box

Let $t > \max\{n, m\}$. From Lemma 6 we get

(15)
$$
F(f \circ g) = F((f \circ g)^t).
$$

Now by (1) ,

$$
(f \circ g)^t = (f^{t-n} \circ g^{t-m}) \circ (f^n \circ g^m) = (f^n \circ g^m) \circ (f^{t-n} \circ g^{t-m}).
$$

Applying Lemma 5 to $f_1 = f^n \circ g^m$ and $f_2 = f^{t-n} \circ g^{t-m}$ we get (16) $F((f \circ g)^t) \subset F(f^n \circ g^m).$

Similarly, by (1) we have

$$
f^n \circ g^m = (f \circ g) \circ (f^{n-1} \circ g^{m-1}) = (f^{n-1} \circ g^{m-1}) \circ (f \circ g).
$$

Applying Lemma 5 to $f_1 = f \circ g$ and $f_2 = f^{n-1} \circ g^{m-1}$ we obtain $F(f^n \circ g^m) \subset F(f \circ g).$

Combining this with (15) and (16) we get (14).

The proof is complete.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support from the NSFC and NSF of Jiangsu Province.

REFERENCES

- [1] I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. 49 (1984), 563-576.
- [2] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), 151-188.
- [3] A. E. Eremenko and M. Yu. Lyubich, *Dynamical properties of some classes of entire func*tions, Ann. Inst. Fourier 42 (1992), 989-1020.
- [4] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94 and 208-314.
- [5] P. Fatou, Sur l' itération des fonctions transcendentes entières, Acta Math. 47 (1926), 337-370.
- [6] K. K. Poon and C. C. Yang, Fatou sets of two permutable entire functions, Preprint.
- [7] F. Y. Ren and W. S. Li, An affirmative answer to a problem of Baker, J. Fudan Univ. 36 (1997), 231-233.
- [8] C. C. Yang and X. H. Hua, Dynamics of transcendental entire functions, J. Nanjing Univ. Math. Biquart. 14 (1997), 1-4.

Institute of Mathematics, Nanjing University Nanjing 210093, PRC

 $\it E\mbox{-}mail\;address:$ mahua@netra.nju.edu.cn

Nanjing Economics University Nanjing 210003,PRC

 \Box