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ON THE RELATIVE INTRINSIC PSEUDO DISTANCE

AND THE HYPERBOLIC IMBEDABILITY

PHAM VIET DUC AND NGUYEN DOAN TUAN

Dedicated to the memory of Le Van Thiem

Abstract. In this note we establidh a relation between the Kobayashi relative
intrinsic pseudo distance of a holomorphi fiber bundle and the one in its base.

Moreover, we prove that if (Z̃, π,Z) is a fiber bundle with compact hyperbolic

fiber and M ⊂ Z with dM,Z induces the given topology on M , then M is

hyperbolically imbedded in Z if and only if Ỹ = π−1(Y ) is hyperbolically

imbedded in Z̃.

1. Introduction

The relative pseudo distance was defined by Kobayashi in [2]. Let Z be a
complex space and Y a relatively compact complex subspace of Z. Put

FY,Z =
{
f ∈ Hol(D,Z)|f−1(Z − Y ) is at most singleton

}
.

We define a pseudo distance dY,Z on Y in the same way as the Kobayashi pseudo
distance dZ on Z (see [1]), but using only chains of holomorphic discs belonging
to FY,Z . Namely, writing `(α) for the length of a chain α of holomorphic discs.
We set

dY,Z(p, q) = inf
α

`(α), p, q ∈ Y ,

where the infimum is taken over all chains α of holomorphic discs from p to q

which belong to FY,Z (see [2], [3], [4]).

We note that dZ ≤ dY,Z ≤ dY and dD∗,D = dD, where dD is the Poincaré
distance on D, D∗ = D \ {0} and dY,Z has the distance-decreasing property.
The latter means that if (Y ′, Z ′), Y ′ ⊂ Z ′, is a pair of complex spaces with
Y ′ compact, and if Z → Z ′ is a holomorphic map such that f(Y ) ⊂ Y ′, then
dY ′,Z′(f(p), f(q)) ≤ dY,Z(p, q), ∀ p, q ∈ Y (see [3]).

We say that Y is hyperbolically imbedded in Z if Y is relatively compact in
Z and for every pair of distinct points p, q in Y ⊂ Z there exist neighbourhoods
Up and Uq of p and q in Z such that dY (Up ∩ Y,Uq ∩ Y ) > 0, where dY denotes
the Kobayashi pseudo distance on Y .

In [2] Kobayashi proved the following interesting characterization of hyperbolic
imbedding by using the relative intrinsic pseudo distance dY,Z .
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Theorem 1.1. Let Y be a relatively compact complex subspace of a complex space

Z, then Y is hyperbolicaty imbedded in Z if and only if dY,Z(p, q) > 0 for all pairs

p, q ∈ Y , p 6= q.

Using Theorem 1.1, we can prove the following result.

Theorem 1.2. Let (Z̃, π, Z) be a holomorphic fiber with hyperbolic compact fiber

F , where Z̃, Z, F are complex manifolds. Let M be a complex subspace of Z. Put

M̃ = π−1(M). If M̃ is hyperbolically imbedded in Z̃ then M is hyperbolically

imbedded in Z. Conversely. if dM,Z induces the given topology on M and M is

hyperbolically imbedded in Z, then M̃ is hyperbolically imbedded in Z̃.

2. Results

The following result is similar to the one in [1] for the Kobayashi pseudo-
distance.

Theorem 2.1. Let Z be a complex space and π : Z̃ → Z be a convering space of

Z. Let Y be a complex subspace of Z and Ỹ = π−1(Y ). If p, q ∈ Y , p̃ ∈ π−1(p),
then

dY,Z(p, q) = inf
q̃∈π−1(q)

d
Ỹ ,Z̃

(p̃, q̃).

Proof. Since π is holomorphic and π(Ỹ ) ⊂ Y , we have

dY,Z(p, q) = dY,Z(π(p̃), π(q̃)) ≤ dỸ ,Z̃(p̃, q̃), ∀ p̃ ∈ π−1(p), ∀ q̃ ∈ π−1(q).

Hence

dY,Z(p, q) ≤ inf
q̃∈π−1(q)

dỸ ,Z̃(p̃, q̃).

We will prove the reverse inequality.

If dY,Z(p, q) = ∞, i.e. there is not any chain α of holomorphic discs belonging
to FY,Z from p to q, then there is not any chain α̃ of holomorphic discs belonging
to FỸ ,Z̃ from p̃ to q̃. So dỸ ,Z̃(p̃, q̃) = ∞, for every q̃ ∈ π−1(q). In this case we

have

dY,Z(p, q) = inf
q̃∈π−1(q)

dỸ ,Z̃(p̃, q̃) = ∞.

If dY,Z(p, q) < ∞ and the strict inequality

dY,Z(p, q) < inf
q̃∈π−1(q)

dỸ ,Z̃(p̃, q̃)

holds, then there is a positive number ε > 0 such that

dY,Z(p, q) + ε + inf
q̃∈π−1(q)

dỸ ,Z̃(p̃, q̃).(2.1)
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Let b1, . . . , bk ∈ D and {fi} ⊂ FY,Z be such that f1(0) = p, fi(bi) = fi+1(0),
i = 1, . . . , k − 1, fk(bk) = q, and

k∑

i=1

dD(0, bi) < dY,Z(p, q) + ε.

Then we can lift f1, . . . , fk to holomorphic mappings f̃1, . . . , f̃k ∈ FỸ ,Z̃ in such

a way that p̃ = f̃1(0), f̃i(bi) = f̃i+1(0) for i = 1, . . . , k − 1, π ◦ f̃i = fi for

i = 1, . . . , k. If we set q̃ = f̃k(bk), then π(q̃) = q and d
Ỹ ,Z̃

(p̃, q̃) ≤
k∑

i=1
dD(0, bi).

Hence dỸ ,Z̃(p̃, q̃) ≤ dY,Z(p, q) + ε, which contradicts the inequality (2.1).

Thus dY,Z(p, q) = inf
q̃∈π−1(q)

d
Ỹ ,Z̃

(p̃, q̃).

The following theorem corresponding to Theorem A in [6] for the Kobayashi
pseudo distance.

Theorem 2.2. Let (Z̃, π, Z) be a holomorphic fiber bundle with hyperbolic fiber

F , where Z̃, Z, F are complex manifolds. Let Y be a complex subspace of Z and

Ỹ = π−1(Y ), p, q ∈ Y , p̃ ∈ π−1(p), q̃ ∈ π−1(q). Then

dY,Z(p, q) = inf
q̃∈π−1(q)

dỸ ,Z̃(p̃, q̃).

Proof. Since π is holomorphic and π(Ỹ ) ⊂ Y , we have

dY,Z(p, q) ≤ d
Ỹ ,Z̃

(p̃, q̃), ∀ p̃ ∈ π−1(p), ∀q̃ ∈ π−1(q).

Hence

dY,Z(p, q) ≤ inf
q̃∈π−1(q)

d
Ỹ ,Z̃

(p̃, q̃),(2.2)

We now prove the reverse inequality.

If (p, q) ∈ Y × Y is such that dY,Z(p, q) = +∞, i.e. there is not any chain α

of holomorphic discs belonging to FY,Z from p to q, then there is not any chain
α̃ of holomorphic discs belonging to F

Ỹ ,Z̃
from p̃ to q̃. So d

Ỹ ,Z̃
(p̃, q̃) = +∞ for

every q ∈ π−1(q). In this case we have

dY,Z(p, q) = inf
q̃∈π−1(q)

dỸ ,Z̃(p̃, q̃) = ∞.

Suppose that dY,Z(p, q) < +∞. We want to prove that

dY,Z(p, q) ≥ inf
q̃∈π−1(q)

d
Ỹ ,Z̃

(p̃, q̃).

Take arbitrary points p, q ∈ Y ⊂ Z and p̃ ∈ π−1(p). Let α = {f1. . . . , fk}
be a chain of holomorphic discs from p to q. Suppose that b1, . . . , bk ∈ D and
f1, . . . , fk ∈ FY,Z are such that f1(0) = p, . . . , fi(bi) = fi+1(0), i = 1, . . . , k − 1,
fk(bk) = q.
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Consider the pull-back diagram

D ×Z Z̃
σ1−→ Z̃

η1

y
yπ

D
f1

−→ Z

There is an equivalence Φ1 : D × F → D ×Z Z̃ of holomorphic fiber bundles
over Z (see [5]). Thus, there exists c1 ∈ F such that σ1 ◦ Φ1(0, c1) = p̃.

We define a holomorphic map ϕ1 : D → Z̃ by ϕ1(z) = σ1 ◦ Φ1(z, c1) for every
z ∈ D. We have

π ◦ ϕ1(z) = π ◦ σ1 ◦ Φ1(z, c1) = f1 ◦ η1 ◦ Φ1(z, c1) = f1(z),

hence ϕ1 is a lift of f1. Since f1 ∈ FY,Z , ϕ1 ∈ FỸ ,Z̃ .

Consider the pull-back diagram

D ×Z Z̃
σ2−→ Z̃

η2

y
yπ

D
f2

−→ Z

By a reasoning similar to the above, we can show that there exist an equivalence

Φ2 : D × F → D ×Z Z̃ of holomorphic fiber bundles over Z and a point c2 ∈ F

such that σ2 ◦ Φ2(0, c2) = ϕ1(b1). We define a holomorphic map ϕ2 : D → Z̃

by setting ϕ2(z) = σ2 ◦ Φ2(z, c2) for z ∈ D. The map ϕ2 is a lift of f2, hence
ϕ2 ∈ F

Ỹ ,Z̃
. Continuing this process we find maps ϕ1, . . . , ϕk ∈ F

Ỹ ,Z̃
such that

ϕi is a lift of fi and ϕ1(0) = p̃, ϕi(bi) = ϕi+1(0), q̃ = ϕk(bk) ∈ π−1(q). Thus

d
Ỹ ,Z̃

(p̃, q̃) ≤
k∑

i=1

dD(0, bi) = `(α).

Hence inf
q̃∈π−1(q)

d
Ỹ ,Z̃)

(p̃, q̃) ≤ dY,Z(p, q) for all p̃ ∈ π−1(p).

Theorem 2.3. Let (Z̃, π, Z) be a holomorphic fiber bundle with hyperbolic com-

pact fiber F , where Z̃, Z, F are complex manifolds. Let M be a complex subspace

of Z. Put M̃ = π−1(M). Then we have

a) If M̃ is hyperbolically imbedded in Z̃ then M is hyperbolically imbedded in

Z

b) If M is hyperbolically imbedded in Z and dM,Z induces the given topology

on M , then M̃ is hyperbolically imbedded in Z̃.

Proof. Obviously, M̃ is relatively compact in Z̃ if and only if M is relatively
compact in Z.
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a) Assume that M̃ is hyperbolically imbedded in Z̃. According to Theorem
1.1, we need only to prove that dM,Z(p, q) > 0 for all p, q ∈ M , p 6= q. By
Theorem 2.2, we have

dM,Z(p, q) = inf
q̃∈π−1(q)

d
M̃,Z̃

(p̃, q̃) for all p̃ ∈ π−1(p).

Since p 6= q, we have p̃ 6= q̃. It follows that d
M̃,Z̃

(p̃, q̃) > 0 for all q̃ ∈ π−1(q),

p̃ ∈ π−1(p). Since F is compact and d
M̃,Z̃

is lower semicontinuous on M̃ × M̃

(see [3]). we have

inf
q̃∈π−1(q)

d
M̃,Z̃

(p̃, q̃) = min
q̃∈π−1(q)

d
M̃ ,Z̃

(p̃, q̃) > 0 for all p̃ ∈ π−1(p).

Hence dM,Z(p, q) > 0 for all p, q ∈ M , p 6= q.

b) Suppose that M is hyperbolically imbedded in Z. Let p̃, q̃ ∈ M̃ , p̃ 6= q̃. We
have to prove that d

M̃,Z̃
(p̃, q̃) > 0. Since M is hyperbolically imbedded in Z, if

π(p̃) 6= π(q̃), then d
M̃,Z̃

(p̃, q̃) ≥ dM,Z(π(p̃), π(q̃)) > 0.

Suppose that π(p̃) = π(q̃) = p. We choose a neighbourhood U of p in Z such
that π−1(U) = U × F . Let Bs =

{
x ∈ M ; |dM,Z(x, p) < s

}
, Dr =

{
z ∈ C

∣∣ |z| <

r
}
.

Since dM,Z induces the given topology on M , we can choose s > 0 and r > 0
in such a way that B2s ⊂ U and dD(z, 0) < s for z ∈ Dr, where D denotes the

unit disc in C. Thus, if f : D → Z̃ is holomorphic and f(0) ∈ π−1(Bs), then
f(Dr) ⊂ U ×F . Indeed, we have d

M̃,Z̃
(f(0), f(z)) ≤ dD(0, z) < s, for all z ∈ Dr.

Hence

dM,Z(πf(0), πf(z)) < s.

Since πf(0) ∈ Bs, it follows that πf(z) ∈ B2s ⊂ U . So we get f(z) ∈ π−1(U) =
U × F .

Choose c > 0 such that dD(0, z) ≥ cdDr
(0, z) for all z ∈ Dr/2. Let α =

{fi} ⊂ F
M̃,Z̃

be a holomorphic chain from p̃ to q̃ such that f1(0) = p̃, f1(b1) =

f2(0), . . . , fk(bk) = q̃, where bi ∈ D (i = 1, . . . , k). By imserting extra terms in
this chain if necessary, we may assume that bi ∈ Dr/2 for all i. We set p̃0 = p̃,
p̃1 = f1(b1), . . . , p̃k = fk(bk) = q̃.

We consider two cases.

Case 1. At least one of the p̃i’s is not contained in π−1(Bs). Then we get

k∑

i=1

dD(0, bi) =

k∑

i=1

dD∗,D(0, bi)

≥
k∑

i=1

d
M̃,Z̃

(fi(0), fi(b)) =
k∑

i=1

d
M̃,Z̃

(p̃i−1.p̃i)
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≥
k∑

i=1

dM,Z(π(p̃i−1), π(p̃i))

≥ s.

Case 2. All the p̃i’s are in π−1(Bs). Then

k∑

i=1

dD(0, bi) ≥ c

k∑

i=1

dDr
(0, bi)

≥ c

k∑

i=1

dU×F (p̃i−1, p̃i)

≥ c

k∑

i=1

dF (ϕ(p̃i−1), ϕ(p̃i))

≥ cdF (p̃, q̃) > 0.

where ϕ : U ×F → F is the projection and dF (p̃, q̃) > 0 because F is hyperbolic.
This implies that

d
M̃,Z̃

(p̃, q̃) = inf
α

k∑

i=1

dD(0, bi) ≥ min[s, cdF (p̃, q̃)] > 0.

The proof is complete.
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