HEIGHT OF P-ADIC HOLOMORPHIC MAPS IN SEVERAL VARIABLES AND APPLICATIONS

VU HOAI AN

Dedicated to the memory of Le Van Thiem

1. INTRODUCTION

In the last years there is an increasing interest in the p-adic Nevanlinna theory. Hu and Yang [4], Khoai and Quang [6], and Boutabaa [1] proved p-adic analogues of two Main Theorems and defect relations of Nevanlinna theory. In [5], Ha Huy Khoai considered the case of several variables. He introduced the notion of height of p-adic holomorphic functions of several variables and proved the Poisson-Jensen formula. However, the height defined in [5] is difficult to compute. In [3], Cherry and Ye considered holomorphic maps from \mathbb{C}_p^m to $\mathbb{P}^n(\mathbb{C}_p)$ and proved p-adic two Main Theorems. In this paper, we define the height of holomorphic maps from \mathbb{C}_p^m to $\mathbb{P}^n(\mathbb{C}_p)$, which is easier to compute, and give a p-adic version of the two Main Theorems.

2. Height of *p*-adic holomorphic functions of several variables

Let p be a prime number, \mathbb{Q}_p the field of p-adic numbers and \mathbb{C}_p the p-adic completion of the algebraic closure of \mathbb{Q}_p . The absolute value in \mathbb{Q}_p is normalized so that $|p| = p^{-1}$. We further use the notion v(z) for the additive valuation on \mathbb{C}_p which extends ord_p .

We use the notations

$$\begin{split} b_{(m)} &= (b_1, ..., b_m), \\ D_r &= \left\{ z \in \mathbb{C}_p : |z| \le r, r > 0 \right\}, \quad D_{< r >} = \left\{ z \in \mathbb{C}_p : |z| = r, r > 0 \right\}, \\ D &= \left\{ z \in \mathbb{C}_p : |z| \le 1 \right\}, \\ D_{r_{(m)}} &= D_{r_1} \times \cdots \times D_{r_m}, \text{ where } r_{(m)} = (r_1, \ldots, r_m) \text{ for } r_i \in \mathbb{R}_+, \\ D_{< r_{(m)} >} &= D_{< r_1 >} \times \cdots \times D_{< r_m >}, \\ D^m &= D \times \cdots \times D \text{ the unit polydisc in } \mathbb{C}_p^m, |f|_{r_{(m)}} = |f|_{(r_1, \ldots, r_m)}, \\ \gamma_i \in \mathbb{N}, \gamma = (\gamma_1, \ldots, \gamma_m), \, |\gamma| = \gamma_1 + \cdots + \gamma_m, \, z^\gamma = z_1^{\gamma_1} \ldots z_m^{\gamma_m}, \, r^\gamma = r_1^{\gamma_1} \ldots r_m^{\gamma_m}, \\ \log = \log_p, \ t_i = -\log r_i, \ i = 1, \ldots, m, \, c_{(m)} + t = (c_1 + t, \ldots, c_m + t). \end{split}$$

¹⁹⁹¹ Mathematics Subject Classification. 11G, 30D35.

Key words and phrases. p-adic Nevanlinna theory, height of p-adic holomorphic maps.

Note that the set of $(r_1, ..., r_m) \in \mathbb{R}^m_+$ such that there exist $x_1, ..., x_m \in \mathbb{C}_p$ with $|x_i| = r_i, i = 1, ..., m$, is dense in \mathbb{R}^m_+ . Therefore, without loss of generality one can assume that $D_{< r_{(m)} > \neq} \emptyset$.

Let f be a non-zero holomorphic function in ${\cal D}_{r_{(m)}}$ represented by a convergent series

$$f = \sum_{|\gamma|=0}^{\infty} a_{\gamma} z^{\gamma}, |z_i| \le r_i \quad \text{for } i = 1, \dots, m.$$

We define

$$|f|_{r_{(m)}} = \max_{0 \le |\gamma| < \infty} |a_{\gamma}| r^{\gamma}.$$

Set $\gamma t = \gamma_1 t_1 + \dots + \gamma_m t_m$. Then we have

$$\lim_{|\gamma| \to \infty} (v(a_{\gamma}) + \gamma t) = +\infty.$$

Hence there exists an $(\gamma_1, \ldots, \gamma_m) \in \mathbb{N}^m$ such that $v(a_\gamma) + \gamma t$ is minimal.

Definition 2.1. The height of the holomorphic function $f(z_{(m)})$ is defined by

$$H_f(t_{(m)}) = \min_{0 \le |\gamma| < \infty} (v(a_{\gamma}) + \gamma t)$$

We also use the notation

$$H_f^+(t_{(m)}) = -H_f(t_{(m)}).$$

Set

$$I_{f}(t_{(m)}) = \left\{ (\gamma_{1}, \dots, \gamma_{m}) \in \mathbb{N}^{m} : v(a_{\gamma}) + \gamma t = H_{f}(t_{(m)}) \right\}$$
$$rn_{f}^{+}(t_{(m)}) = \min \left\{ |\gamma| : \gamma \in I_{f}(t_{(m)}) \right\},$$
$$n_{f}^{-}(t_{(m)}) = \max \left\{ |\gamma| : \gamma \in I_{f}(t_{(m)}) \right\},$$
$$n_{f}(0, 0) = \min \left\{ |\gamma| : a_{\gamma} \neq 0 \right\}.$$

Theorem 2.1. Let f(z) be a holomorphic function on D_r . Assume that f is not identically zero. Then there exist a polynomial

$$g(z) = b_0 + b_1 z + \dots + b_v z^v$$
, $deg \ g = n_f^-(t), t = -\log_p r$,

and a holomorphic function $h = 1 + \sum_{n=1}^{\infty} c_n z^n$ on D_r such that

- 1) f(z) = g(z)h(z),
- 2) f(z) just has $n_f^-(t)$ zeros in D_r ,
- 3) $n_f^-(t) n_f^+(t)$ is equal to the number of zeros of f at v(z) = t,
- 4) h has no zeros in D_r

For the proof, see the Weierstrass Preparation Theorem [4].

The set of z in \mathbb{C}_p with $|z| \leq 1$ forms a closed subring of \mathbb{C}_p . We denote this subring by \mathcal{O} (called the ring of integers of \mathbb{C}_p), and the set of z with |z| < 1

forms a maximal ideal I in \mathcal{O} . We denote the field \mathcal{O}/I , which is called the residue class field, by $\widehat{\mathbb{C}}_p$. Note that since \mathbb{C}_p is algebraically closed, so is $\widehat{\mathbb{C}}_p$, and in particular $\widehat{\mathbb{C}}_p$ cannot be a finite field. Given an element w in \mathcal{O} , we denote its equivalence class in $\widehat{\mathbb{C}}_p$ by \widehat{w} .

Let $f = \sum_{|\gamma|=0}^{\infty} a_{\gamma} z^{\gamma}$ be a non-zero entire function on \mathbb{C}_p^m . Choose $y = y_{(m)}$ such hat

that

$$|y| = \max\{|\gamma| : |a_{\gamma}| = |f|_{(1,\dots,1)}\}$$

Define \widehat{f} by

$$\widehat{f} = \sum_{|\gamma|=0}^{\infty} \frac{\widehat{a_{\gamma}}}{a_y} z^{\gamma} \cdot$$

Since f is entire, $\left|\frac{a_{\gamma}}{a_{y}}\right| < 1$ for all but finitely many γ , and thus \widehat{f} is a polynomial in m-variables with coefficients in $\widehat{\mathbb{C}_{p}}$. Since

$$\left|\frac{a_y}{a_y}\right| = 1,$$

 \widehat{f} is not the zero polynomial.

Lemma 2.1. Let

$$f_s(z_{(m)}) = \sum_{|\gamma|=0}^{\infty} a_{\gamma}^s z^{\gamma}, \quad s = 1, \dots, q,$$

be q non-zero entire functions on \mathbb{C}_p^m . Then for any $D_{r_{(m)}}$ in \mathbb{C}_p^m $(D_{< r_{(m)}>} \neq \emptyset)$ there exists $u = u_{(m)} \in D_{r_{(m)}}$ such that

$$|f_s(u_{(m)})| = |f_s|_{r_{(m)}}, \quad s = 1, \dots, q.$$

Proof. We first prove that if $r_{(m)} = (1, ..., 1)$, then there exists $w = w_{(m)} \in D^m$ such that

(2.1)
$$|f_s(w)| = \max_{0 \le |\gamma| < \infty} |a_{\gamma}^s|, \quad s = 1, \dots, q.$$

For each $s = 1, \ldots, q$, choose $y_s = (y_1^s, \ldots, y_m^s)$ such that

$$|y_s| = \max\{|\gamma| : |a_{\gamma}^s| = |f|_{(1,\dots,1)}\}$$

 Set

$$\mathcal{M} = \{\widehat{f}_s, s = 1, \dots, q\}.$$

Since \hat{f}_s is not the zero polynomial, so is $\prod_{s=1}^{q} \hat{f}_s$.

Let $w = w_{(m)} \in D^m$ be such that \widehat{w} is not a solution of $\prod_{s=1}^q \widehat{f}_s$. Set

$$\frac{f_s(w)}{a_{y_s}} = b_s, \quad s = 1, \dots, q.$$

We have

$$\widehat{b_s} = \widehat{f_s}(\widehat{w}).$$

Since \widehat{w} is not a solution of all \widehat{f}_s ,

 $b_s \notin I$.

Thus

$$\left|\frac{f_s(w)}{a_{y_s}}\right| = 1.$$

Hence $|f_s(w)| = |a_{y_s}|$.

Now let $x_1, \ldots, x_m \in \mathbb{C}_p$ be such that $|x_i| = r_i$. Consider the following transformations of \mathbb{C}_p^m :

$$\varphi(z_{(m)}) = (x_1 z_1, \dots, x_m z_m).$$

Set $x = (x_1, \ldots, x_m)$. We have $\varphi(D^m) = D_{r_{(m)}}$, and

$$f_s \circ \varphi(z_{(m)}) = \sum_{|\gamma|=0}^{\infty} \left(a_{\gamma}^s x^{\gamma}\right) z^{\gamma}$$

are non-zero entire functions on \mathbb{C}_p^m . By (2.1) there exists $w = w_{(m)}$ such that

$$\begin{aligned} \left| f_s \circ \varphi(w) \right| &= \max_{0 \le |\gamma| < \infty} \left| a_{\gamma}^s x^{\gamma} \right| = \max_{0 \le |\gamma| < \infty} \left| a_{\gamma}^s \right| \left| x_1 \right|^{\gamma_1} \cdots \left| x_m \right|^{\gamma_m} \\ &= \max_{0 \le |\gamma| < \infty} \left| a_{\gamma}^s \right| r^{\gamma} = \left| f_s \right|_{r_{(m)}}. \end{aligned}$$

Set
$$u = \varphi(w)$$
. Then $u \in D_{r_{(m)}}$ and $|f_s(u)| = |f_s|_{r_{(m)}}$, $s = 1, \dots, q$.

Lemma 2.2. Let $f_s(z_{(m)})$, s = 1, 2, ..., q, be q non-zero holomorphic functions on $D_{r_{(m)}}$. Then there exists $u = u_{(m)} \in D_{r_{(m)}}$ such that

$$|f_s(u)| = |f_s|_{r_{(m)}}, \quad s = 1, 2, \dots, q.$$

Proof. Let

$$f_s(z_{(m)}) = \sum_{|\gamma|=0}^{\infty} a_{\gamma}^s z^{\gamma}$$

For each $s = 1, 2, \ldots, q$, we set

$$k_s = \max_{0 \le |\gamma| < \infty} \Big\{ |\gamma| : \big| a_{\gamma}^s \big| r^{\gamma} = \big| f_s \big|_{r_{(m)}} \Big\}.$$

Then

$$P_s = \sum_{0 \le |\gamma| \le k_s} a_{\gamma}^s z^{\gamma}, \quad s = 1 \dots, q,$$

are non-zero entire functions on \mathbb{C}_p^m . By Lemma 2.1, there exists $u_{(m)} = (u_1, \ldots, u_m) \in D_{r_{(m)}}$ with $|u_i| = r_i$ such that

$$|P_s(u_{(m)})| = |P_s|_{r_{(m)}}, \quad s = 1, \dots, q.$$

Moreover,

$$|P_s|_{r_{(m)}} = |f_s|_{r_{(m)}}, |P_s(u_{(m)})| = |f_s(u_{(m)})|, s = 1, \dots, q.$$

Thus $|f_s(u_{(m)})| = |f_s|_{r_{(m)}}, s = 1, \dots, q.$

As an immediate consequence of Lemma 2.2 we have

Corollary 2.1. Let $f(z_{(m)})$ be a non-zero holomorphic function on $D_{r_{(m)}}$. Then

$$\max_{u \in D_{r_{(m)}}} |f(u)| = |f|_{r_{(m)}}$$

Let $f = \sum_{|\gamma|=0}^{\infty} a_{\gamma} z^{\gamma}$ be a non-zero holomorphic function on $D_{r_{(m)}}$.

We set for simplicity

$$\alpha = n_f^+(t_{(m)}), \quad k = n_f^-(t_{(m)}), \quad \beta = n_f(0,0).$$

We consider the following holomorphic functions on $D_{r_{(m)}}$

$$P(z_{(m)}) = \sum_{|\gamma|=k} a_{\gamma} z^{\gamma}, \quad Q(z_{(m)}) = \sum_{|\gamma|=\alpha} a_{\gamma} z^{\gamma}, \quad Q_{\beta} = \sum_{|\gamma|=\beta} a_{\gamma} z^{\gamma}$$

The functions are not identically zero. For a fixed $i \ (i = 1, ..., m)$, we set

$$\mathcal{E}_{j} = \frac{r_{j}}{r_{i}}, \quad j = 1, 2, \dots, m, \quad \mathcal{E}_{(m)} = (\mathcal{E}_{1}, \dots, \mathcal{E}_{m}),$$
$$B_{f,r_{(m)}}^{i} = \left\{ w = w_{(m)} \in D_{\mathcal{E}_{(m)}} : \left| P(w_{(m)}) \right| = \left| P \right|_{\mathcal{E}_{(m)}}, \\ \left| Q(w_{(m)}) \right| = \left| Q \right|_{\mathcal{E}_{(m)}}, \left| Q_{\beta}(w_{(m)}) \right| = \left| Q_{\beta} \right|_{\mathcal{E}_{(m)}} \right\}.$$

By Lemma 2.2, $B_{f,r_{(m)}}^i$ is a non-empty set. Set

$$f_{i,w}(z) = f(w_1 z, \dots, w_m z), \quad w \in B^i_{f,r_{(m)}}, \ z \in D_{r_i}.$$

The following theorem shows that we can use the Weierstrass Preparation Theorem [4] to count zeros by slicing with a generic line through the point u.

Theorem 2.2. Let $f(z_{(m)})$ be a holomorphic function on $D_{r_{(m)}}$. Assume that $f(z_{(m)})$ is not identically zero. Then for each i = 1, ..., m, and for all $w \in B^i_{f,r_{(m)}}$, we have

1)
$$H_f(t_{(m)}) = H_{f_{i,w}}(t_i),$$

2)
$$n_f^-(t_{(m)})$$
 is equal to the number of zeros of $f_{i,w}$ in D_{r_i} ,
3) $n_f^-(t_{(m)}) - n_f^+(t_{(m)})$ is equal to the number of zeros of $f_{i,w}$ at $v(z) = t_i$

Proof. Write

$$f(z) = \sum_{|\gamma|=0}^{\infty} a_{\gamma} z^{\gamma}, \quad f_{i,w}(z) = \sum_{j=0}^{\infty} b_j z^j,$$

where

$$b_j = \sum_{|\gamma|=j} a_{\gamma} w^{\gamma}.$$

 Set

$$b_k = \sum_{|\gamma|=k} a_{\gamma} w^{\gamma}, \quad b_{\alpha} = \sum_{|\gamma|=\alpha} a_{\gamma} w^{\gamma}.$$

We have

$$\left|f_{i,w}\right|_{r_i} \le \left|f\right|_{r_{(m)}}$$

By $w \in B^i_{f,r_{(m)}}$,

$$|b_k| = |a_\gamma| |w_1|^{\gamma_1} \cdots |w_m|_p^{\gamma_m}, \quad \gamma_1 + \cdots + \gamma_m = k_s$$

and

$$|b_{\alpha}| = |a_{\gamma}||w_1|^{\gamma_1} \cdots |w_m|_p^{\gamma_m}, \quad \gamma_1 + \cdots + \gamma_m = \alpha.$$

Therefore,

$$\left|b_{k}\right|r_{i}^{k} = \left|a_{\gamma}\right|r^{\gamma} = \left|b_{\alpha}\right|r_{i}^{\alpha} = \left|f\right|_{r_{(m)}}$$

Thus

$$\left|f_{i,w}\right|_{r_i} = \left|f\right|_{r_{(m)}}$$

 So

$$H_f(t_{(m)}) = H_{f_{i,w}}(t_i)$$

and $n_{f_{i,w}}^+(t_i) \le \alpha, \ k \le n_{f_{i,w}}^-(t_i).$

Now we consider j such that $|b_j|r_i^j = |f_{i,w}|_{r_i}$. Because $|f_{i,w}|_{r_i} = |f|_{r_{(m)}}$, $|b_j|r_i^j = |f|_{r_{(m)}}$. Since $b_j = \sum_{|\gamma|=j} a_{\gamma} w^{\gamma}$, we obtain

$$\left|b_{j}\right|r_{i}^{j} \leq \max_{0 \leq |\gamma| < \infty} \left|a_{\gamma}\right| \left|w_{1}\right|^{\gamma_{1}} \cdots \left|w_{m}\right|^{\gamma_{m}} \leq \left|f\right|_{r_{(m)}}.$$

Then there exists $\gamma = (\gamma_1, \ldots, \gamma_m)$ with $|\gamma| = j$ such that

$$|a_{\gamma}||w_1|^{\gamma_1}\cdots|w_m|^{\gamma_m}=|a_{\gamma}|r^{\gamma}=|f|_{r_{(m)}}.$$

Hence $\alpha \leq j \leq k$. Therefore

$$n_f^+(t_{(m)}) = \alpha \le n_{f_{i,w}}^+(t_i)$$
 and $n_{f_{i,w}}^-(t_i) \le k = n_f^-(t_{(m)}).$

From this it follows that $n_f^+(t_{(m)}) = n_{f_{i,w}}^+(t_i)$ and $n_{f_{i,w}}^-(t_i) = n_f^-(t_{(m)})$.

By Lemma 2.2 and Theorem 2.1, we have $H_f(t_{(m)}) = H_{f_{i,w}}(t_i)$, and $n_f^-(t_{(m)})$ is equal to the number of zeros of $f_{i,w}$ in D_{r_i} , $n_f^-(t_{(m)}) - n_f^+(t_{(m)})$ is equal to the number of zeros of $f_{i,w}$ at $v(z) = t_i$. The proof is complete.

For each $i = 1, \ldots, m$, from Theorem 2.1 we see that $n_f(0,0) = n_{f_{i,w}}(0,0)$ for all $w \in B^i_{f,r_{(m)}}$.

Let f be a non-zero holomorphic function on $D_{r_{(m)}}$. Define $n_f(0, r_{(m)})$ to be the number of zeros with absolute value $\leq r_i$ of the one-variable function $f_{i,w}(z)$. Theorem 2.2 tells us that

$$n_f(0, r_{(m)}) = n_f^-(t_{(m)})$$

For an element a of \mathbb{C}_p and a holomorphic function f on $D_{r_{(m)}}$, which is not identically equal to a, we define

$$n_f(a, r_{(m)}) = n_{f-a}(0, r_{(m)}), \quad n_f(a, 0) = n_{f-a}(0, 0), \quad i = 1, \dots, m$$

Fix real numbers ρ_1, \dots, ρ_m with $0 < \rho_i \le r_i, i = 1, \dots, m$, such that

$$\mu_1, \dots, \rho_m \text{ with } 0 < \rho_i \le r_i, \ i \equiv 1, \dots, m, \\
 r_1 \quad r_2 \quad r_m$$

$$\frac{r_1}{\rho_1} = \frac{r_2}{\rho_2} = \dots = \frac{r_m}{\rho_m}$$

Set

$$\frac{r_1}{\rho_1} = r, \quad n_f(a, x) = n_f(a, (\rho_1 x, \dots, \rho_m x)), \text{ with } 0 < x \le r$$
$$c_i = -\log \rho_i, \quad i = 1, \dots, m.$$

Define the counting function $N_f(a, t_{(m)})$ by

$$N_f(a, t_{(m)}) = \frac{1}{\ln p} \int_{1}^{r} \frac{n_f(a, x)}{x} dx.$$

If a = 0, then we set $N_f(t_{(m)}) = N_f(0, t_{(m)})$.

Lemma 2.3. Let f be a non-zero entire function on \mathbb{C}_p^m . Then

$$H_f^+(c_{(m)} + t) = N_f(c_{(m)} + t) + O(1),$$

where O(1) is bounded when $t \to -\infty$.

This lemma can be proved easily by using Theorem 2.2.

Theorem 2.3. Let f be a non-zero entire function on \mathbb{C}_p^m and γ a multi-index with $|\gamma| > 0$. Then

$$H_{\partial^{\gamma}f}(t_1,\ldots,t_m) - H_f(t_1,\ldots,t_m) \ge - |\gamma| T,$$

where $T = \max_{1 \le i \le m} t_i$.

The proof of Theorem 2.3 follows immediately from [3, Lemma 4.1].

3. Height of p-adic holomorphic maps

We say that an entire function g divides an entire function f if f = gh for some entire function h, and we say that g is a greatest common divisor of n entire functions f_1, \ldots, f_n if whenever an entire function h divides each of non-zero f_i then h also divides g. We say that n entire functions f_1, \ldots, f_n are without common factors if 1 is a greatest common divisor.

Note that greatest common divisors exist in the ring of entire functions on \mathbb{C}_p^m (see [3]). By a holomorphic map

$$f: \mathbb{C}_p^m \longrightarrow \mathbb{P}^n(\mathbb{C}_p) = \mathbb{P}^n,$$

we mean an equivalence class of (n+1)-tuples of entire functions (f_1, \ldots, f_{n+1}) such that f_1, \ldots, f_{n+1} do not have any common factors in the ring of entire functions on \mathbb{C}_p^m and such that not all of the f_i are identically zero. Two (n + 1)-tuples entire functions (f_1, \ldots, f_{n+1}) and (g_1, \ldots, g_{n+1}) are equivalent if there exists a constant c such that $f_i = cg_i$ for all i. We identify f with its representation by a collection of entire functions on \mathbb{C}_p^m

$$f = (f_1, \ldots, f_{n+1}).$$

Definition 3.1. The height of a holomorphic map f is defined by

$$H_f(t_{(m)}) = \min_{1 \le i \le n+1} H_{f_i}(t_{(m)}).$$

We also use the notation

$$H_f^+(t_{(m)}) = -H_f(t_{(m)}).$$

Let H_1, \ldots, H_q $(q \ge n+1)$ be q hyperplanes in $\mathbb{P}^n(\mathbb{C}_p)$ in general position. This means that any n+1 of these hyperplanes are linearly independent. Let $f : \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ be a holomorphic map. Suppose that $F = 0, F_i = 0$ are the equations defining the hyperplanes H, H_i . We set

$$H_{f}(H, (t_{(m)})) = H_{F \circ f}(t_{(m)}),$$

$$H_{f}(H_{i}, (t_{(m)})) = H_{F_{i} \circ f}(t_{(m)}),$$

$$N_{f}(H, (t_{(m)})) = N_{F \circ f}(t_{(m)}),$$

$$N_{f}(H_{i}, (t_{(m)})) = N_{F_{i} \circ f}(t_{(m)}),$$

$$m_f(H, (t_{(m)})) = \max_{1 \le i \le n+1} H^+_{\frac{f_i}{F \circ f}}(t_{(m)}) \text{ if } F \circ f \neq 0,$$

$$T_f(H, (t_{(m)})) = N_f(H, (t_{(m)})) + m_f(H, (t_{(m)})).$$

Theorem 3.1. (First Main Theorem). Let $f : \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ be a holomorphic map. Let H be a hyperplane in \mathbb{P}^n such that the image of f is not contained in H. Then we have

$$T_f(H, (c_{(m)} + t)) = H_f^+(c_{(m)} + t) + O(1),$$

where O(1) depends on H, but not on t.

Proof. Let
$$f = (f_1, \dots, f_{n+1})$$
. By definition,
 $T_f(H, (c_{(m)} + t)) = N_{F \circ f}(c_{(m)} + t) + \max_{1 \le i \le n+1} (H_{f_i}^+(c_{(m)} + t) - H_{F \circ f}^+(c_{(m)} + t))$
 $= H_f^+(c_{(m)} + t) + (N_{F \circ f}(c_{(m)} + t) - H_{F \circ f}^+(c_{(m)} + t)).$

By Lemma 2.3,

$$N_{F \circ f}(c_{(m)} + t) - H^+_{F \circ f}(c_{(m)} + t) = O(1),$$

Therefore,

$$T_f(H, (c_{(m)} + t)) = H_f^+(c_{(m)} + t) + O(1).$$

and the proof is complete.

A holomorphic map $f : \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ is called *linearly non-degenerate* if the image of f is not contained in any hyperplanes of \mathbb{P}^n . If $f = (f_1, \ldots, f_{n+1})$ is an (n+1)-tuple of entire functions and if γ is a multi-index, then by $\partial^{\gamma} f$ we mean the (n+1)-tuple

$$(\partial^{\gamma} f_1, \ldots, \partial^{\gamma} f_{n+1}).$$

Lemma 3.1. [3] Let $f = (f_1, \ldots, f_{n+1})$ be a linearly non-degenerate holomorphic map from \mathbb{C}_p^m to \mathbb{P}^n . Then there exist multi-indexes $\gamma_1, \ldots, \gamma_n$ such that $|\gamma_i| \leq i$ and $f, \partial^{\gamma_1} f, \ldots, \partial^{\gamma_n} f$ are linearly independent over the field of meromorphic functions on \mathbb{C}_p^m .

Let $f = (f_1, \ldots, f_{n+1})$ be a linearly non-degenerate holomorphic map. By Lemma 3.1, we can always find such γ_i with $|\gamma_i| \leq i$ that the Wronskian

$$W = \det \begin{pmatrix} f_1 & \dots & f_{n+1} \\ \vdots & \ddots & \vdots \\ \partial^{\gamma_n} f_1 & \dots & \partial^{\gamma_n} f_{n+1} \end{pmatrix}$$

is not identically zero.

Set $B = \sum_{1 \le i \le n} |\gamma_i|$. Note that $n \le B \le n(n+1)/2$.

For a linearly non-degenerate holomorphic map f from \mathbb{C}_p^m to \mathbb{P}^n , we define the ramification term $N_{f,Ram}(t_{(m)})$ by

$$N_{f,Ram}(t_{(m)}) = N_W(t_{(m)}).$$

For different choices of the γ_i one gets different ramification terms.

Theorem 3.2. Let H_1, \ldots, H_q be q hyperplanes in general position, and f be a linearly non-degenerate holomorphic map from \mathbb{C}_p^m to \mathbb{P}^n . Then we have

$$(q-n-1)H_f^+(t_{(m)}) + H_W^+(t_{(m)}) \le \sum_{j=1}^q H_f^+(H_j,(t_{(m)})) + BT + O(1),$$

where O(1) is bounded when $T = \max_{1 \le i \le m} t_i \to -\infty$.

Proof. We first consider the case q > n + 1.

Let $G_i = F_i \circ f$, i = 1, ..., q, and $\beta_1, ..., \beta_{q-n-1}$ be distinct numbers in the set $\{1, 2, ..., q\}$.

Let $G = (\ldots, G_{\beta_1} \ldots G_{\beta_q-n-1}, \ldots)$, where $(\beta_1, \ldots, \beta_{q-n-1})$ is taken by all possible choices.

We need the following lemmas.

Lemma 3.2. G determines a holomorphic map from \mathbb{C}_p^m to \mathbb{P}^{k-1} , where $k = C_q^{q-n-1}$.

Proof. Assume that the functions $G_{\beta_1} \ldots G_{\beta_{q-n-1}}$ have a non-constant greatest common divisor. Then the functions $G_{\beta_1} \ldots G_{\beta_{q-n-1}}$ have common zeros. Because q > n+1, there exist G_{α_i} , $i = 1, \ldots, n+1$ and $(z_{(m)}) \in \mathbb{C}_p^m$ such that $G_{\alpha_i}(z_{(m)}) = 0$. Then

$$f(z_{(m)}) \in H_{\alpha_i}, \ i = 1, \dots, n+1.$$

Since $H_{\alpha_1}, \ldots, H_{\alpha_{n+1}}$ are in general position, we have a contradiction.

Lemma 3.3. We have

$$H_G(t_{(m)}) \le (q - n - 1)H_f(t_{(m)}) + O(1),$$

where O(1) does not depend on $(t_{(m)})$.

Proof. By the definition,

$$H_G(t_{(m)}) = \min_{(\beta_1, \dots, \beta_{q-n-1})} H_{G_{\beta_1} \dots G_{\beta_{q-n-1}}}(t_{(m)})$$
$$= \min_{(\beta_1, \dots, \beta_{q-n-1})} \sum_{i=1}^{q-n-1} H_{G_{\beta_i}}(t_{(m)}).$$

Assume that for a fixed $(t_{(m)})$, the following inequalities hold

$$H_{G_{\beta_1}}(t_{(m)}) \le H_{G_{\beta_2}}(t_{(m)}) \le \dots \le H_{G_{\beta_q}}(t_{(m)}).$$

Then

$$H_G(t_{(m)}) = H_{G_{\beta_1}}(t_{(m)}) + H_{G_{\beta_2}}(t_{(m)}) + \dots + H_{G_{\beta_{q-n-1}}}(t_{(m)})$$

On the other hand, due to the hypothesis of general position, we can represent f_i by a linear combination of $G_{\beta_{q-n}}, \ldots, G_{\beta_q}$:

$$f_i = \sum_{0 \le j \le n} a_{ij} G_{\beta_{q-j}}.$$

It follows that

$$H_{f_i}(t_{(m)}) \ge \min_{0 \le j \le n} H_{G_{\beta_{q-j}}}(t_{(m)}) + O(1).$$

Therfore, we obtain

$$H_{f_i}(t_{(m)}) \ge H_{G_{\beta_j}}(t_{(m)}) + O(1),$$

for j = 1, ..., q - n - 1. Hence,

$$H_{f}(t_{(m)}) = \min_{1 \le i \le n+1} H_{f_{i}}(t_{(m)})$$

$$\ge H_{G_{\beta_{j}}}(t_{(m)}) + O(1),$$

for j = 1, ..., q - n - 1. Lemma 3.3 is then proved by summarizing (q - n - 1) inequalities.

Proof of Theorem 3.2. For (n+1) g_1, \ldots, g_{n+1} we denote by $W(g_1, \ldots, g_{n+1})$ their Wronskian with respect to the γ_i as in the statement of Lemma 3.1.

Let $(\alpha_1, \ldots, \alpha_{n+1})$ be distinct numbers in $\{1, \ldots, q\}$ and $(\beta_1, \ldots, \beta_{q-n-1})$ be the rest. Note that the functions f_i can be represented as linear combinations of $G_{\alpha_1}, \ldots, G_{\alpha_{n+1}}$. Then we have

$$W(G_{\alpha_1},\ldots,G_{\alpha_{n+1}})=c_{(\alpha_1,\ldots,\alpha_{n+1})}W(f_1,\ldots,f_{n+1}),$$

where $c_{(\alpha_1,\ldots,\alpha_{n+1})} = c$ is constant depending only on $(\alpha_1,\ldots,\alpha_{n+1})$.

We set

$$A = A(\alpha_1, \dots, \alpha_{n+1}) = \frac{W(G_{\alpha_1}, \dots, G_{\alpha_{n+1}})}{G_{\alpha_1} \dots G_{\alpha_{n+1}}}$$
$$= \det \begin{pmatrix} 1 & \dots & 1\\ \frac{\partial^{\gamma_1} G_{\alpha_1}}{G_{\alpha_1}} & \dots & \frac{\partial^{\gamma_1} G_{\alpha_{n+1}}}{G_{\alpha_{n+1}}}\\ \vdots & \ddots & \vdots\\ \frac{\partial^{\gamma_n} G_{\alpha_1}}{G_{\alpha_1}} & \dots & \frac{\partial^{\gamma_n} G_{\alpha_{n+1}}}{G_{\alpha_{n+1}}} \end{pmatrix}.$$

Then

(3.1)
$$\frac{G_1 \dots G_q}{W(f_1, \dots, f_{n+1})} = \frac{CG_{\beta_1} \dots G_{\beta_{q-n-1}}}{A}.$$

Let S be the set of all permutations of $\{0, \ldots, n\}$. We set $\frac{\partial^0 G_{\alpha_i}}{G_{\alpha_i}} = 1$, $i = 1, 2, \ldots, n+1$, and

$$G_{\sigma} = \frac{\partial^{\gamma_{\sigma(0)}} G_{\alpha_1}}{G_{\alpha_1}} \dots \frac{\partial^{\gamma_{\sigma(n)}} G_{\alpha_{n+1}}}{G_{\alpha_{n+1}}}, \quad \sigma \in S.$$

Then we have

$$H_A(t_{(m)}) \ge \min_{\sigma \in S} H_{G_\sigma}(t_{(m)}).$$

By Theorem 2.3,

$$H_{\frac{G_{\alpha_i}^{\gamma_{\sigma(i)}}}{G_{\alpha_i}}}(t_{(m)}) \ge - |\gamma_{\sigma_{(i)}}| T + O(1),$$

where $T = \max_{1 \le i \le m} t_i$. Then

(3.2)
$$H_A(t_{(m)}) \ge - |\gamma| T + O(1) = -BT + O(1).$$

By (3.1) and (3.2) we get

$$\sum_{i=1}^{q} H_{G_i}(t_{(m)}) - H_W(t_{(m)}) = H_{G_{\beta_1} \dots G_{\beta_{q-n-1}}}(t_{(m)}) - H_A(t_{(m)}) + O(1).$$

This implies that

$$H_G(t_{(m)}) = \min_{(\beta_1, \dots, \beta_{q-n-1})} H_{G_{\beta_1} \dots G_{\beta_{q-n-1}}}(t_{(m)})$$

$$\geq \sum_{i=1}^q H_{G_i}(t_{(m)}) - H_W(t_{(m)}) - BT + O(1).$$

Therefore

$$(q-n-1)H_f(t_{(m)}) \ge \sum_{i=1}^q H_{G_i}(t_{(m)}) - H_W(t_{(m)}) - BT + O(1).$$

Hence

$$(q-n-1)H_f^+(t_{(m)}) + H_W^+(t_{(m)}) \le \sum_{j=1}^q H_f^+(H_j,(t_{(m)})) + BT + O(1).$$

If q = n + 1, then we have

$$\frac{G_1\dots G_{n+1}}{W} = \frac{c}{A}.$$

From this and (3.2) we obtain

$$H_W^+(t_{(m)}) \le \sum_{i=1}^{n+1} H_f^+(H_i, t_{(m)}) + BT + 0(1).$$

Theorem 3.2 is proved.

Theorem 3.3. (Second Main Theorem). Let H_1, \ldots, H_q be q hyperplanes in general position and f be a linearly non-degenerate holomorphic map from \mathbb{C}_p^m to \mathbb{P}^n . Then

$$(q - n - 1)H_f^+(c_{(m)} + t) + N_{f,Ram}(c_{(m)} + t)$$

$$\leq \sum_{j=1}^q N_f(H_j, (c_{(m)} + t)) + BT + O(1),$$

where $T = \max_{1 \le i \le m} (c_i + t)$, and O(1) is bounded when $T \to -\infty$.

Proof. By Lemma 2.3,

$$H_W^+(c_{(m)} + t) = N_W(c_{(m)} + t) + O(1),$$

and

$$H_f^+(H_j, (c_{(m)} + t)) = N_f(H_j, (c_{(m)} + t)) + O(1)$$

Then, by Theorem 3.2, we have

$$(q - n - 1)H_f^+(c_{(m)} + t) + N_{f,Ram}(c_{(m)} + t) \leq \sum_{1 \le j \le q} N_f(H_j, (c_{(m)} + t)) + BT + O(1).$$

which completes the proof.

In particular, for $c_1 = c_2 = \ldots = c_m$, we obtain Cherry-Ye's theorem.

Corollary 3.1. (see [3]) Let H_1, \ldots, H_q be q hyperplanes in general position in \mathbb{P}^n , and f a linearly non-degenerate holomorphic map from \mathbb{C}_p^m to \mathbb{P}^n . Then we have

$$(q-n-1)H_f^+(t,\ldots,t) + N_{f,Ram}(t,\ldots,t) \le \sum_{1\le j\le q} N_f(H_j,(t,\ldots,t)) + Bt + O(1),$$

where O(1) is bounded when $t \to -\infty$.

Acknowledgement

I would like to thank Professor Ha Huy Khoai for suggesting these problems to me.

References

- [1] A. Boutabaa, Applications de la théorie de Nevanlinna p-adique, Collect. Math. **42** (1991), 75-93.
- [2] W. Cherry, A survey of Nevanlinna theory over non-Archimedean fields, Bull. Hongkong Math. Soc. 1 (2) (1997), 235-249.
- [3] W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), 5043-5071.
- [4] P. C. Hu and C. C. Yang, Value distribution theory of p-adic meromorphic functions, Izv. Nats. Acad. Nauk Armenii Nat., 32 (3) (1997), 46-67.
- [5] Ha Huy Khoai, La hauteur des fonctions holomorphes p-adiques de plusieurs variables, C. R. A. Sc. Paris **312** (1991), 751-731.
- [6] Ha Huy Khoai and My Vinh Quang, On p-adic Nevanlinna theory, Lect. Notes. Math. 1351 Springer -Verlag (1988), pp. 146-158.
- [7] Ha Huy Khoai and Mai Van Tu, p-adic Nevanlinna-Cartan Theorem, Internat. J. Math. 6 (1995), 719-731.

INSTITUTE OF MATHEMATICS, P.O. Box 631, Bo Ho, Hanoi