STRATIFICATION OF FAMILIES OF FUNCTIONS DEFINABLE IN O-MINIMAL STRUCTURES

TA LÊ LOI

ABSTRACT. We prove the existence of Thom stratifications for families of functions definable in any o-minimal structure. The theory of o-minimal structures is a generalization of semi-algebraic and sub-analytic geometry. Our result implies Fukuda's Theorem on the finiteness of topological types for polynomials on \mathbb{R}^n with bounded degree.

INTRODUCTION

In this note we will consider the stratification with Thom's conditions of families of functions definable in o-minimal structures. The theory of o-minimal structures is a generalization of semialgebraic and subanalytic geometry. For details we refer the readers to the surveys [D] and [DM].

A structure on the real field $(\mathbb{R}, +, \cdot)$ is a sequence $\mathcal{D} = (\mathcal{D}_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{R}^n such that the following conditions are satisfied for all $n \in \mathbb{N}$:

- \mathcal{D}_n is a Boolean algebra.
- If $A \in \mathcal{D}_n$, then $A \times \mathbb{R}$ and $\mathbb{R} \times A \in \mathcal{D}_{n+1}$.
- If $A \in \mathcal{D}_{n+1}$, then $\pi(A) \in \mathcal{D}_n$, where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection on the first *n* coordinates.
- \mathcal{D}_n contains $\{x \in \mathbb{R}^n : P(x) = 0\}$, for every polynomial $P \in \mathbb{R}[X_1, \cdots, X_n]$.

Structure \mathcal{D} is called *o-minimal* if

• Each set in \mathcal{D}_1 is a finite union of intervals and points.

A set belonging to \mathcal{D} is called *definable* (in that structure). *Definable maps* in structure \mathcal{D} are maps whose graphs are definable sets in \mathcal{D} .

It is worth noting that o-minimal structures share many interesting properties with those of semi-algebraic sets. For example, definable sets admit Whitney stratification (see [L2]), so they can be triangulated. Definable functions are piecewise smooth (see [D]) and can be triangulated (see [C]).

In this note we fix an o-minimal structure on $(\mathbb{R}, +, \cdot)$. "Definable" means definable in this structure. Moreover, we shall need the following notions.

Received September 18, 2001.

¹⁹⁹¹ Mathematics Subject Classification. 32B20, 14P15, 26E05, 26E10.

Let p be a positive integer A definable C^p Whitney stratification of $X \subset \mathbb{R}^n$ is a partition \mathcal{X} of X into finitely many subsets, called strata, such that:

- Each stratum is a C^p submanifold of \mathbb{R}^n and also a definable set.
- For every $\Gamma \in \mathcal{S}$, $\overline{\Gamma} \setminus \Gamma$ is a union of some of the strata.
- For every Γ , $\Gamma' \in \mathcal{X}$, if $\Gamma \subset \overline{\Gamma'}$, then (Γ, Γ') has the Whitney property.

We say that a stratification \mathcal{X} is *compatible* with a class \mathcal{A} of subsets of \mathbb{R}^n , if for each $\Gamma \in \mathcal{X}$ and $S \in \mathcal{A}$, $\Gamma \subset S$ or $\Gamma \cap S = \emptyset$.

Let $f: X \to Y$ be a definable map. A C^p stratification of f is a pair $(\mathcal{X}, \mathcal{Y})$, where \mathcal{X} and \mathcal{Y} are definable C^p Whitney stratifications of X and Y respectively, and for each $\Gamma \in \mathcal{X}$, there exists $\Phi \in \mathcal{Y}$, such that $f(\Gamma) \subset \Phi$ and $f|_{\Gamma} : \Gamma \to \Phi$ is a C^p submersion.

Let $(\mathcal{X}, \mathcal{Y})$ be a C^p stratification of $f : X \to Y$. The map f is called a *Thom* map stratified by $(\mathcal{X}, \mathcal{Y})$ if for all $\Gamma, \Gamma' \in \mathcal{X}$ with $\Gamma \subset \overline{\Gamma'}$, the pair (Γ, Γ') satisfies the following condition at each $x \in \Gamma$:

(a_f) for every sequence (x_k) in Γ' converging to x, such that ker $d(f|_{\Gamma'})(x_k)$ converges to a subspace τ of $T_x \mathbb{R}^n$, then ker $d(f|_{\Gamma})(x) \subset \tau$.

1. Main result

Our main result can be formulated as follows.

Theorem 1.1. Let $X \subset \mathbb{R}^n$, $T \subset \mathbb{R}^m$ be definable sets. Let

$$f: X \times T \to \mathbb{R}, (x, t) \mapsto f(x, t) = f_t(x)$$

be a continuous definable function. Then for every finite collection \mathcal{A} of definable subsets of $X \times T$ and $p \geq 2$, there exists a finite partition $T = \bigcup_{i=1}^{q} T_i$ into C^p definable manifolds, such that for each $i \in \{1, \ldots, q\}$, there exist definable C^p Whitney stratifications \mathcal{X} of $X \times T_i$ and \mathcal{Y} of $\mathbb{R} \times T_i$, such that \mathcal{X} is compatible with \mathcal{A} and the map

$$X \times T_i \to \mathbb{R} \times T_i, \ (x,t) \mapsto (f(x,t),t)$$

is a Thom map stratified by $(\mathcal{X}, \mathcal{Y})$, and $(\mathcal{Y}, \{T_i\})$ is a stratification of the projection $\mathbb{R} \times T_i \to T_i, (y, t) \mapsto t$.

Corollary 1.1. Under the assumptions of the theorem, if t and t' are in the same connected component of T_i , then f_t and $f_{t'}$ are topologically equivalent, that is there exist homeomorphisms $h: X \to X$ and $\lambda: \mathbb{R} \to \mathbb{R}$, such that $f_t \circ h = \lambda \circ f_{t'}$.

The corollary is an extension of [F], where Fukuda proved that the number of topological types of polynomial functions on \mathbb{R}^n of degree $\leq d$ is finite.

2. Proof of the main result

We shall need the existence of the stratifications of definable maps. The following theorem is proved in [DM, Theorem 4.8] with a gap. **Theorem 2.1.** Let $f : X \to Y$ be a continuous definable map. Let \mathcal{A} and \mathcal{B} be finite collections of definable subsets of X and Y respectively. Then there exists a C^p stratification $(\mathcal{X}, \mathcal{Y})$ of f such that \mathcal{X} is compatible with \mathcal{A} and \mathcal{Y} is compatible with \mathcal{B} .

Proof. We follow closely the proof of [S, Theorem I.2.6] for subanalytic maps. Let $m = \dim Y$. We will construct a chain of definable sets

$$Y^m \subset Y^{m-1} \subset \dots \subset Y^0 = Y$$

and the pairs $(\mathcal{X}^k, \mathcal{Y}^k)$, $k = m, m - 1, \cdots, 0$, satisfying the following conditions

(*F_k*) $Y \setminus Y^k$ is a closed subset of *Y* and dim($Y \setminus Y^k$) < *k*; \mathcal{X}^k is a definable C^p Whitney stratification of $X^k = f^{-1}(Y^k)$ compatible with \mathcal{A} ; \mathcal{Y}^k is a definable C^p Whitney stratification of Y^k compatible with \mathcal{B} , and dim $\Phi \ge k$, $\forall \Phi \in \mathcal{Y}^k$; $\mathcal{X}^{k+1} \subset \mathcal{X}^k$ and $\mathcal{Y}^{k+1} \subset \mathcal{Y}^k$; and $(\mathcal{X}^k, \mathcal{Y}^k)$ is a C^p stratification of $f|_{X^k} : X^k \to Y^k$.

This inductive construction leads to a stratification $(\mathcal{X}, \mathcal{Y}) = (\mathcal{X}^0, \mathcal{Y}^0)$, which satisfies the demands of the theorem.

Suppose $(\mathcal{X}^{k+1}, \mathcal{Y}^{k+1})$ is constructed. By [L2, Theorem 1.3 and Proposition 1.10], there exists a finite collection \mathcal{Z}^k of disjoint definable submanifolds of dimension k, contained in $Y \setminus Y^{k+1}$ such that: \mathcal{Z}^k is compatible with \mathcal{B} ; $\dim(Y \setminus Y^{k+1} \setminus |\mathcal{Z}^k|) < k$ (where $|\mathcal{Z}^k| = \bigcup_{Z \in \mathcal{Z}^k} Z$); and $\mathcal{Y}^{k+1} \cup \mathcal{Z}^k$ is a definable C^p Whitney stratification of a subset of Y.

We will prove that for each $Z \in \mathbb{Z}^k$, there is a definable closed subset Z^0 of Z with dim $Z^0 < k$, and we will modify $\mathcal{A}|_{f^{-1}(Z \setminus Z^0)}$ to a stratification \mathcal{W}_Z so that the pair $(\mathcal{X}^k = \mathcal{X}^{k+1} \cup \bigcup_{Z \in \mathbb{Z}^k} \mathcal{W}_Z, \ \mathcal{Y}^k = \mathcal{Y}^{k+1} \cup \{Z \setminus Z^0 : Z \in \mathbb{Z}^k\})$ satisfies (F_k) .

For $Z \in \mathcal{Z}^k$, $f^{-1}(Z) = \emptyset$, let $Z^0 = \emptyset$ and $\mathcal{W}_Z = \emptyset$.

For $Z \in \mathbb{Z}^k$, $f^{-1}(Z) \neq \emptyset$, by [DM, Theorem 4.2], we may assume that \mathcal{A} is compatible with $f^{-1}(Z)$. Moreover, by [DM, Lemma C.2], for each $A \in \mathcal{A}|_{f^{-1}(Z)}$, there is a definable subset B_A of A such that $A \setminus B_A$ is a submanifold and $f|_{A \setminus B_A}$ is submersive into Z (if $A \setminus B_A \neq \emptyset$), and dim $f(B_A) < k$. Then $Z \cap \bigcup_{A \in \mathcal{A}|_{f^{-1}(Z)}} \overline{f(B_A)}$ is of dimension < k. By deleting a closed subset of dimension < k from Z, we may assume that $f|_A : A \to Z$ is submersive for every $A \in \mathcal{A}|_{f^{-1}(Z)}$. Under the above assumptions, let $n = \dim f^{-1}(Z)$, we now construct chains of definable sets

$$\emptyset = Z^m \subset Z^{m-1} \subset \cdots \subset Z^0 \subset Z$$
 and $W^n \subset W^{n-1} \subset \cdots \subset W^0 \subset f^{-1}(Z)$,

and for l = n, n - 1, ..., 0, partitions \mathcal{W}_Z^l of W^l into definable submanifolds satisfying the following conditions

 $(G_l) \quad \dim Z^l < k; \ \dim f^{-1}(Z \setminus Z^l) \setminus W^l < l; \ \mathcal{W}_Z^l \text{ is compatible with } \mathcal{A} \text{ and} \\ \dim W \ge l, \ \forall W \in \mathcal{W}_Z^l; \ \mathcal{W}_Z^{l+1} \subset \mathcal{W}_Z^l; \ \mathcal{X}^{k+1} \cup \mathcal{W}_Z^l \text{ is a definable } C^p \text{ Whitney} \\ \text{stratification; and for each } W \in \mathcal{W}_Z^l, \ f|_W : W \to Z \text{ is submersive.} \end{cases}$

Suppose Z^{l+1} and \mathcal{W}_Z^{l+1} are constructed. For each $A \in \mathcal{A}|_{f^{-1}(Z)}$, let A' = $A \setminus f^{-1}(Z^{l+1}) \setminus W^{l+1}$. By [L, Theorem 1.3] and [DM, Lemma C.2], there exist definable subsets B'_A and B''_A of A' such that $A' \setminus (B'_A \cup B''_A)$ is a submanifold of dimension l (if not empty), dim $B'_A < l$, dim $f(B''_A) < k$, $f|_{A' \setminus (B'_A \cup B''_A)}$ is submersive, and $\mathcal{X}^{k+1} \cup \mathcal{W}_Z^{l+1} \cup \{A' \setminus (B'_A \cup B''_A), A \in \mathcal{A}\}$ is a definable C^p Whitney stratification. Let $Z^l = Z^{l+1} \cup \left(Z \cap \bigcup_{A \in \mathcal{A}|_{f^{-1}(Z)}} \overline{f(B''_A)} \right)$, and $\mathcal{W}_Z^l =$ $\mathcal{W}_Z^{l+1} \cup \{A' \setminus (B'_A \cup B''_A), A \in \mathcal{A}|_{f^{-1}(Z)}\}$. Then Z^l and \mathcal{W}_Z^l satisfy (G_l) .

Obviously, Z^0 and $\mathcal{W}_Z = \mathcal{W}_Z^0|_{f^{-1}(Z \setminus Z^0)}$ have the desired properties.

Now we will use the notations of Theorem 1.1. For $\Gamma \subset X \times T$ and $t \in T$, we set $\Gamma_t = \{x \in X : (x,t) \in \Gamma\}$. Let $\pi : X \times T \to T$ be the natural projection.

Lemma 2.1. There exists a C^p stratification of $(f, \pi) : X \times T \to \mathbb{R} \times T$, compatible with \mathcal{A} .

Proof. This follows from Theorem 2.1.

Lemma 2.2. Let Γ_t and Γ'_t be definable, C^p submanifolds of \mathbb{R}^n , and $\Gamma_t \subset \Gamma'_t$. Let $f_t : \Gamma_t \cup \Gamma'_t \to \mathbb{R}$ be a continuous definable function. Suppose that the restrictions of f_t to Γ_t and Γ'_t are of class C^p , and have constant ranks. Then the set

$$A = A(f_t, \Gamma_t, \Gamma'_t) = \{ x \in \Gamma_t : (\Gamma_t, \Gamma'_t) \text{ satisfies } (a_{f_t}) \text{ at } x \}$$

is definable and dim $(\Gamma_t \setminus A) < \dim \Gamma_t$.

Proof. See [L1].

Lemma 2.3. Let Γ and Γ' be definable, C^p submanifolds of $X \times T$. Suppose that the restrictions $\pi|_{\Gamma}$ and $\pi|_{\Gamma'}$ have constant ranks, and rank $f_t|_{\Gamma_t}$ and rank $f_t|_{\Gamma'_t}$ are constant for all $t \in \pi(\Gamma)$. Then the set

$$A((f,\pi),\Gamma,\Gamma') = \{(x,t) \in \Gamma : x \in A(f_t,\Gamma_t,\Gamma'_t)\}$$

is definable and dim $(\Gamma \setminus A((f, \pi), \Gamma, \Gamma')) < \dim \Gamma$.

Proof. Obviously, $A((f, \pi), \Gamma, \Gamma')$ is definable by definition. By Lemma 2.2,

 $\dim(\Gamma \setminus A((f,\pi),\Gamma,\Gamma')) < \dim \Gamma.$

Proof of the Theorem 1.1. We use induction on dim T. Let N = n + m. By Lemma 2.1, we may suppose that T is a C^p manifold, and that there are definable C^p Whitney stratifications \mathcal{X}^N of $X \times T$ and \mathcal{Y}^N of $\mathbb{R} \times T$, compatible with \mathcal{A} , such that for each $\Gamma \in \mathcal{X}^N$, $\pi|_{\Gamma}$ has constant rank, the restriction $f|_{\Gamma}$ is of class C^p , and rank $(f_t|_{\Gamma_t})$ is constant for all $t \in \pi(\Gamma)$.

We will construct the stratifications $(\mathcal{X}^k, \mathcal{Y}^k)$ of $(f, \pi) : X \times T \to \mathbb{R} \times T$, by decreasing $k = N, N - 1, \ldots, 0$, such that \mathcal{X}^k is compatible with \mathcal{A} and satisfies the following condition

 $(*_k)$ If $\Gamma, \Gamma' \in \mathcal{X}^k, \Gamma \subset \overline{\Gamma'}$ and dim $\Gamma \geq k$, then $\pi|_{\Gamma}$ has constant rank, and for all $t \in \pi(\Gamma)$, rank $f_t|_{\Gamma_t}$ is constant and (Γ_t, Γ'_t) satisfies (\mathbf{a}_{f_t}) at each point of Γ_t .

Suppose $(\mathcal{X}^k, \mathcal{Y}^k)$ is constructed. We will construct $(\mathcal{X}^{k-1}, \mathcal{Y}^{k-1})$. For each $\Gamma \in \mathcal{X}^k$, let

$$B_{\Gamma} = \bigcup \{ \Gamma \setminus A((f,\pi), \Gamma, \Gamma') : \Gamma' \in \mathcal{X}^k, \Gamma \subset \overline{\Gamma'} \}$$

By Lemma 2.3, dim $B_{\Gamma} < \dim \Gamma$. By Lemma 2.1, there exists a stratification $(\mathcal{T}^{k-1}, \mathcal{Y}^{k-1})$ of (f, π) compatible with $\{\Gamma \setminus B_{\Gamma} : \Gamma \in \mathcal{X}^k, \dim \Gamma = k - 1\}$ and $\{\Gamma : \Gamma \in \mathcal{X}^k, \dim \Gamma < k\}$, such that for each $\Gamma^1 \in \mathcal{T}^{k-1}, \pi|_{\Gamma^1}$ has constant rank. Now let

$$\mathcal{X}^{k-1} = \{ \Gamma \in \mathcal{X}^k : \dim \Gamma \ge k \} \bigcup \{ \Gamma^1 \in \mathcal{T}^{k-1} : \dim \Gamma^1 < k \}.$$

It is easy to check that \mathcal{X}^{k-1} has $(*_{k-1})$. Let \mathcal{P} be a definable C^p stratification of T compatible with $\{\pi(\Gamma) : \Gamma \in \mathcal{X}^0\}$. Let $T' = T \setminus \bigcup \{\tau : \tau \in \mathcal{T}, \dim \tau < \dim T\}$. Then the restriction of $(\mathcal{X}^0, \mathcal{Y}^0)$ to $(X \times T', \mathbb{R} \times T')$ is a stratification satisfying the demands of the theorem. Since $\dim(T \setminus T') < \dim T$, the theorem is followed from the induction hypothesis.

Proof of the Corollary 1.1. We make a compactification in a familiar way. Let

$$\theta : \mathbb{R} \to (-1,1), \ \theta(x) = \frac{x}{1+|x|}$$

and

$$\theta_n : \mathbb{R}^n \to (-1,1)^n, \ \theta_n(x_1,\cdots,x_n) = (\theta(x_1),\cdots,\theta(x_n)).$$

Let

$$\hat{f}: [-1,1]^n \times [-1,1] \times T \to \mathbb{R}, \quad \hat{f}(y,s,t) = s,$$

and

$$\pi: [-1,1]^n\times [-1,1]\times T \to T, \quad \pi(y,s,t)=t.$$

Then (\hat{f}, π) is proper. Applying Theorem 1.1 to \hat{f} and $\mathcal{A} = \{\theta \circ f \circ \theta_n^{-1} \times T\}$, we derive the corollary from Thom's second isotopy lemma [T], [M].

Remark

1. If the structure is polynomially bounded (see [DM] for the definition), Theorem 1.1 can be strengthened by replacing the condition (a_f) by the condition (w_f) . In this case, the same proof goes through if we replace Lemma 2.2 by [L2, Proposition 2.7].

2. Since the proof of Corollary 1.1 is based on Thom's isotopy lemma, the homeomorphisms h and λ , which are obtained by integrating vector fields, are not necessarily definable. In [C], based on the theory of the real spectrum, it is proved by triangulation that the homeomorphisms can be taken to be definable. Moreover, in semialgebraic or fewnomial case, [BS] and [C] give effective bounds

for the number of topological types in terms of the additive complexity and the number of variables.

References

- [BS] R. Benedetti and M. Shiota, Finiteness of semialgebraic types of polynomial functions, Math. Z. 208 (1991), 589-596.
- [C] M. Coste, Topological types of fewnomials, Singularities Symposium Lojasiewicz 70. Banach Center Pub. 44 (1998), 81-92.
- [D] L. van den Dries, *Tame topology and o-minimal structures*, LMS Lecture Notes, Cambridge University Press (1997).
- [DM] L. van den Dries and C.Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [F] T. Fukuda, Types topologiques des polynômes, Publ. Math. I.H.E.S. 46 (1976), 87-106.
- [L1] T. L. Loi, Thom stratifications for functions definable in o-minimal structures on (ℝ, +, ·),
 C. R. Acad. Sci. Paris, Série I, **324** (1997), 1391-1394.
- [L2] T. L. Loi, Verdier stratifications and Thom stratifications in o-minimal structures, Illinois J. Math. 42, No 2 (1998), 347-356.
- [M] J. Mather, Notes on topological stability, University of Havard (1970).
- [S] M. Shiota, Geometry of subanalytic and semianalytic sets, monograph (1996).
- [T] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-289.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF DALAT DALAT, VIETNAM

E-mail address: taleloi@hotmail.com