STRATIFICATION OF FAMILIES OF FUNCTIONS DEFINABLE IN O-MINIMAL STRUCTURES

TA LÊ LOI

ABSTRACT. We prove the existence of Thom stratifications for families of functions definable in any o-minimal structure. The theory of o-minimal structures is a generalization of semi-algebraic and sub-analytic geometry. Our result implies Fukuda's Theorem on the finiteness of topological types for polynomials on \mathbb{R}^n with bounded degree.

INTRODUCTION

In this note we will consider the stratification with Thom's conditions of families of functions definable in o-minimal structures. The theory of o-minimal structures is a generalization of semialgebraic and subanalytic geometry. For details we refer the readers to the surveys [D] and [DM].

A structure on the real field $(\mathbb{R}, +, \cdot)$ is a sequence $\mathcal{D} = (\mathcal{D}_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{R}^n such that the following conditions are satisfied for all $n \in \mathbb{N}$:

- \mathcal{D}_n is a Boolean algebra.
- If $A \in \mathcal{D}_n$, then $A \times \mathbb{R}$ and $\mathbb{R} \times A \in \mathcal{D}_{n+1}$.
- If $A \in \mathcal{D}_{n+1}$, then $\pi(A) \in \mathcal{D}_n$, where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection on the first n coordinates.
- \mathcal{D}_n contains $\{x \in \mathbb{R}^n : P(x) = 0\}$, for every polynomial $P \in \mathbb{R}[X_1, \dots, X_n]$.

Structure D is called *o-minimal* if

• Each set in \mathcal{D}_1 is a finite union of intervals and points.

A set belonging to $\mathcal D$ is called *definable* (in that structure). Definable maps in structure $\mathcal D$ are maps whose graphs are definable sets in $\mathcal D$.

It is worth noting that o-minimal structures share many interesting properties with those of semi-algebraic sets. For example, definable sets admit Whitney stratification (see [L2]), so they can be triangulated. Definable functions are piecewise smooth (see $[D]$) and can be triangulated (see $[C]$).

In this note we fix an o-minimal structure on $(\mathbb{R}, +, \cdot)$. "Definable" means definable in this structure. Moreover, we shall need the following notions.

Received September 18, 2001.

¹⁹⁹¹ Mathematics Subject Classification. 32B20, 14P15, 26E05, 26E10.

Let p be a positive integer A *definable C^p* Whitney stratification of $X \subset \mathbb{R}^n$ is a partition X of X into finitely many subsets, called strata, such that:

- Each stratum is a C^p submanifold of \mathbb{R}^n and also a definable set.
- For every $\Gamma \in \mathcal{S}, \overline{\Gamma} \setminus \Gamma$ is a union of some of the strata.
- For every $\Gamma, \Gamma' \in \mathcal{X}$, if $\Gamma \subset \overline{\Gamma'}$, then (Γ, Γ') has the Whitney property.

We say that a stratification X is *compatible* with a class A of subsets of \mathbb{R}^n , if for each $\Gamma \in \mathcal{X}$ and $S \in \mathcal{A}, \Gamma \subset S$ or $\Gamma \cap S = \emptyset$.

Let $f: X \to Y$ be a definable map. A C^p stratification of f is a pair (X, Y) , where $\mathcal X$ and $\mathcal Y$ are definable C^p Whitney stratifications of X and Y respectively, and for each $\Gamma \in \mathcal{X}$, there exists $\Phi \in \mathcal{Y}$, such that $f(\Gamma) \subset \Phi$ and $f|_{\Gamma} : \Gamma \to \Phi$ is a C^p submersion.

Let (X, Y) be a C^p stratification of $f : X \to Y$. The map f is called a Thom map stratified by $(\mathcal{X}, \mathcal{Y})$ if for all $\Gamma, \Gamma' \in \mathcal{X}$ with $\Gamma \subset \overline{\Gamma'}$, the pair (Γ, Γ') satisfies the following condition at each $x \in \Gamma$:

 (a_f) for every sequence (x_k) in Γ' converging to x, such that ker $d(f|_{\Gamma'})(x_k)$ converges to a subspace τ of $T_x \mathbb{R}^n$, then ker $d(f|_{\Gamma})(x) \subset \tau$.

1. Main result

Our main result can be formulated as follows.

Theorem 1.1. Let $X \subset \mathbb{R}^n$, $T \subset \mathbb{R}^m$ be definable sets. Let

$$
f: X \times T \to \mathbb{R}, (x, t) \mapsto f(x, t) = f_t(x)
$$

be a continuous definable function. Then for every finite collection A of definable subsets of $X \times T$ and $p \geq 2$, there exists a finite partition $T = \bigcup$ q $i=1$ T_i into C^p definable manifolds, such that for each $i \in \{1, \ldots, q\}$, there exist definable C^p Whitney stratifications $\mathcal X$ of $X \times T_i$ and $\mathcal Y$ of $\mathbb R \times T_i$, such that $\mathcal X$ is compatible with A and the map

$$
X \times T_i \to \mathbb{R} \times T_i, \ (x, t) \mapsto (f(x, t), t)
$$

is a Thom map stratified by (X, Y) , and $(Y, \{T_i\})$ is a stratification of the projection $\mathbb{R} \times T_i \to T_i$, $(y, t) \mapsto t$.

Corollary 1.1. Under the assumptions of the theorem, if t and t' are in the same connected component of T_i , then f_t and $f_{t'}$ are topologically equivalent, that is there exist homeomorphisms $h: X \to X$ and $\lambda: \mathbb{R} \to \mathbb{R}$, such that $f_t \circ h = \lambda \circ f_{t'}$.

The corollary is an extension of [F], where Fukuda proved that the number of topological types of polynomial functions on \mathbb{R}^n of degree $\leq d$ is finite.

2. Proof of the main result

We shall need the existence of the stratifications of definable maps. The following theorem is proved in [DM, Theorem 4.8] with a gap.

Theorem 2.1. Let $f: X \to Y$ be a continuous definable map. Let A and B be finite collections of definable subsets of X and Y respectively. Then there exists a C^p stratification (X, Y) of f such that X is compatible with A and Y is compatible with B.

Proof. We follow closely the proof of [S, Theorem I.2.6] for subanalytic maps. Let $m = \dim Y$. We will construct a chain of definable sets

$$
Y^m \subset Y^{m-1} \subset \cdots \subset Y^0 = Y ,
$$

and the pairs $(\mathcal{X}^k, \mathcal{Y}^k)$, $k = m, m - 1, \dots, 0$, satisfying the following conditions

 (F_k) $Y \setminus Y^k$ is a closed subset of Y and $\dim(Y \setminus Y^k) < k$; \mathcal{X}^k is a definable C^p Whitney stratification of $X^k = f^{-1}(Y^k)$ compatible with $\mathcal{A}; \mathcal{Y}^k$ is a definable C^p Whitney stratification of Y^k compatible with \mathcal{B} , and dim $\Phi \geq$ $k, \forall \Phi \in \mathcal{Y}^k$; $\mathcal{X}^{k+1} \subset \mathcal{X}^k$ and $\mathcal{Y}^{k+1} \subset \mathcal{Y}^k$; and $(\mathcal{X}^k, \mathcal{Y}^k)$ is a C^p stratification of $f|_{X^k}: X^k \to Y^k$.

This inductive construction leads to a stratification $(\mathcal{X}, \mathcal{Y}) = (\mathcal{X}^0, \mathcal{Y}^0)$, which satisfies the demands of the theorem.

Suppose $({\cal X}^{k+1},{\cal Y}^{k+1})$ is constructed. By [L2, Theorem 1.3 and Proposition 1.10, there exists a finite collection \mathcal{Z}^k of disjoint definable submanifolds of dimension k, contained in $Y \setminus Y^{k+1}$ such that: \mathcal{Z}^k is compatible with \mathcal{B} ; $\dim(Y \setminus Y^{k+1} \setminus |\mathcal{Z}^k|) < k$ (where $|\mathcal{Z}^k| = \cup_{Z \in \mathcal{Z}^k} Z$); and $\mathcal{Y}^{k+1} \cup \mathcal{Z}^k$ is a definable C^p Whitney stratification of a subset of Y.

We will prove that for each $Z \in \mathcal{Z}^k$, there is a definable closed subset Z^0 of Z with dim $Z^0 < k$, and we will modify $\mathcal{A}|_{f^{-1}(Z \setminus Z^0)}$ to a stratification \mathcal{W}_Z so that the pair $({\mathcal{X}}^k = {\mathcal{X}}^{k+1} \cup \cup_{Z \in {\mathcal{Z}}^k} {\mathcal{W}}_Z, {\mathcal{Y}}^k = {\mathcal{Y}}^{k+1} \cup \{Z \setminus Z^0 : Z \in {\mathcal{Z}}^k\})$ satisfies $(F_k).$

For $Z \in \mathcal{Z}^k, f^{-1}(Z) = \emptyset$, let $Z^0 = \emptyset$ and $\mathcal{W}_Z = \emptyset$.

For $Z \in \mathcal{Z}^k, f^{-1}(Z) \neq \emptyset$, by [DM, Theorem 4.2], we may assume that A is compatible with $f^{-1}(Z)$. Moreover, by [DM, Lemma C.2], for each $A \in \mathcal{A}|_{f^{-1}(Z)}$, there is a definable subset B_A of A such that $A \setminus B_A$ is a submanifold and $f|_{A\setminus B_A}$ is submersive into Z (if $A \setminus B_A \neq \emptyset$), and $\dim f(B_A) < k$. Then Z ∩ $\cup_{A\in\mathcal{A}|_{f^{-1}(Z)}}f(B_A)$ is of dimension $\lt k$. By deleting a closed subset of dimemsion $\langle k \rangle$ from Z, we may assume that $f|_A : A \to Z$ is submersive for every $A \in$ $\mathcal{A}|_{f^{-1}(Z)}$. Under the above assumptions, let $n = \dim f^{-1}(Z)$, we now construct chains of definable sets

$$
\emptyset = Z^m \subset Z^{m-1} \subset \cdots \subset Z^0 \subset Z \text{ and } W^n \subset W^{n-1} \subset \cdots \subset W^0 \subset f^{-1}(Z),
$$

and for $l = n, n - 1, ..., 0$, partitions \mathcal{W}_Z^l of W^l into definable submanifolds satisfying the following conditions

 (G_l) dim $Z^l < k$; dim $f^{-1}(Z \setminus Z^l) \setminus W^l < l$; \mathcal{W}_Z^l is compatible with A and $\dim W \ge l, \forall W \in \mathcal{W}_{Z}^l; \, \mathcal{W}_{Z}^{l+1} \subset \mathcal{W}_{Z}^l; \, \mathcal{X}^{k+1} \cup \mathcal{W}_{Z}^l$ is a definable C^p Whitney stratification; and for each $W \in \mathcal{W}_Z^l$, $f|_W : W \to Z$ is submersive.

Suppose Z^{l+1} and \mathcal{W}_Z^{l+1} are constructed. For each $A \in \mathcal{A}|_{f^{-1}(Z)}$, let $A' =$ $A \setminus f^{-1}(Z^{l+1}) \setminus W^{l+1}$. By [L, Theorem 1.3] and [DM, Lemma C.2], there exist definable subsets B'_A and B''_A of A' such that $A' \setminus (B'_A \cup B''_A)$ is a submanifold of dimension l (if not empty), $\dim B_A' < l$, $\dim f(B_A'') < k$, $f|_{A' \setminus (B_A' \cup B_A'')}$ is submersive, and $\mathcal{X}^{k+1} \cup \mathcal{W}_Z^{l+1} \cup \{A' \setminus (B'_A \cup B''_A), A \in \mathcal{A}\}\$ is a definable C^p Whitney stratification. Let $Z^l = Z^{l+1} \cup \left(Z \cap \cup_{A \in \mathcal{A}|_{f^{-1}(Z)}} \overline{f(B''_A)} \right)$, and $\mathcal{W}_Z^l =$ $\mathcal{W}_Z^{l+1} \cup \{A' \setminus (B'_A \cup B''_A), A \in \mathcal{A}|_{f^{-1}(Z)}\}$. Then Z^l and \mathcal{W}_Z^l satisfy (G_l) . \Box

Obviously, Z^0 and $\mathcal{W}_Z = \mathcal{W}_Z^0|_{f^{-1}(Z \setminus Z^0)}$ have the desired properties.

Now we will use the notations of Theorem 1.1. For $\Gamma \subset X \times T$ and $t \in T$, we set $\Gamma_t = \{x \in X : (x, t) \in \Gamma\}$. Let $\pi : X \times T \to T$ be the natural projection.

Lemma 2.1. There exists a C^p stratification of $(f, \pi) : X \times T \to \mathbb{R} \times T$, compatible with A.

Proof. This follows from Theorem 2.1.

Lemma 2.2. Let Γ_t and Γ'_t be definable, C^p submanifolds of \mathbb{R}^n , and $\Gamma_t \subset \overline{\Gamma'_t}$. Let $f_t: \Gamma_t \cup \Gamma'_t \to \mathbb{R}$ be a continuous definable function. Suppose that the restrictions of f_t to Γ_t and Γ'_t are of class C^p , and have constant ranks. Then the set

$$
A = A(f_t, \Gamma_t, \Gamma'_t) = \{x \in \Gamma_t : (\Gamma_t, \Gamma'_t) \text{ satisfies } (\mathbf{a}_{f_t}) \text{ at } x\}
$$

is definable and $\dim(\Gamma_t \setminus A) < \dim \Gamma_t$.

Proof. See [L1].

Lemma 2.3. Let Γ and Γ' be definable, C^p submanifolds of $X \times T$. Suppose that the restrictions $\pi|_{\Gamma}$ and $\pi|_{\Gamma'}$ have constant ranks, and rank $f_t|_{\Gamma_t}$ and rank $f_t|_{\Gamma_t'}$ are constant for all $t \in \pi(\Gamma)$. Then the set

$$
A((f,\pi),\Gamma,\Gamma') = \{(x,t) \in \Gamma : x \in A(f_t,\Gamma_t,\Gamma'_t)\}
$$

is definable and $\dim(\Gamma \setminus A((f,\pi),\Gamma,\Gamma')) < \dim \Gamma$.

Proof. Obviously, $A((f, \pi), \Gamma, \Gamma')$ is definable by definition. By Lemma 2.2,

 $\dim(\Gamma \setminus A((f,\pi),\Gamma,\Gamma')) < \dim \Gamma.$

Proof of the Theorem 1.1. We use induction on dim T. Let $N = n + m$. By Lemma 2.1, we may suppose that T is a C^p manifold, and that there are definable C^p Whitney stratifications \mathcal{X}^N of $X \times T$ and \mathcal{Y}^N of $\mathbb{R} \times T$, compatible with \mathcal{A} , such that for each $\Gamma \in \mathcal{X}^N$, $\pi|_{\Gamma}$ has constant rank, the restriction $f|_{\Gamma}$ is of class C^p , and rank $(f_t|_{\Gamma_t})$ is constant for all $t \in \pi(\Gamma)$.

We will construct the stratifications $(\mathcal{X}^k, \mathcal{Y}^k)$ of $(f, \pi) : X \times T \to \mathbb{R} \times T$, by decreasing $k = N, N - 1, ..., 0$, such that \mathcal{X}^k is compatible with A and satisfies the following condition

 \Box

 \Box

$$
m
$$

 \Box

(*k) If $\Gamma, \Gamma' \in \mathcal{X}^k, \Gamma \subset \overline{\Gamma'}$ and $\dim \Gamma \geq k$, then $\pi|_{\Gamma}$ has constant rank, and for all $t \in \pi(\Gamma)$, rank $f_t|_{\Gamma_t}$ is constant and (Γ_t, Γ'_t) satisfies (a_{f_t}) at each point of Γ_t .

Suppose $(\mathcal{X}^k, \mathcal{Y}^k)$ is constructed. We will construct $(\mathcal{X}^{k-1}, \mathcal{Y}^{k-1})$. For each $\Gamma \in \mathcal{X}^k$, let

$$
B_{\Gamma} = \bigcup \{ \Gamma \setminus A((f,\pi),\Gamma,\Gamma') : \Gamma' \in \mathcal{X}^k, \Gamma \subset \overline{\Gamma'} \}
$$

By Lemma 2.3, dim $B_{\Gamma} <$ dim Γ . By Lemma 2.1, there exists a stratification $(T^{k-1}, \mathcal{Y}^{k-1})$ of (f, π) compatible with $\{\Gamma \setminus B_{\Gamma} : \Gamma \in \mathcal{X}^k, \dim \Gamma = k-1\}$ and $\{\Gamma : \Gamma \in \mathcal{X}^k, \dim \Gamma < k\}$, such that for each $\Gamma^1 \in \mathcal{T}^{k-1}$, $\pi|_{\Gamma^1}$ has constant rank. Now let

$$
\mathcal{X}^{k-1} = \{ \Gamma \in \mathcal{X}^k : \dim \Gamma \ge k \} \bigcup \{ \Gamma^1 \in \mathcal{T}^{k-1} : \dim \Gamma^1 < k \}.
$$

It is easy to check that \mathcal{X}^{k-1} has $(*_{k-1})$. Let P be a definable C^p stratification of T compatible with $\{\pi(\Gamma): \Gamma \in \mathcal{X}^0\}$. Let $T' = T \setminus \bigcup \{\tau : \tau \in \mathcal{T}, \dim \tau < \dim T\}$. Then the restriction of $({\cal X}^0, {\cal Y}^0)$ to $(X \times T', \mathbb{R} \times T')$ is a stratification satisfying the demands of the theorem. Since $\dim(T \setminus T') < \dim T$, the theorem is followed from the induction hypothesis. \Box

Proof of the Corollary 1.1. We make a compactification in a familiar way. Let

$$
\theta : \mathbb{R} \to (-1,1), \ \theta(x) = \frac{x}{1+|x|},
$$

and

$$
\theta_n : \mathbb{R}^n \to (-1,1)^n, \ \theta_n(x_1,\cdots,x_n) = (\theta(x_1),\cdots,\theta(x_n)).
$$

Let

$$
\hat{f}: [-1,1]^n \times [-1,1] \times T \to \mathbb{R}, \quad \hat{f}(y,s,t) = s,
$$

and

$$
\pi: [-1,1]^n \times [-1,1] \times T \to T, \quad \pi(y,s,t) = t.
$$

Then (\hat{f}, π) is proper. Applying Theorem 1.1 to \hat{f} and $\mathcal{A} = \{\theta \circ f \circ \theta_n^{-1} \times T\}$, we derive the corollary from Thom's second isotopy lemma [T], [M].

Remark

1. If the structure is polynomially bounded (see [DM] for the definition), Theorem 1.1 can be strengthened by replacing the condition (a_f) by the condition (w_f) . In this case, the same proof goes through if we replace Lemma 2.2 by [L2, Proposition 2.7].

2. Since the proof of Corollary 1.1 is based on Thom's isotopy lemma, the homeomorphisms h and λ , which are obtained by integrating vector fields, are not necessarily definable. In $[C]$, based on the theory of the real spectrum, it is proved by triangulation that the homeomorphisms can be taken to be definable. Moreover, in semialgebraic or fewnomial case, [BS] and [C] give effective bounds for the number of topological types in terms of the additive complexity and the number of variables.

REFERENCES

- [BS] R. Benedetti and M. Shiota, Finiteness of semialgebraic types of polynomial functions, Math. Z. 208 (1991), 589-596.
- [C] M. Coste, Topological types of fewnomials, Singularities Symposium Lojasiewicz 70. Banach Center Pub. 44 (1998), 81-92.
- [D] L. van den Dries, Tame topology and o-minimal structures, LMS Lecture Notes, Cambridge University Press (1997).
- [DM] L. van den Dries and C.Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [F] T. Fukuda, Types topologiques des polynômes, Publ. Math. I.H.E.S. 46 (1976), 87-106.
- [L1] T. L. Loi, Thom stratifications for functions definable in o-minimal structures on $(\mathbb{R}, +, \cdot)$, C. R. Acad. Sci. Paris, Série I, 324 (1997), 1391-1394.
- [L2] T. L. Loi, Verdier stratifications and Thom stratifications in o-minimal structures, Illinois J. Math. 42, No 2 (1998), 347-356.
- [M] J. Mather, Notes on topological stability, University of Havard (1970).
- [S] M. Shiota, Geometry of subanalytic and semianalytic sets, monograph (1996).
- [T] R. Thom, *Ensembles et morphismes stratifiés*, Bull. Amer. Math. Soc. 75 (1969), 240-289.

Department of Mathematics University of Dalat Dalat, Vietnam

E-mail address: taleloi@hotmail.com