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EXTREME POINTS IN MUSIELAK-ORLICZ
SEQUENCE SPACES

S. SAEJUNG AND S. DHOMPONGSA

ABSTRACT. This paper establishes some characterizations of extreme points
and strongly extreme points of the closed unit ball in a Musielak-Orlicz se-
quence space equipped with the Luxemburg norm. As a consequence of these
results, we obtain some geometric properties such as rotundity and strong
rotundity in Nakano sequence spaces and Orlicz sequence spaces.

1. INTRODUCTION

For a Banach space X, we denote by S(X) and B(X) the unit sphere and the
closed unit ball of X, respectively. Recall that a point = € S(X) is an extreme
point if 2x = y 4 z for y, z € B(X) implies y = z, and is a strongly extreme point
if 2z =y, + 2, for all n € N and ||y,|| — 1, ||znll — 1 imply |lyn — 2n|| — 0. A
Banach space X is said to be rotund if every point in its unit sphere is an extreme
point. If every point in its unit sphere is a strongly extreme point, then X is said
to be strongly rotund.

Clearly, every strongly extreme point is an extreme point. Thus every strongly
rotund space is a rotund space. An example in [8] shows that there is a rotund
Banach space which is not strongly rotund.

In this paper, we study extreme points and related properties in Musielak-
Orlicz sequence spaces. Before stating our main result we first recall the following
definitions:

Let N and R stand for the set of natural numbers and the set of real numbers,
respectively. A function ® : R — [0,00) is said to be an Orlicz function if ® is
even, convex, and vanishes at zero. A sequence ® = (®) of Orlicz functions @y,
is called a Musielak-Orlicz function. If ® = (®y) is a Musielak-Orlicz function,
then the sequence ¥ = (¥}) defined by

(1.1) Uy (v) :=sup{|v|u — Px(u) : w >0}, k=1,2,...

is called the complementary function of ® in the sense of Young (see [7]).
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Let RY denote the space of all real sequences = = (x(k)). For a given Musielak-
Orlicz function ® we define a convex modular Iy : RY — [0, 0] by the formula

(1.2) Ip(z) =) ®p(x(k)) for x € RY.
k=1

The Musielak-Orlicz sequence space lg generated by ® = (@) is defined by
(1.3) lg :={z € RN : Ig(\z) < 0o for some X > 0}.

In particular, if &, = M for every k € N, then [l is called the Orlicz sequence
space generated by M. We consider two norms on lg: The Luzemburg norm:

(1.4) |z]| = inf{\ > 0: Ip(z/N) <1}
and the Orlicz norm:

1
(1.5) ||z||° = inf {X(l +Ip(Ax)) : A > 0} ,

where Ig(-) is defined by (1.2).

Let o :== (lo, || - ||) and [ := (Is, || - [|°) denote the space ls equipped with the
Luxemburg norm and the Orlicz norm, respectively. It is known (see [7]) that
both are Banach spaces. The subspace hg of lg defined by

(1.6) he == {x € lp : Is(Ax) < oo for all A > 0}.
is called the space of finite elements. Let
(1.7) O(z) =inf{\ > 0: Is(z/\) < oo}.

It is clear that € hg if and only if #(x) = 0. If ¥ is the complementary
function (see (1.1)) of the Musielak-Orlicz function ®, then by [7] the space
hy, == (hw,| - ||°) equipped with the Orlicz norm (1.5) is separable, and its dual
is isometrically isomorphic to lg.

We say that a Musielak-Orlicz function ® = (®y) satisfies:
(1.8) the d09-condition, denoted ® € Jo, if there exist constants K > 2, ug > 0
and a sequence (ci) of positive numbers, with § cp < 0o, such that for
D (u) < up we have =
O (2u) < K®p(u) 4 ¢, forevery k€N and weR.

(1.9) the (x)-condition (see [6]) if for any € € (0, 1) there exists a § > 0 such that
®r((1+0)u) <1 whenever ®i(u) <1—cforall ke Nand ueR.

The following theorem is known (see [5]).

Theorem 1.1. hg = lp if and only if & € Js.

By [5] and [6] if a Musielak-Orlicz function ® = (®y) satisfies (1.8), (1.9) and
@ (u) = 0 if and only if u = 0 for every k, then
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(1.10) For each € > 0 and each ¢ > 0 there exists a 0 > 0 such that
|Io(z +y) — Is(x)| < € whenever Ig(z) < ¢ and Ig(y) < 0.

(1.11) For any sequence (z,) C lg, ||zn| — 1 implies I¢(x,) — 1, and
(1.12) ||z|| = 1 if and only if Ip(x) = 1.

Our paper is organized as follows: In Section 2, we characterize extreme points
in Musielak-Orlicz sequence spaces. Strongly extreme points in some subspaces
of a Musielak-Orlicz sequence space are investigated in Section 3. Finally, in
Section 4 we study geometric properties related to rotundity, strong rotundity
and H-points.

2. EXTREME POINTS IN MUSIELAK-ORLICZ
SEQUENCE SPACES

Let M be an Orlicz function. An interval [a,b], a < b, is called an affine
interval of M if

(21)  MOa+ (1 —A)b) = AM(a) + (1 — \)M(b) for all X € [0,1].

In addition, if M is neither affine on [a — €, b] nor on [a,b + €] for any € > 0 we
call [a,b] a structural affine interval of M. Let {[a;,b;] : i € I} be the family of
all the structural affine intervals of M. The set

(2.2) Sur =R\ | (@, by)
i€l
is called the set of strictly convex points of M. Let
(2.3) apr = sup{u > 0: M(u) = 0}.
Theorem 2.1. A point x = (x(k)) € S(lg) is an extreme point if and only if
(i) Ip(x) =1 and
(ii) #{k : |z(k)| € [0,a,)} =0 and #{k : (k) & So, } < 1, where ap, and So,

are defined by (2.3) and (2.2) respectively, and #A denotes the cardinality
of a set A.

Proof. Necessity. Let x = (xz(k)) be an extreme point of S(lg). We will show
that (i) and (ii) must hold. Suppose (i) does not hold, i.e. Is(x) =7 < 1. Since
®, is continuous we can choose € > 0 so small that
1—r

R
Define sequences y = (y(k)),z = (2(k)) € lp by y(1) = z(1) +¢€,2(1) = 2(1) — ¢
and y(k) = z(k) = x(k) for all k£ > 2. Obviously, y # z and 2z = y+ 2. Moreover,

1—r 147
Io(y) < In(2) + —5— = —— < L.
Thus |ly|| < 1. Similarly, we also have ||z|] < 1. This contradiction shows that (i)

must hold.

‘I)l(l‘(l) + E) < <I>1(x(1)) +
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Suppose the first condition in (ii) does not hold, i.e. j € {k : |z(k)| € [0,as,)}.
Choose ¢ # 0 such that z(j) £ ¢ € (—as,,as,). Define y = (y(k)) € lo by
y(j) = x(j4) +e, y(k) = z(k) for all k # j and z = 2z —y. It is easy to verify that
Ip(y) = Io(2) = Io(z) = 1. Since y # z, = can not be an extreme point.

Suppose the second condition in (ii) does not hold, i.e. #{k : z(k) & S, } > 2.
Without loss of generality we assume that (1) € Se, and x(2) € Sg,. Then
xz(1) € (a1,b1) and x(2) € (ag,b2) for some structural affine intervals [ai, b;]
and [ag, bo] of &1 and Pg, respectively. Let ®1(u) = kju+ 1 (v € (a1,b1)) and
Oy(u) = kau + B2 (u € (ag,b2)) where k1 # 0 and ko # 0. Choose €1 # 0,62 # 0
such that

kie1 = koey  and  x(k) e € (ag,by) for k=1,2.

Define y = (y(k)) € Lo by y(1) = (1) + 21, 5(2) = 2(2) — e2,y(k) = (k) for
all k > 3, and z = 2z — y. Then we have ®1(y(1)) + P2(y(2)) = k1z(1) + 51 +
kox(2) + Bo = ®1(x(1)) + P2(x(2)). This implies Is(y) < 1, so ||y|]| < 1. Similarly
we have ||z|| < 1. This is a contradiction.

Sufficiency. If 2x = y + z for some y, z € B(lp) then, by (i) and the convexity
of the modular Ig(-),

1 1

1=1Ip(x) < 5[@(?}) + 5]@(2’) < 1.
1 1

This implies @ (z(k)) = §<I>k(y(k:)) + §<I>;€(z(k:)) for all £ € N. By the first

condition of (ii), there exists at most one k € N such that z(k) € So,. If z(k) €
So, then x(k) = y(k) = z(k). Now suppose that there exists j € N such that
2(j) & Se;. Then we have z(k) = y(k) = z(k) for all & # j and z(j), y(5), 2(j)

e8]
belong to the same structural affine intervals of ®;. Since ) ®p(y(k)) =1 =
k=1

3 Bua(K), we have @,(4(7)) = D5(:() = (). I () # =), then

r(j) € [~as,;,as;]. Since ap; € Sp,, x(j) € (—as;,as,). This contradicts the
second condition of (ii). Hence y(j) = z(j). Therefore z is an extreme point. O

Recall that a Nakano sequence space 1Pk} is a Musielak-Orlicz sequence space
with @ (u) = |u|P* for some sequence {py} in [1,00).

Corollary 2.1. ([4, Theorem 1)) A point 2 € S(I1P}) is an extreme point if and
only if Io(x) = 1 and #{k : (k) # 0 and p, = 1} < 1.

Corollary 2.2. ([1, Theorem 2.6]) A point x € S(lpr) is an extreme point if and
only if Ing(x) =1, #{k : (k) € Sm} <1 and #{k : |x(k)| € [0,ar)} = 0.

Observe that Corollary 2.1 was proved in [4] under the assumption that {ps}
is bounded and Corollary 2.2 was proved in [4] under the assumption that the
Orlicz function is an N-function. Our Corollaries 2.1 and 2.2 say that these
assumptions can be removed.
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3. STRONGLY EXTREME POINTS IN MUSIELAK-ORLICZ
SEQUENCE SPACES

In this section, we investigate strongly extreme points in the Musielak-Orlicz
sequence space hg.

Theorem 3.1. Ifx € S(lg) is a strongly extreme point and 6(x) < 1 (see (1.7)),
then ® € 0s.

Suppose, in addition, that ® satisfies the (x)-condition (see (1.9)) and each Py,
vanishes only at zero. Then a point x € S(hg) is a strongly extreme point of
B(ha) if and only if it is an extreme point and ® € 6. In particular, if he = lg,
then a point x € S(lp) is a strongly extreme point if and only if it is an extreme
point.

Proof. Suppose that ® & o, then by [5] there exists z¢o = (xo(k)) such that
Ip(xo) <1 and Ip(Azg) = oo for any A > 1.

Since 0(x) < 1, we have Ip(Nogx) < oo for some \g > 1. We define (y,) and (z,)

yn = (x(1),... ,z(n),z(n + 1) + eoxo(n + 1),z(n + 2) + egzo(n + 2),...),
zn = (2(1),...,z(n),z(n + 1) —gozo(n + 1), z(n + 2) — egzo(n + 2),...),
where g = 1 — 1/Xg. Clearly, 2z = y,, + z, for all n = 1,2,.... Moreover,
n — Zn =
Is <L> = Y @(2z0(k)) = co.
€0 k=n-+1

It follows that ||y, — 2| > o for all n € N. We will prove that |y,|| — 1 and
|zn|| — 1. For € € (0,1) let A =1+ ¢e. Observe that for each n € N we have

» (%") - é@k (@) + i o, (AiAvox(k) + E—ono(k;)>

k=n+1
<zn:q> 2k Z By (Noz(k)) + 2 i Oy (2o(k))
< Y )\)\ k(Ao \ k(To(k))-
k=1 k=n-+1 k=n+1
Note that Ip(z/A\) < 1. Choose N > 0 so that for each n > N
— 1 — Ig(z/N)
k=n+1
€0 1 —Ig(z/A)

Di(eo()) < —%
k=n+1

So Is(yn/A) < 1 for all n > N. Then |lyo,]| < A = 1+ ¢ for all n > N.
Therefore limsup |ly,|| < 1. Similarly, hm susznH < 1. Hence hmlnf llynll >

n—oo
2 — limsup ||z, || > 1 which yields |ly,| — T Slmllarly, llzn|l — 1. Hence x can
n—oo
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not be a strongly extreme point. This contradiction proves the first part of the
theorem.

To prove the second part of the theorem observe that, since §(z) = 0 for every
x € S(ha), the necessity of the theorem is trivial. To demonstrate the sufficiency
of the theorem, assume that z is an extreme point and ® € J,. Let (x,) and
(yn) be sequences in hg such that ||z,| — 1, |ys|| — 1 and 22 = =z, + y, for
all n € N. By the Banach-Alaoglu Theorem, the unit ball of lg is weakly star
compact. Therefore, by passing to subsequences if necessary, we may assume that
Tn = 20, and Y, — yo, for some lzoll <1 and ||yo|| < 1. But since x,, + y,, = 2z
we have zg + yg = 2z, which implies x¢g = yg = x. Therefore

(3.1) xn(k) — x(k) and y,(k) — x(k) foreach k=1,2,....

Given ¢ € (0,1), by (1.10) we can find § € (0,¢) such that

(3.2) llo(z+y) — lo(z)] <e whenever Ip(x) <1 and Ip(y) <J.

o0
We choose mg so that > ®y(x(k)) < /3.
k=mo+1

By (1.11) and (1.12), we have Ig(z,,) — 1 = Is(x). Then Ip(xy,) < Ip(z)+0/3
for sufficiently large n. From (3.1) we have

mo

(3-3) D (@ulwn (k) — @p(x(k)))

k=1

< 0/3 for sufficiently large n.

Consequently, for n large enough, we have

o0

D Pulwa(k)) = Io(z,) Z‘I)k T (k

k=mo+1
< Ip(x )+5/3—<Zq>k —5/3>

k=1
= Y P(x(k) +20/3 <.
k=mo+1

Let

2 =(0,...,0,z(mo + 1), z(mo + 2),...),
L =1(0,...,0,zn(mo + 1),z (mo + 2),...).

Then we have Ig(2') < 6 and Ig(x]) < ¢ for all large n. Again, from (3.1) it
mg

follows that > ®x(x, (k) —z(k)) < € for sufficiently large n.
k=1



EXTREME POINTS IN MUSIELAK-ORLICZ SEQUENCE SPACES 225
By (3.2) and (3.3), for all large n we have
mo
Ig(zy — ) = Z Oy (2 (k) — x(k)) + Ip(x), — 2)
k=1

<e+Ip(x))+e<3e.

This implies I¢(z, — z) — 0, i.e. x, — x. Therefore ||z, — yn|| — 0, so x is a
strongly extreme point. The proof is complete. U

Remark 3.1. (1) By [3], if z € [)s is a strongly extreme point then 6(z) = 0.

(2) The assumption #(x) < 1 in Theorem 3.1 is essential as we can see in the
following example.

Example 3.1. We consider a Nakano sequence space 1{¥*} Observe that Oy (u) =
lul**. Let # = (z(k)), where z(k) = (1/2)Y/%. Clearly, ® = (®},) & 5. We also

00 /\k2 o \k k
have Ip(x) = 1 and Ip(Az) = > oE = > (?) = oo for any A > 1, so
k=1 k=1

f(x) = 1. By Corollary 2.1, = is an extreme point. Next, we prove that x is a
strongly extreme point. Suppose (), (yn) C lo, n + yp = 2z for all n € N,
|zn|| — 1 and ||yn|| — 1. As in the proof of Theorem 3.1 we may assume that

(k) — x(k) and yu(k) — x(k) foreach k=1,2,....

It suffices to prove that ||z, — x| — 0. Given € > 0, we choose integers K and
N7 so that

(3.4) 1/K <eand ||z,|| <1+e foral n>Nj.

This implies ) ! T ! < 1 for all n > Nj. In particular,
k=1 €

(3.5) |z (k)] <1+4¢e foralln>N; and k=1,2,....
Again, choose Ny > Njp so that
(3.6) |z (k) — z(k)| < e and |y, (k) —z(k)| < e

foralln > Ny, and k=1,...,K. Let I', = {k € N: z,(k) > 1 or y,(k) > 1}.
We consider two cases.

Case 1. k € I'y,. If (k) > 1, then x,(k) — 1 < e for all n > N;. Note that

1\1/k 1
_ (= < = )
1 (2> <z forall keN
This means for all n > Ny and k € I';, we have
(3.7) |zn (k) — z(k)| < |zp(k) =1+ |1 —2(k)| < e+ 1/k.

Similarly, if v, (k) > 1 then
lyn(k) — z(k)| <e+1/k for all n > Nj.
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Case 2. k ¢ T',,. In this case we have
(3.8) |zn (k) —z(k)| <1/k and |yn(k) —x(k)| <1/k forall neN.
If n > Ny and A > 8¢, then from (3.4)-(3.8) we obtain

Ty — T ad
I (5) = 1

(x+ X o+ X ))(‘fcn(k);x(k)\)ﬁ

=1  kel,\{1,..K} kgT,U{l,.,K}

B+ X (59

(Ixn(k))\— w(’f)\)’€

(]

b
Il

k
K
<>
k=1 k=K+1
Ko\ & 1k
< (—) + (—) <1.
; 8 k;-l—l 4

This means ||x, — x| < A for all n > Ns. Letting A | 8 we get ||z, — x| < 8¢
for all n > Ny, i.e. ||z, — x| — O.

Let
pred = {o = (a(k)) € 17 3 a(k)P* < oo for all A >0},
k=1

From Theorem 3.1 we get

Corollary 3.1. A point z € S(hiP*}) is a strongly extreme point if and only if
it is an extreme point and the sequence {py} is bounded.

Proof. 1t is easy to verify that the do-condition is equivalent to the boundedness
of the sequence {py} (see [5]). O

The following corollary follows immediately from Remark 3.1(1) and Theorem
3.1.

Corollary 3.2. ([1, Theorem 2.10] and [3, Corollary 1]) Suppose that M vanishes

only at zero. Then x € S(lyr) is a strongly extreme point if and only if © is an
extreme point and M € 0s.

4. THE ROTUNDITY AND STRONG ROTUNDITY IN
MUSIELAK-ORLICZ SEQUENCE SPACES

Theorem 4.1. The Musielak-Orlicz sequence space lg is rotund if and only if

(i) @ € 4o,
(ii) each ®j vanishes only at zero, and
(ili) there exists at most one k such that [0,®, ()] contains an affine inter-

val and if [O,@gol(%)] contains an affine interval [a,b] for some ko, then
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[0, @;1(1 — @y, (a))] does not contain any affine interval for any k # ko,
i.e., [0, @;1(1 — @y (a))] C So, for every k # ko.

Proof. Necessity. If (i) does not hold, then we can construct an element x = ()
such that ||z|| = 1 but Is(z) < 1. By Theorem 2.1 z is not an extreme point.

If (ii) does not hold, then we can construct an element = € S(lp) which is
not an extreme point. If (iii) does not hold, then we can construct an element
x € S(lp) such that #{k : x(k) & Se, } > 2.

Sufficiency. It suffices to prove that #{k : (k) & Se, } < 1 for any z € S(ls).
From (i) we have Ip(z) = 1. Then ®4(z(k)) > 3 for at most one k. By (iii) we
conclude that x is an extreme point. O

Remark 4.1. (1) In [5], condition (iii) in Theorem 4.1 is replaced by

(iii") there exists a sequence {ax} C [0,00) such that ®,(a,) + @ (an,) > 1 for
all n # m and ®y, is strictly convex on [0, ax] for all k € N.

(2) By Theorem 1.1, lg is rotund if and only if Il = he and hg is rotund.

(3) Observe that for every z € S(hg) we have Ig(z) = 1. Therefore hg is
rotund if and only if (ii) and (iii) are satisfied.

Corollary 4.1. The Nakano sequence space 11Px} is rotund if and only if {pr} is
bounded and #{k : pr =1} < 1.

Corollary 4.2. ([1, Theorem 2.7]) The Orlicz sequence space lps is rotund if

and only if M € 6o, M wanishes only at zero and M 1is strictly convex on
[0,M71(1/2)].

Corollary 4.3. Suppose that ® satisfies the (x)-condition (see (1.9)). Then the
Musielak-Orlicz sequence space lg is strongly rotund if and only if it is rotund.

Proof. The necessity of the condition is obvious. We prove the sufficiency. Let
x € S(lp). By Theorem 4.1 and the definition of rotundity, we have ® € J, and
x is an extreme point. By Theorem 3.1, z is a strongly extreme point. U

Corollary 4.4. ([1, Theorem 2.30] and [4, Theorem 21]) The rotundity and
strong rotundity are equivalent in Orlicz sequence spaces and in Nakano sequence
spaces.

A point z € S(X) is called an H-point if for any sequence (z,,) C X, ||z,| — 1
and z,, — = we have z, — .

Theorem 4.2. Suppose that a Musielak-Orlicz function ® satisfies the (x)-condition
(see (1.9)) and each ®j, vanishes only at zero, then x € S(lg) is an H-point if
and only if ® € 5.

Proof. Sufficiency. Suppose ® € d2. Let (z,,) C lg such that ||z, — 1 and
Zy — 2. Then x,, — = coordinatewise. From the proof of Theorem 3.1 we have
Iy (xy, — ) — 0, which implies ||z, — x| — 0.



228 S. SAEJUNG AND S. DHOMPONGSA

Necessity. Suppose = (z(k)) is an H-point, but ® & d5. Then there exists
an xg = (zo(k)) € S(lp) such that Iy(zg) < 1 and Ig(Azg) = oo for all A > 1.
Consequently, there is a sequence i1 < i < --- such that

10,0, w0lin + 1), 70(ins2),0,-- ) > 5
foralln=1,2,.... Let
up = (x(1),...,2(in), x(in + 1) — |xo(in + 1)|(sgnz(in + 1),...,
T(int1) — [0 (int1)|(sgna (i + 1), 2(ing1 +1),...).

1
It was proved in [2] that u, — zg and |lu, — xo|| > 3" Moreover,
[[zol| < i inf [Jup|| < Timsup [lu, || < [lzo|-
n—0oo n—00
So ||up|| — 1. This contradicts to the definition of an H-point. O

Recall that a Banach space X is said to possess property (H) if every point in
S(X) is an H-point.

Corollary 4.5. ([2, Theorem 2|) Suppose that a Musielak-Orlicz function ® sat-
isfies the (x)-condition (see (1.9)) and each ®y vanishes only at zero. Then the
Musielak-Orlicz sequence space lg possesses property (H) if and only if ® € Js.

Corollary 4.6. ([4, Theorem 6]) The Nakano sequence space 1{Pr} possesses
property (H) if and only if the sequence {py} is bounded. In fact, x € S(I1{Px}) is
an H-point if and only if the sequence {py} is bounded.

Corollary 4.7. ([1, Theorem 3.17, 3.18]) Suppose that M wvanishes only at zero.
Then the Orlicz sequence space ly; possesses property (H) if and only if M € 5.
Furthermore, if M & do then S(lpr) contains no H -points.
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