EXTREME POINTS IN MUSIELAK-ORLICZ SEQUENCE SPACES

S. SAEJUNG AND S. DHOMPONGSA

ABSTRACT. This paper establishes some characterizations of extreme points and strongly extreme points of the closed unit ball in a Musielak-Orlicz sequence space equipped with the Luxemburg norm. As a consequence of these results, we obtain some geometric properties such as rotundity and strong rotundity in Nakano sequence spaces and Orlicz sequence spaces.

1. INTRODUCTION

For a Banach space X, we denote by S(X) and B(X) the unit sphere and the closed unit ball of X, respectively. Recall that a point $x \in S(X)$ is an *extreme* point if 2x = y + z for $y, z \in B(X)$ implies y = z, and is a strongly extreme point if $2x = y_n + z_n$ for all $n \in \mathbb{N}$ and $||y_n|| \to 1$, $||z_n|| \to 1$ imply $||y_n - z_n|| \to 0$. A Banach space X is said to be rotund if every point in its unit sphere is an extreme point. If every point in its unit sphere is a strongly extreme point, then X is said to be strongly rotund.

Clearly, every strongly extreme point is an extreme point. Thus every strongly rotund space is a rotund space. An example in [8] shows that there is a rotund Banach space which is not strongly rotund.

In this paper, we study extreme points and related properties in Musielak-Orlicz sequence spaces. Before stating our main result we first recall the following definitions:

Let \mathbb{N} and \mathbb{R} stand for the set of natural numbers and the set of real numbers, respectively. A function $\Phi : \mathbb{R} \to [0, \infty)$ is said to be an *Orlicz function* if Φ is even, convex, and vanishes at zero. A sequence $\Phi = (\Phi_k)$ of Orlicz functions Φ_k is called a *Musielak-Orlicz function*. If $\Phi = (\Phi_k)$ is a Musielak-Orlicz function, then the sequence $\Psi = (\Psi_k)$ defined by

(1.1)
$$\Psi_k(v) := \sup\{|v|u - \Phi_k(u) : u \ge 0\}, \quad k = 1, 2, \dots$$

is called the *complementary function* of Φ in the sense of Young (see [7]).

Received August 13, 2001; in revised form March 18, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 46B20, 46E30.

Supported by Thailand Research Fund under grant BRG/01/2544 and the first author was also supported by the Royal Golden Jubilee program under grant PHD/0145/2542.

Let $\mathbb{R}^{\mathbb{N}}$ denote the space of all real sequences x = (x(k)). For a given Musielak-Orlicz function Φ we define a *convex modular* $I_{\Phi} : \mathbb{R}^{\mathbb{N}} \to [0, \infty]$ by the formula

(1.2)
$$I_{\Phi}(x) = \sum_{k=1}^{\infty} \Phi_k(x(k)) \quad \text{for } x \in \mathbb{R}^{\mathbb{N}}.$$

The Musielak-Orlicz sequence space l_{Φ} generated by $\Phi = (\Phi_k)$ is defined by

(1.3)
$$l_{\Phi} := \{ x \in \mathbb{R}^{\mathbb{N}} : I_{\Phi}(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

In particular, if $\Phi_k = M$ for every $k \in \mathbb{N}$, then l_M is called the *Orlicz sequence* space generated by M. We consider two norms on l_{Φ} : The Luxemburg norm:

(1.4)
$$||x|| = \inf\{\lambda > 0 : I_{\Phi}(x/\lambda) \le 1\}$$

and the Orlicz norm:

(1.5)
$$||x||^o = \inf\left\{\frac{1}{\lambda}(1+I_{\Phi}(\lambda x)): \lambda > 0\right\},$$

where $I_{\Phi}(\cdot)$ is defined by (1.2).

Let $l_{\Phi} := (l_{\Phi}, \|\cdot\|)$ and $l_{\Phi}^{o} := (l_{\Phi}, \|\cdot\|^{o})$ denote the space l_{Φ} equipped with the Luxemburg norm and the Orlicz norm, respectively. It is known (see [7]) that both are Banach spaces. The subspace h_{Φ} of l_{Φ} defined by

(1.6)
$$h_{\Phi} := \{ x \in l_{\Phi} : I_{\Phi}(\lambda x) < \infty \text{ for all } \lambda > 0 \}.$$

is called the space of finite elements. Let

(1.7)
$$\theta(x) = \inf\{\lambda > 0 : I_{\Phi}(x/\lambda) < \infty\}.$$

It is clear that $x \in h_{\Phi}$ if and only if $\theta(x) = 0$. If Ψ is the complementary function (see (1.1)) of the Musielak-Orlicz function Φ , then by [7] the space $h_{\Psi}^{o} := (h_{\Psi}, \|\cdot\|^{o})$ equipped with the Orlicz norm (1.5) is separable, and its dual is isometrically isomorphic to l_{Φ} .

We say that a Musielak-Orlicz function $\Phi = (\Phi_k)$ satisfies:

(1.8) the δ_2 -condition, denoted $\Phi \in \delta_2$, if there exist constants $K \ge 2$, $u_0 > 0$ and a sequence (c_k) of positive numbers, with $\sum_{k=1}^{\infty} c_k < \infty$, such that for $\Phi_k(u) \le u_0$ we have

$$\Phi_k(2u) \leq K\Phi_k(u) + c_k$$
 for every $k \in \mathbb{N}$ and $u \in \mathbb{R}$.

(1.9) the (*)-condition (see [6]) if for any $\varepsilon \in (0, 1)$ there exists a $\delta > 0$ such that $\Phi_k((1+\delta)u) \leq 1$ whenever $\Phi_k(u) \leq 1 - \varepsilon$ for all $k \in \mathbb{N}$ and $u \in \mathbb{R}$.

The following theorem is known (see [5]).

Theorem 1.1. $h_{\Phi} = l_{\Phi}$ if and only if $\Phi \in \delta_2$.

By [5] and [6] if a Musielak-Orlicz function $\Phi = (\Phi_k)$ satisfies (1.8), (1.9) and $\Phi_k(u) = 0$ if and only if u = 0 for every k, then

(1.10) For each $\varepsilon > 0$ and each c > 0 there exists a $\delta > 0$ such that

$$|I_{\Phi}(x+y) - I_{\Phi}(x)| < \varepsilon$$
 whenever $I_{\Phi}(x) \le c$ and $I_{\Phi}(y) < \delta$.

(1.11) For any sequence $(x_n) \subset l_{\Phi}$, $||x_n|| \to 1$ implies $I_{\Phi}(x_n) \to 1$, and (1.12) ||x|| = 1 if and only if $I_{\Phi}(x) = 1$.

Our paper is organized as follows: In Section 2, we characterize extreme points in Musielak-Orlicz sequence spaces. Strongly extreme points in some subspaces of a Musielak-Orlicz sequence space are investigated in Section 3. Finally, in Section 4 we study geometric properties related to rotundity, strong rotundity and H-points.

2. Extreme points in Musielak-Orlicz sequence spaces

Let M be an Orlicz function. An interval [a, b], a < b, is called an *affine* interval of M if

(2.1)
$$M(\lambda a + (1 - \lambda)b) = \lambda M(a) + (1 - \lambda)M(b) \text{ for all } \lambda \in [0, 1].$$

In addition, if M is neither affine on $[a - \varepsilon, b]$ nor on $[a, b + \varepsilon]$ for any $\varepsilon > 0$ we call [a, b] a structural affine interval of M. Let $\{[a_i, b_i] : i \in I\}$ be the family of all the structural affine intervals of M. The set

(2.2)
$$S_M := \mathbb{R} \setminus \bigcup_{i \in I} (a_i, b_i)$$

is called the set of *strictly convex points* of M. Let

(2.3)
$$a_M = \sup\{u \ge 0 : M(u) = 0\}$$

Theorem 2.1. A point $x = (x(k)) \in S(l_{\Phi})$ is an extreme point if and only if

- (i) $I_{\Phi}(x) = 1$ and
- (ii) $\#\{k : |x(k)| \in [0, a_{\Phi_k})\} = 0$ and $\#\{k : x(k) \notin S_{\Phi_k}\} \leq 1$, where a_{Φ_k} and S_{Φ_k} are defined by (2.3) and (2.2) respectively, and #A denotes the cardinality of a set A.

Proof. Necessity. Let x = (x(k)) be an extreme point of $S(l_{\Phi})$. We will show that (i) and (ii) must hold. Suppose (i) does not hold, i.e. $I_{\Phi}(x) = r < 1$. Since Φ_1 is continuous we can choose $\varepsilon > 0$ so small that

$$\Phi_1(x(1) \pm \varepsilon) < \Phi_1(x(1)) + \frac{1-r}{2}$$

Define sequences $y = (y(k)), z = (z(k)) \in l_{\Phi}$ by $y(1) = x(1) + \varepsilon, z(1) = x(1) - \varepsilon$ and y(k) = z(k) = x(k) for all $k \ge 2$. Obviously, $y \ne z$ and 2x = y + z. Moreover,

$$I_{\Phi}(y) < I_{\Phi}(x) + \frac{1-r}{2} = \frac{1+r}{2} < 1.$$

Thus $||y|| \leq 1$. Similarly, we also have $||z|| \leq 1$. This contradiction shows that (i) must hold.

Suppose the first condition in (ii) does not hold, i.e. $j \in \{k : |x(k)| \in [0, a_{\Phi_k})\}$. Choose $\varepsilon \neq 0$ such that $x(j) \pm \varepsilon \in (-a_{\Phi_k}, a_{\Phi_k})$. Define $y = (y(k)) \in l_{\Phi}$ by $y(j) = x(j) + \varepsilon$, y(k) = x(k) for all $k \neq j$ and z = 2x - y. It is easy to verify that $I_{\Phi}(y) = I_{\Phi}(z) = I_{\Phi}(x) = 1$. Since $y \neq z$, x can not be an extreme point.

Suppose the second condition in (ii) does not hold, i.e. $\#\{k: x(k) \notin S_{\Phi_k}\} \ge 2$. Without loss of generality we assume that $x(1) \notin S_{\Phi_1}$ and $x(2) \notin S_{\Phi_2}$. Then $x(1) \in (a_1, b_1)$ and $x(2) \in (a_2, b_2)$ for some structural affine intervals $[a_1, b_1]$ and $[a_2, b_2]$ of Φ_1 and Φ_2 , respectively. Let $\Phi_1(u) = k_1u + \beta_1$ ($u \in (a_1, b_1)$) and $\Phi_2(u) = k_2u + \beta_2$ ($u \in (a_2, b_2)$) where $k_1 \neq 0$ and $k_2 \neq 0$. Choose $\varepsilon_1 \neq 0, \varepsilon_2 \neq 0$ such that

$$k_1 \varepsilon_1 = k_2 \varepsilon_2$$
 and $x(k) \pm \varepsilon_k \in (a_k, b_k)$ for $k = 1, 2$.

Define $y = (y(k)) \in l_{\Phi}$ by $y(1) = x(1) + \varepsilon_1, y(2) = x(2) - \varepsilon_2, y(k) = x(k)$ for all $k \ge 3$, and z = 2x - y. Then we have $\Phi_1(y(1)) + \Phi_2(y(2)) = k_1x(1) + \beta_1 + k_2x(2) + \beta_2 = \Phi_1(x(1)) + \Phi_2(x(2))$. This implies $I_{\Phi}(y) \le 1$, so $||y|| \le 1$. Similarly we have $||z|| \le 1$. This is a contradiction.

Sufficiency. If 2x = y + z for some $y, z \in B(l_{\Phi})$ then, by (i) and the convexity of the modular $I_{\Phi}(\cdot)$,

$$1 = I_{\Phi}(x) \le \frac{1}{2}I_{\Phi}(y) + \frac{1}{2}I_{\Phi}(z) \le 1.$$

This implies $\Phi_k(x(k)) = \frac{1}{2}\Phi_k(y(k)) + \frac{1}{2}\Phi_k(z(k))$ for all $k \in \mathbb{N}$. By the first condition of (ii), there exists at most one $k \in \mathbb{N}$ such that $x(k) \notin S_{\Phi_k}$. If $x(k) \in S_{\Phi_k}$ then x(k) = y(k) = z(k). Now suppose that there exists $j \in \mathbb{N}$ such that $x(j) \notin S_{\Phi_j}$. Then we have x(k) = y(k) = z(k) for all $k \neq j$ and x(j), y(j), z(j) belong to the same structural affine intervals of Φ_j . Since $\sum_{k=1}^{\infty} \Phi_k(y(k)) = 1 = \sum_{k=1}^{\infty} \Phi_k(z(k))$, we have $\Phi_j(y(j)) = \Phi_j(z(j)) = \Phi_j(x(j))$. If $y(j) \neq z(j)$, then

 $x(j) \in [-a_{\Phi_j}, a_{\Phi_j}]$. Since $a_{\Phi_j} \in S_{\Phi_j}, x(j) \in (-a_{\Phi_j}, a_{\Phi_j})$. This contradicts the second condition of (ii). Hence y(j) = z(j). Therefore x is an extreme point. \Box

Recall that a Nakano sequence space $l^{\{p_k\}}$ is a Musielak-Orlicz sequence space with $\Phi_k(u) = |u|^{p_k}$ for some sequence $\{p_k\}$ in $[1, \infty)$.

Corollary 2.1. ([4, Theorem 1]) A point $x \in S(l^{\{p_k\}})$ is an extreme point if and only if $I_{\Phi}(x) = 1$ and $\#\{k : x(k) \neq 0 \text{ and } p_k = 1\} \leq 1$.

Corollary 2.2. ([1, Theorem 2.6]) A point $x \in S(l_M)$ is an extreme point if and only if $I_M(x) = 1$, $\#\{k : x(k) \notin S_M\} \le 1$ and $\#\{k : |x(k)| \in [0, a_M)\} = 0$.

Observe that Corollary 2.1 was proved in [4] under the assumption that $\{p_k\}$ is bounded and Corollary 2.2 was proved in [4] under the assumption that the Orlicz function is an N-function. Our Corollaries 2.1 and 2.2 say that these assumptions can be removed.

3. Strongly extreme points in Musielak-Orlicz sequence spaces

In this section, we investigate strongly extreme points in the Musielak-Orlicz sequence space h_{Φ} .

Theorem 3.1. If $x \in S(l_{\Phi})$ is a strongly extreme point and $\theta(x) < 1$ (see (1.7)), then $\Phi \in \delta_2$.

Suppose, in addition, that Φ satisfies the (*)-condition (see (1.9)) and each Φ_k vanishes only at zero. Then a point $x \in S(h_{\Phi})$ is a strongly extreme point of $B(h_{\Phi})$ if and only if it is an extreme point and $\Phi \in \delta_2$. In particular, if $h_{\Phi} = l_{\Phi}$, then a point $x \in S(l_{\Phi})$ is a strongly extreme point if and only if it is an extreme point.

Proof. Suppose that $\Phi \notin \delta_2$, then by [5] there exists $x_0 = (x_0(k))$ such that

$$I_{\Phi}(x_0) \le 1$$
 and $I_{\Phi}(\lambda x_0) = \infty$ for any $\lambda > 1$.

Since $\theta(x) < 1$, we have $I_{\Phi}(\lambda_0 x) < \infty$ for some $\lambda_0 > 1$. We define (y_n) and (z_n) by

$$y_n = (x(1), \dots, x(n), x(n+1) + \varepsilon_0 x_0(n+1), x(n+2) + \varepsilon_0 x_0(n+2), \dots),$$

$$z_n = (x(1), \dots, x(n), x(n+1) - \varepsilon_0 x_0(n+1), x(n+2) - \varepsilon_0 x_0(n+2), \dots),$$

where $\varepsilon_0 = 1 - 1/\lambda_0$. Clearly, $2x = y_n + z_n$ for all $n = 1, 2, \dots$ Moreover,

$$I_{\Phi}\left(\frac{y_n - z_n}{\varepsilon_0}\right) = \sum_{k=n+1}^{\infty} \Phi_k(2x_0(k)) = \infty.$$

It follows that $||y_n - z_n|| > \varepsilon_0$ for all $n \in \mathbb{N}$. We will prove that $||y_n|| \to 1$ and $||z_n|| \to 1$. For $\varepsilon \in (0, 1)$ let $\lambda = 1 + \varepsilon$. Observe that for each $n \in \mathbb{N}$ we have

$$I_{\Phi}\left(\frac{y_n}{\lambda}\right) = \sum_{k=1}^n \Phi_k\left(\frac{x(k)}{\lambda}\right) + \sum_{k=n+1}^\infty \Phi_k\left(\frac{1}{\lambda\lambda_0}\lambda_0 x(k) + \frac{\varepsilon_0}{\lambda}x_0(k)\right)$$
$$\leq \sum_{k=1}^n \Phi_k\left(\frac{x(k)}{\lambda}\right) + \frac{1}{\lambda\lambda_0}\sum_{k=n+1}^\infty \Phi_k(\lambda_0 x(k)) + \frac{\varepsilon_0}{\lambda}\sum_{k=n+1}^\infty \Phi_k(x_0(k)).$$

Note that $I_{\Phi}(x/\lambda) < 1$. Choose N > 0 so that for each $n \ge N$

$$\frac{1}{\lambda\lambda_0}\sum_{k=n+1}^{\infty}\Phi_k(\lambda_0x(k)) < \frac{1-I_{\Phi}(x/\lambda)}{2},$$
$$\frac{\varepsilon_0}{\lambda}\sum_{k=n+1}^{\infty}\Phi_k(x_0(k)) < \frac{1-I_{\Phi}(x/\lambda)}{2}.$$

So $I_{\Phi}(y_n/\lambda) \leq 1$ for all $n \geq N$. Then $||y_n|| \leq \lambda = 1 + \varepsilon$ for all $n \geq N$. Therefore $\limsup_{n \to \infty} ||y_n|| \leq 1$. Similarly, $\limsup_{n \to \infty} ||z_n|| \leq 1$. Hence $\liminf_{n \to \infty} ||y_n|| \geq 2 - \limsup_{n \to \infty} ||z_n|| \geq 1$ which yields $||y_n|| \to 1$. Similarly, $||z_n|| \to 1$. Hence, x can not be a strongly extreme point. This contradiction proves the first part of the theorem.

To prove the second part of the theorem observe that, since $\theta(x) = 0$ for every $x \in S(h_{\Phi})$, the necessity of the theorem is trivial. To demonstrate the sufficiency of the theorem, assume that x is an extreme point and $\Phi \in \delta_2$. Let (x_n) and (y_n) be sequences in h_{Φ} such that $||x_n|| \to 1$, $||y_n|| \to 1$ and $2x = x_n + y_n$ for all $n \in \mathbb{N}$. By the Banach-Alaoglu Theorem, the unit ball of l_{Φ} is weakly star compact. Therefore, by passing to subsequences if necessary, we may assume that $x_n \xrightarrow{w^*} x_0$, and $y_n \xrightarrow{w^*} y_0$, for some $||x_0|| \leq 1$ and $||y_0|| \leq 1$. But since $x_n + y_n = 2x$ we have $x_0 + y_0 = 2x$, which implies $x_0 = y_0 = x$. Therefore

(3.1)
$$x_n(k) \to x(k) \text{ and } y_n(k) \to x(k) \text{ for each } k = 1, 2, \dots$$

Given $\varepsilon \in (0, 1)$, by (1.10) we can find $\delta \in (0, \varepsilon)$ such that

(3.2)
$$|I_{\Phi}(x+y) - I_{\Phi}(x)| < \varepsilon$$
 whenever $I_{\Phi}(x) \le 1$ and $I_{\Phi}(y) < \delta$.

We choose m_0 so that $\sum_{k=m_0+1}^{\infty} \Phi_k(x(k)) < \delta/3$.

By (1.11) and (1.12), we have $I_{\Phi}(x_n) \to 1 = I_{\Phi}(x)$. Then $I_{\Phi}(x_n) < I_{\Phi}(x) + \delta/3$ for sufficiently large n. From (3.1) we have

(3.3)
$$\left|\sum_{k=1}^{m_0} (\Phi_k(x_n(k)) - \Phi_k(x(k)))\right| < \delta/3 \quad \text{for sufficiently large} \quad n.$$

Consequently, for n large enough, we have

$$\sum_{k=m_0+1}^{\infty} \Phi_k(x_n(k)) = I_{\Phi}(x_n) - \sum_{k=1}^{m_0} \Phi_k(x_n(k))$$
$$< I_{\Phi}(x) + \delta/3 - \left(\sum_{k=1}^{m_0} \Phi_k(x(k)) - \delta/3\right)$$
$$= \sum_{k=m_0+1}^{\infty} \Phi_k(x(k)) + 2\delta/3 < \delta.$$

Let

$$x' = (0, \dots, 0, x(m_0 + 1), x(m_0 + 2), \dots),$$

$$x'_n = (0, \dots, 0, x_n(m_0 + 1), x_n(m_0 + 2), \dots).$$

Then we have $I_{\Phi}(x') < \delta$ and $I_{\Phi}(x'_n) < \delta$ for all large *n*. Again, from (3.1) it follows that $\sum_{k=1}^{m_0} \Phi_k(x_n(k) - x(k)) < \varepsilon$ for sufficiently large *n*.

By (3.2) and (3.3), for all large n we have

$$I_{\Phi}(x_n - x) = \sum_{k=1}^{m_0} \Phi_k(x_n(k) - x(k)) + I_{\Phi}(x'_n - x')$$

$$< \varepsilon + I_{\Phi}(x'_n) + \varepsilon < 3\varepsilon.$$

This implies $I_{\Phi}(x_n - x) \to 0$, i.e. $x_n \to x$. Therefore $||x_n - y_n|| \to 0$, so x is a strongly extreme point. The proof is complete.

Remark 3.1. (1) By [3], if $x \in l_M$ is a strongly extreme point then $\theta(x) = 0$.

(2) The assumption $\theta(x) < 1$ in Theorem 3.1 is essential as we can see in the following example.

Example 3.1. We consider a Nakano sequence space $l^{\{k^2\}}$. Observe that $\Phi_k(u) = |u|^{k^2}$. Let x = (x(k)), where $x(k) = (1/2)^{1/k}$. Clearly, $\Phi = (\Phi_k) \notin \delta_2$. We also have $I_{\Phi}(x) = 1$ and $I_{\Phi}(\lambda x) = \sum_{k=1}^{\infty} \frac{\lambda^{k^2}}{2^k} = \sum_{k=1}^{\infty} \left(\frac{\lambda^k}{2}\right)^k = \infty$ for any $\lambda > 1$, so $\theta(x) = 1$. By Corollary 2.1, x is an extreme point. Next, we prove that x is a strongly extreme point. Suppose $(x_n), (y_n) \subset l_{\Phi}, x_n + y_n = 2x$ for all $n \in \mathbb{N}$, $||x_n|| \to 1$ and $||y_n|| \to 1$. As in the proof of Theorem 3.1 we may assume that

$$x_n(k) \to x(k)$$
 and $y_n(k) \to x(k)$ for each $k = 1, 2, \dots$

It suffices to prove that $||x_n - x|| \to 0$. Given $\varepsilon > 0$, we choose integers K and N_1 so that

(3.4)
$$1/K < \varepsilon$$
 and $||x_n|| < 1 + \varepsilon$ for all $n > N_1$.

This implies $\sum_{k=1}^{\infty} \left| \frac{x_n(k)}{1+\varepsilon} \right|^{k^2} < 1$ for all $n > N_1$. In particular,

(3.5)
$$|x_n(k)| < 1 + \varepsilon \quad \text{for all } n > N_1 \quad \text{and} \quad k = 1, 2, \dots$$

Again, choose $N_2 > N_1$ so that

(3.6)
$$|x_n(k) - x(k)| < \varepsilon \text{ and } |y_n(k) - x(k)| < \varepsilon$$

for all $n > N_2$, and k = 1, ..., K. Let $\Gamma_n = \{k \in \mathbb{N} : x_n(k) > 1 \text{ or } y_n(k) > 1\}$. We consider two cases.

Case 1. $k \in \Gamma_n$. If $x_n(k) > 1$, then $x_n(k) - 1 < \varepsilon$ for all $n > N_1$. Note that

$$1 - \left(\frac{1}{2}\right)^{1/k} \le \frac{1}{k}$$
 for all $k \in \mathbb{N}$.

This means for all $n > N_1$ and $k \in \Gamma_n$ we have

(3.7)
$$|x_n(k) - x(k)| \le |x_n(k) - 1| + |1 - x(k)| < \varepsilon + 1/k.$$

Similarly, if $y_n(k) > 1$ then

$$|y_n(k) - x(k)| < \varepsilon + 1/k$$
 for all $n > N_1$.

Case 2. $k \notin \Gamma_n$. In this case we have

(3.8)
$$|x_n(k) - x(k)| \le 1/k$$
 and $|y_n(k) - x(k)| \le 1/k$ for all $n \in \mathbb{N}$.
If $n > N_2$ and $\lambda > 8\varepsilon$, then from (3.4)-(3.8) we obtain

$$I_{\Phi}\left(\frac{x_n - x}{\lambda}\right) = \sum_{k=1}^{\infty} \left(\frac{|x_n(k) - x(k)|}{\lambda}\right)^{k^2}$$
$$= \left(\sum_{k=1}^{K} + \sum_{k \in \Gamma_n \setminus \{1, \dots, K\}} + \sum_{k \notin (\Gamma_n \cup \{1, \dots, K\})}\right) \left(\frac{|x_n(k) - x(k)|}{\lambda}\right)^{k^2}$$
$$< \sum_{k=1}^{K} \left(\frac{\varepsilon}{\lambda}\right)^{k^2} + \sum_{k=K+1}^{\infty} \left(\frac{\varepsilon + 1/k}{\lambda}\right)^{k^2}$$
$$< \sum_{k=1}^{K} \left(\frac{1}{8}\right)^{k^2} + \sum_{k=K+1}^{\infty} \left(\frac{1}{4}\right)^{k^2} < 1.$$

This means $||x_n - x|| \leq \lambda$ for all $n > N_2$. Letting $\lambda \downarrow 8\varepsilon$ we get $||x_n - x|| \leq 8\varepsilon$ for all $n > N_2$, i.e. $||x_n - x|| \to 0$.

Let

$$h^{\{p_k\}} = \left\{ x = (x(k)) \in l^{\{p_k\}} : \sum_{k=1}^{\infty} |\lambda x(k)|^{p_k} < \infty \text{ for all } \lambda > 0 \right\}.$$

From Theorem 3.1 we get

Corollary 3.1. A point $x \in S(h^{\{p_k\}})$ is a strongly extreme point if and only if it is an extreme point and the sequence $\{p_k\}$ is bounded.

Proof. It is easy to verify that the δ_2 -condition is equivalent to the boundedness of the sequence $\{p_k\}$ (see [5]).

The following corollary follows immediately from Remark 3.1(1) and Theorem 3.1.

Corollary 3.2. ([1, Theorem 2.10] and [3, Corollary 1]) Suppose that M vanishes only at zero. Then $x \in S(l_M)$ is a strongly extreme point if and only if x is an extreme point and $M \in \delta_2$.

4. The rotundity and strong rotundity in Musielak-Orlicz sequence spaces

Theorem 4.1. The Musielak-Orlicz sequence space l_{Φ} is rotund if and only if

- (i) $\Phi \in \delta_2$,
- (ii) each Φ_k vanishes only at zero, and
- (iii) there exists at most one k such that $[0, \Phi_k^{-1}(\frac{1}{2})]$ contains an affine interval and if $[0, \Phi_{k_0}^{-1}(\frac{1}{2})]$ contains an affine interval [a, b] for some k_0 , then

 $[0, \Phi_k^{-1}(1 - \Phi_{k_0}(a))]$ does not contain any affine interval for any $k \neq k_0$, i.e., $[0, \Phi_k^{-1}(1 - \Phi_{k_0}(a))] \subset S_{\Phi_k}$ for every $k \neq k_0$.

Proof. Necessity. If (i) does not hold, then we can construct an element $x = (x_k)$ such that ||x|| = 1 but $I_{\Phi}(x) < 1$. By Theorem 2.1 x is not an extreme point.

If (ii) does not hold, then we can construct an element $x \in S(l_{\Phi})$ which is not an extreme point. If (iii) does not hold, then we can construct an element $x \in S(l_{\Phi})$ such that $\#\{k : x(k) \notin S_{\Phi_k}\} \ge 2$.

Sufficiency. It suffices to prove that $\#\{k : x(k) \notin S_{\Phi_k}\} \leq 1$ for any $x \in S(l_{\Phi})$. From (i) we have $I_{\Phi}(x) = 1$. Then $\Phi_k(x(k)) > \frac{1}{2}$ for at most one k. By (iii) we conclude that x is an extreme point.

Remark 4.1. (1) In [5], condition (iii) in Theorem 4.1 is replaced by

- (iii') there exists a sequence $\{a_k\} \subset [0, \infty)$ such that $\Phi_n(a_n) + \Phi_m(a_m) \ge 1$ for all $n \ne m$ and Φ_k is strictly convex on $[0, a_k]$ for all $k \in \mathbb{N}$.
 - (2) By Theorem 1.1, l_{Φ} is rotund if and only if $l_{\Phi} = h_{\Phi}$ and h_{Φ} is rotund.

(3) Observe that for every $x \in S(h_{\Phi})$ we have $I_{\Phi}(x) = 1$. Therefore h_{Φ} is rotund if and only if (ii) and (iii) are satisfied.

Corollary 4.1. The Nakano sequence space $l^{\{p_k\}}$ is rotund if and only if $\{p_k\}$ is bounded and $\#\{k : p_k = 1\} \leq 1$.

Corollary 4.2. ([1, Theorem 2.7]) The Orlicz sequence space l_M is rotund if and only if $M \in \delta_2$, M vanishes only at zero and M is strictly convex on $[0, M^{-1}(1/2)]$.

Corollary 4.3. Suppose that Φ satisfies the (*)-condition (see (1.9)). Then the Musielak-Orlicz sequence space l_{Φ} is strongly rotund if and only if it is rotund.

Proof. The necessity of the condition is obvious. We prove the sufficiency. Let $x \in S(l_{\Phi})$. By Theorem 4.1 and the definition of rotundity, we have $\Phi \in \delta_2$ and x is an extreme point. By Theorem 3.1, x is a strongly extreme point.

Corollary 4.4. ([1, Theorem 2.30] and [4, Theorem 21]) The rotundity and strong rotundity are equivalent in Orlicz sequence spaces and in Nakano sequence spaces.

A point $x \in S(X)$ is called an *H*-point if for any sequence $(x_n) \subset X$, $||x_n|| \to 1$ and $x_n \xrightarrow{w} x$ we have $x_n \to x$.

Theorem 4.2. Suppose that a Musielak-Orlicz function Φ satisfies the (*)-condition (see (1.9)) and each Φ_k vanishes only at zero, then $x \in S(l_{\Phi})$ is an H-point if and only if $\Phi \in \delta_2$.

Proof. Sufficiency. Suppose $\Phi \in \delta_2$. Let $(x_n) \subset l_{\Phi}$ such that $||x_n|| \to 1$ and $x_n \xrightarrow{w} x$. Then $x_n \to x$ coordinatewise. From the proof of Theorem 3.1 we have $I_{\Phi}(x_n - x) \to 0$, which implies $||x_n - x|| \to 0$.

Necessity. Suppose x = (x(k)) is an *H*-point, but $\Phi \notin \delta_2$. Then there exists an $x_0 = (x_0(k)) \in S(l_{\Phi})$ such that $I_{\Phi}(x_0) \leq 1$ and $I_{\Phi}(\lambda x_0) = \infty$ for all $\lambda > 1$. Consequently, there is a sequence $i_1 < i_2 < \cdots$ such that

$$||(0,0,\ldots,x_0(i_n+1),\ldots,x_0(i_{n+1}),0,\ldots)|| \ge \frac{1}{2},$$

for all $n = 1, 2, \ldots$ Let

$$u_n = (x(1), \dots, x(i_n), x(i_n+1) - |x_0(i_n+1)|(\operatorname{sgn} x(i_n+1), \dots, x(i_{n+1}) - |x_0(i_{n+1})|(\operatorname{sgn} x(i_n+1), x(i_{n+1}+1), \dots).$$

It was proved in [2] that $u_n \xrightarrow{w} x_0$ and $||u_n - x_0|| \ge \frac{1}{2}$. Moreover,

$$||x_0|| \le \liminf_{n \to \infty} ||u_n|| \le \limsup_{n \to \infty} ||u_n|| \le ||x_0||.$$

So $||u_n|| \to 1$. This contradicts to the definition of an *H*-point.

Recall that a Banach space X is said to possess property (H) if every point in S(X) is an H-point.

Corollary 4.5. ([2, Theorem 2]) Suppose that a Musielak-Orlicz function Φ satisfies the (*)-condition (see (1.9)) and each Φ_k vanishes only at zero. Then the Musielak-Orlicz sequence space l_{Φ} possesses property (H) if and only if $\Phi \in \delta_2$.

Corollary 4.6. ([4, Theorem 6]) The Nakano sequence space $l^{\{p_k\}}$ possesses property (H) if and only if the sequence $\{p_k\}$ is bounded. In fact, $x \in S(l^{\{p_k\}})$ is an H-point if and only if the sequence $\{p_k\}$ is bounded.

Corollary 4.7. ([1, Theorem 3.17, 3.18]) Suppose that M vanishes only at zero. Then the Orlicz sequence space l_M possesses property (H) if and only if $M \in \delta_2$. Furthermore, if $M \notin \delta_2$ then $S(l_M)$ contains no H-points.

Acknowlegement

The authors wish to thank the referee for his or her suggestions which led to substantial improvements of this paper.

References

- [1] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356 (1996), 1-204.
- [2] Y. A. Cui, H. Hudzik and R. Płuciennik, Banach-Saks property in some Banach sequence spaces, Annales Polonici Math. 65 (1997), 193-202.
- [3] Y. A. Cui and T. Wang, Strongly extreme points of Orlicz spaces, J. Math. (Wuhan) 7 (1987), 335-340 (in Chinese).
- [4] S. Dhompongsa, Convexity properties of Nakano spaces, Science Asia 26 (2000), 21-31.
- [5] A. Kamińska, Rotundity of sequence Musielak-Orlicz spaces, Bull. Polish Acad. Sci. Math. 29 (1981), 137-144.
- [6] A. Kamińska, Uniform rotundity of Musielak-Orlicz sequene spaces, J. Approx. Theory 47 (1986), 302-322.

- [7] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (1987), 1-222.
- [8] M. A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE CHIANG MAI UNIVERSITY CHIANG MAI, 50200, THAILAND

E-mail address: g4365178@cm.edu

E-mail address: sompongd@chiangmai.ac.th