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EXTREME POINTS IN MUSIELAK-ORLICZ

SEQUENCE SPACES

S. SAEJUNG AND S. DHOMPONGSA

Abstract. This paper establishes some characterizations of extreme points
and strongly extreme points of the closed unit ball in a Musielak-Orlicz se-
quence space equipped with the Luxemburg norm. As a consequence of these
results, we obtain some geometric properties such as rotundity and strong
rotundity in Nakano sequence spaces and Orlicz sequence spaces.

1. Introduction

For a Banach space X, we denote by S(X) and B(X) the unit sphere and the
closed unit ball of X, respectively. Recall that a point x ∈ S(X) is an extreme
point if 2x = y + z for y, z ∈ B(X) implies y = z, and is a strongly extreme point
if 2x = yn + zn for all n ∈ N and ‖yn‖ → 1, ‖zn‖ → 1 imply ‖yn − zn‖ → 0. A
Banach space X is said to be rotund if every point in its unit sphere is an extreme
point. If every point in its unit sphere is a strongly extreme point, then X is said
to be strongly rotund.

Clearly, every strongly extreme point is an extreme point. Thus every strongly
rotund space is a rotund space. An example in [8] shows that there is a rotund
Banach space which is not strongly rotund.

In this paper, we study extreme points and related properties in Musielak-
Orlicz sequence spaces. Before stating our main result we first recall the following
definitions:

Let N and R stand for the set of natural numbers and the set of real numbers,
respectively. A function Φ : R → [0,∞) is said to be an Orlicz function if Φ is
even, convex, and vanishes at zero. A sequence Φ = (Φk) of Orlicz functions Φk

is called a Musielak-Orlicz function. If Φ = (Φk) is a Musielak-Orlicz function,
then the sequence Ψ = (Ψk) defined by

Ψk(v) := sup{|v|u − Φk(u) : u ≥ 0}, k = 1, 2, . . .(1.1)

is called the complementary function of Φ in the sense of Young (see [7]).
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Let R
N denote the space of all real sequences x = (x(k)). For a given Musielak-

Orlicz function Φ we define a convex modular IΦ : R
N → [0,∞] by the formula

IΦ(x) =
∞
∑

k=1

Φk(x(k)) for x ∈ R
N.(1.2)

The Musielak-Orlicz sequence space lΦ generated by Φ = (Φk) is defined by

lΦ := {x ∈ R
N : IΦ(λx) < ∞ for some λ > 0}.(1.3)

In particular, if Φk = M for every k ∈ N, then lM is called the Orlicz sequence
space generated by M . We consider two norms on lΦ: The Luxemburg norm:

‖x‖ = inf{λ > 0 : IΦ(x/λ) ≤ 1}(1.4)

and the Orlicz norm:

‖x‖o = inf

{

1

λ
(1 + IΦ(λx)) : λ > 0

}

,(1.5)

where IΦ(·) is defined by (1.2).

Let lΦ := (lΦ, ‖ · ‖) and loΦ := (lΦ, ‖ · ‖o) denote the space lΦ equipped with the
Luxemburg norm and the Orlicz norm, respectively. It is known (see [7]) that
both are Banach spaces. The subspace hΦ of lΦ defined by

hΦ := {x ∈ lΦ : IΦ(λx) < ∞ for all λ > 0}.(1.6)

is called the space of finite elements. Let

θ(x) = inf{λ > 0 : IΦ(x/λ) < ∞}.(1.7)

It is clear that x ∈ hΦ if and only if θ(x) = 0. If Ψ is the complementary
function (see (1.1)) of the Musielak-Orlicz function Φ, then by [7] the space
ho

Ψ := (hΨ, ‖ · ‖o) equipped with the Orlicz norm (1.5) is separable, and its dual
is isometrically isomorphic to lΦ.

We say that a Musielak-Orlicz function Φ = (Φk) satisfies:

(1.8) the δ2-condition, denoted Φ ∈ δ2, if there exist constants K ≥ 2, u0 > 0

and a sequence (ck) of positive numbers, with
∞
∑

k=1

ck < ∞, such that for

Φk(u) ≤ u0 we have

Φk(2u) ≤ KΦk(u) + ck for every k ∈ N and u ∈ R.

(1.9) the (∗)-condition (see [6]) if for any ε ∈ (0, 1) there exists a δ > 0 such that
Φk((1 + δ)u) ≤ 1 whenever Φk(u) ≤ 1 − ε for all k ∈ N and u ∈ R.

The following theorem is known (see [5]).

Theorem 1.1. hΦ = lΦ if and only if Φ ∈ δ2.

By [5] and [6] if a Musielak-Orlicz function Φ = (Φk) satisfies (1.8), (1.9) and
Φk(u) = 0 if and only if u = 0 for every k, then
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(1.10) For each ε > 0 and each c > 0 there exists a δ > 0 such that

|IΦ(x + y) − IΦ(x)| < ε whenever IΦ(x) ≤ c and IΦ(y) < δ.

(1.11) For any sequence (xn) ⊂ lΦ, ‖xn‖ → 1 implies IΦ(xn) → 1, and
(1.12) ‖x‖ = 1 if and only if IΦ(x) = 1.

Our paper is organized as follows: In Section 2, we characterize extreme points
in Musielak-Orlicz sequence spaces. Strongly extreme points in some subspaces
of a Musielak-Orlicz sequence space are investigated in Section 3. Finally, in
Section 4 we study geometric properties related to rotundity, strong rotundity
and H-points.

2. Extreme points in Musielak-Orlicz

sequence spaces

Let M be an Orlicz function. An interval [a, b], a < b, is called an affine
interval of M if

M(λa + (1 − λ)b) = λM(a) + (1 − λ)M(b) for all λ ∈ [0, 1].(2.1)

In addition, if M is neither affine on [a − ε, b] nor on [a, b + ε] for any ε > 0 we
call [a, b] a structural affine interval of M . Let {[ai, bi] : i ∈ I} be the family of
all the structural affine intervals of M . The set

SM := R \
⋃

i∈I

(ai, bi)(2.2)

is called the set of strictly convex points of M . Let

aM = sup{u ≥ 0 : M(u) = 0}.(2.3)

Theorem 2.1. A point x = (x(k)) ∈ S(lΦ) is an extreme point if and only if

(i) IΦ(x) = 1 and
(ii) #{k : |x(k)| ∈ [0, aΦk

)} = 0 and #{k : x(k) 6∈ SΦk
} ≤ 1, where aΦk

and SΦk

are defined by (2.3) and (2.2) respectively, and #A denotes the cardinality
of a set A.

Proof. Necessity. Let x = (x(k)) be an extreme point of S(lΦ). We will show
that (i) and (ii) must hold. Suppose (i) does not hold, i.e. IΦ(x) = r < 1. Since
Φ1 is continuous we can choose ε > 0 so small that

Φ1(x(1) ± ε) < Φ1(x(1)) +
1 − r

2
·

Define sequences y = (y(k)), z = (z(k)) ∈ lΦ by y(1) = x(1) + ε, z(1) = x(1) − ε
and y(k) = z(k) = x(k) for all k ≥ 2. Obviously, y 6= z and 2x = y+z. Moreover,

IΦ(y) < IΦ(x) +
1 − r

2
=

1 + r

2
< 1.

Thus ‖y‖ ≤ 1. Similarly, we also have ‖z‖ ≤ 1. This contradiction shows that (i)
must hold.
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Suppose the first condition in (ii) does not hold, i.e. j ∈ {k : |x(k)| ∈ [0, aΦk
)}.

Choose ε 6= 0 such that x(j) ± ε ∈ (−aΦk
, aΦk

). Define y = (y(k)) ∈ lΦ by
y(j) = x(j)+ ε, y(k) = x(k) for all k 6= j and z = 2x− y. It is easy to verify that
IΦ(y) = IΦ(z) = IΦ(x) = 1. Since y 6= z, x can not be an extreme point.

Suppose the second condition in (ii) does not hold, i.e. #{k : x(k) 6∈ SΦk
} ≥ 2.

Without loss of generality we assume that x(1) 6∈ SΦ1
and x(2) 6∈ SΦ2

. Then
x(1) ∈ (a1, b1) and x(2) ∈ (a2, b2) for some structural affine intervals [a1, b1]
and [a2, b2] of Φ1 and Φ2, respectively. Let Φ1(u) = k1u + β1 (u ∈ (a1, b1)) and
Φ2(u) = k2u + β2 (u ∈ (a2, b2)) where k1 6= 0 and k2 6= 0. Choose ε1 6= 0, ε2 6= 0
such that

k1ε1 = k2ε2 and x(k) ± εk ∈ (ak, bk) for k = 1, 2.

Define y = (y(k)) ∈ lΦ by y(1) = x(1) + ε1, y(2) = x(2) − ε2, y(k) = x(k) for
all k ≥ 3, and z = 2x − y. Then we have Φ1(y(1)) + Φ2(y(2)) = k1x(1) + β1 +
k2x(2)+β2 = Φ1(x(1))+Φ2(x(2)). This implies IΦ(y) ≤ 1, so ‖y‖ ≤ 1. Similarly
we have ‖z‖ ≤ 1. This is a contradiction.

Sufficiency. If 2x = y + z for some y, z ∈ B(lΦ) then, by (i) and the convexity
of the modular IΦ(·),

1 = IΦ(x) ≤
1

2
IΦ(y) +

1

2
IΦ(z) ≤ 1.

This implies Φk(x(k)) =
1

2
Φk(y(k)) +

1

2
Φk(z(k)) for all k ∈ N. By the first

condition of (ii), there exists at most one k ∈ N such that x(k) 6∈ SΦk
. If x(k) ∈

SΦk
then x(k) = y(k) = z(k). Now suppose that there exists j ∈ N such that

x(j) 6∈ SΦj
. Then we have x(k) = y(k) = z(k) for all k 6= j and x(j), y(j), z(j)

belong to the same structural affine intervals of Φj. Since
∞
∑

k=1

Φk(y(k)) = 1 =

∞
∑

k=1

Φk(z(k)), we have Φj(y(j)) = Φj(z(j)) = Φj(x(j)). If y(j) 6= z(j), then

x(j) ∈ [−aΦj
, aΦj

]. Since aΦj
∈ SΦj

, x(j) ∈ (−aΦj
, aΦj

). This contradicts the
second condition of (ii). Hence y(j) = z(j). Therefore x is an extreme point.

Recall that a Nakano sequence space l{pk} is a Musielak-Orlicz sequence space
with Φk(u) = |u|pk for some sequence {pk} in [1,∞).

Corollary 2.1. ([4, Theorem 1]) A point x ∈ S(l{pk}) is an extreme point if and
only if IΦ(x) = 1 and #{k : x(k) 6= 0 and pk = 1} ≤ 1.

Corollary 2.2. ([1, Theorem 2.6]) A point x ∈ S(lM ) is an extreme point if and
only if IM (x) = 1, #{k : x(k) 6∈ SM} ≤ 1 and #{k : |x(k)| ∈ [0, aM )} = 0.

Observe that Corollary 2.1 was proved in [4] under the assumption that {pk}
is bounded and Corollary 2.2 was proved in [4] under the assumption that the
Orlicz function is an N -function. Our Corollaries 2.1 and 2.2 say that these
assumptions can be removed.
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3. Strongly extreme points in Musielak-Orlicz

sequence spaces

In this section, we investigate strongly extreme points in the Musielak-Orlicz
sequence space hΦ.

Theorem 3.1. If x ∈ S(lΦ) is a strongly extreme point and θ(x) < 1 (see (1.7)),
then Φ ∈ δ2.

Suppose, in addition, that Φ satisfies the (∗)-condition (see (1.9)) and each Φk

vanishes only at zero. Then a point x ∈ S(hΦ) is a strongly extreme point of
B(hΦ) if and only if it is an extreme point and Φ ∈ δ2. In particular, if hΦ = lΦ,
then a point x ∈ S(lΦ) is a strongly extreme point if and only if it is an extreme
point.

Proof. Suppose that Φ 6∈ δ2, then by [5] there exists x0 = (x0(k)) such that

IΦ(x0) ≤ 1 and IΦ(λx0) = ∞ for any λ > 1.

Since θ(x) < 1, we have IΦ(λ0x) < ∞ for some λ0 > 1. We define (yn) and (zn)
by

yn = (x(1), . . . , x(n), x(n + 1) + ε0x0(n + 1), x(n + 2) + ε0x0(n + 2), . . . ),

zn = (x(1), . . . , x(n), x(n + 1) − ε0x0(n + 1), x(n + 2) − ε0x0(n + 2), . . . ),

where ε0 = 1 − 1/λ0. Clearly, 2x = yn + zn for all n = 1, 2, . . . . Moreover,

IΦ

(

yn − zn

ε0

)

=

∞
∑

k=n+1

Φk(2x0(k)) = ∞.

It follows that ‖yn − zn‖ > ε0 for all n ∈ N. We will prove that ‖yn‖ → 1 and
‖zn‖ → 1. For ε ∈ (0, 1) let λ = 1 + ε. Observe that for each n ∈ N we have

IΦ

(yn

λ

)

=

n
∑

k=1

Φk

(

x(k)

λ

)

+

∞
∑

k=n+1

Φk

(

1

λλ0
λ0x(k) +

ε0

λ
x0(k)

)

≤

n
∑

k=1

Φk

(

x(k)

λ

)

+
1

λλ0

∞
∑

k=n+1

Φk(λ0x(k)) +
ε0

λ

∞
∑

k=n+1

Φk(x0(k)).

Note that IΦ(x/λ) < 1. Choose N > 0 so that for each n ≥ N

1

λλ0

∞
∑

k=n+1

Φk(λ0x(k)) <
1 − IΦ(x/λ)

2
,

ε0

λ

∞
∑

k=n+1

Φk(x0(k)) <
1 − IΦ(x/λ)

2
.

So IΦ(yn/λ) ≤ 1 for all n ≥ N . Then ‖yn‖ ≤ λ = 1 + ε for all n ≥ N .
Therefore lim sup

n→∞
‖yn‖ ≤ 1. Similarly, lim sup

n→∞
‖zn‖ ≤ 1. Hence lim inf

n→∞
‖yn‖ ≥

2 − lim sup
n→∞

‖zn‖ ≥ 1 which yields ‖yn‖ → 1. Similarly, ‖zn‖ → 1. Hence, x can
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not be a strongly extreme point. This contradiction proves the first part of the
theorem.

To prove the second part of the theorem observe that, since θ(x) = 0 for every
x ∈ S(hΦ), the necessity of the theorem is trivial. To demonstrate the sufficiency
of the theorem, assume that x is an extreme point and Φ ∈ δ2. Let (xn) and
(yn) be sequences in hΦ such that ‖xn‖ → 1, ‖yn‖ → 1 and 2x = xn + yn for
all n ∈ N. By the Banach-Alaoglu Theorem, the unit ball of lΦ is weakly star
compact. Therefore, by passing to subsequences if necessary, we may assume that

xn
w∗
→ x0, and yn

w∗
→ y0, for some ‖x0‖ ≤ 1 and ‖y0‖ ≤ 1. But since xn + yn = 2x

we have x0 + y0 = 2x, which implies x0 = y0 = x. Therefore

xn(k) → x(k) and yn(k) → x(k) for each k = 1, 2, . . . .(3.1)

Given ε ∈ (0, 1), by (1.10) we can find δ ∈ (0, ε) such that

|IΦ(x + y) − IΦ(x)| < ε whenever IΦ(x) ≤ 1 and IΦ(y) < δ.(3.2)

We choose m0 so that
∞
∑

k=m0+1

Φk(x(k)) < δ/3.

By (1.11) and (1.12), we have IΦ(xn) → 1 = IΦ(x). Then IΦ(xn) < IΦ(x)+δ/3
for sufficiently large n. From (3.1) we have

∣

∣

∣

∣

∣

m0
∑

k=1

(Φk(xn(k)) − Φk(x(k)))

∣

∣

∣

∣

∣

< δ/3 for sufficiently large n.(3.3)

Consequently, for n large enough, we have

∞
∑

k=m0+1

Φk(xn(k)) = IΦ(xn) −

m0
∑

k=1

Φk(xn(k))

< IΦ(x) + δ/3 −

(

m0
∑

k=1

Φk(x(k)) − δ/3

)

=
∞
∑

k=m0+1

Φk(x(k)) + 2δ/3 < δ.

Let

x′ = (0, . . . , 0, x(m0 + 1), x(m0 + 2), . . . ),

x′
n = (0, . . . , 0, xn(m0 + 1), xn(m0 + 2), . . . ).

Then we have IΦ(x′) < δ and IΦ(x′
n) < δ for all large n. Again, from (3.1) it

follows that
m0
∑

k=1

Φk(xn(k) − x(k)) < ε for sufficiently large n.
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By (3.2) and (3.3), for all large n we have

IΦ(xn − x) =

m0
∑

k=1

Φk(xn(k) − x(k)) + IΦ(x′
n − x′)

< ε + IΦ(x′
n) + ε < 3ε.

This implies IΦ(xn − x) → 0, i.e. xn → x. Therefore ‖xn − yn‖ → 0, so x is a
strongly extreme point. The proof is complete.

Remark 3.1. (1) By [3], if x ∈ lM is a strongly extreme point then θ(x) = 0.

(2) The assumption θ(x) < 1 in Theorem 3.1 is essential as we can see in the
following example.

Example 3.1. We consider a Nakano sequence space l{k
2}. Observe that Φk(u) =

|u|k
2

. Let x = (x(k)), where x(k) = (1/2)1/k . Clearly, Φ = (Φk) 6∈ δ2. We also

have IΦ(x) = 1 and IΦ(λx) =
∞
∑

k=1

λk2

2k
=

∞
∑

k=1

(λk

2

)k
= ∞ for any λ > 1, so

θ(x) = 1. By Corollary 2.1, x is an extreme point. Next, we prove that x is a
strongly extreme point. Suppose (xn), (yn) ⊂ lΦ, xn + yn = 2x for all n ∈ N,
‖xn‖ → 1 and ‖yn‖ → 1. As in the proof of Theorem 3.1 we may assume that

xn(k) → x(k) and yn(k) → x(k) for each k = 1, 2, . . . .

It suffices to prove that ‖xn − x‖ → 0. Given ε > 0, we choose integers K and
N1 so that

1/K < ε and ‖xn‖ < 1 + ε for all n > N1.(3.4)

This implies
∞
∑

k=1

∣

∣

xn(k)

1 + ε

∣

∣

k2

< 1 for all n > N1. In particular,

|xn(k)| < 1 + ε for all n > N1 and k = 1, 2, . . . .(3.5)

Again, choose N2 > N1 so that

|xn(k) − x(k)| < ε and |yn(k) − x(k)| < ε(3.6)

for all n > N2, and k = 1, . . . ,K. Let Γn = {k ∈ N : xn(k) > 1 or yn(k) > 1}.
We consider two cases.

Case 1. k ∈ Γn. If xn(k) > 1, then xn(k) − 1 < ε for all n > N1. Note that

1 −
(1

2

)1/k
≤

1

k
for all k ∈ N.

This means for all n > N1 and k ∈ Γn we have

|xn(k) − x(k)| ≤ |xn(k) − 1| + |1 − x(k)| < ε + 1/k.(3.7)

Similarly, if yn(k) > 1 then

|yn(k) − x(k)| < ε + 1/k for all n > N1.



226 S. SAEJUNG AND S. DHOMPONGSA

Case 2. k 6∈ Γn. In this case we have

|xn(k) − x(k)| ≤ 1/k and |yn(k) − x(k)| ≤ 1/k for all n ∈ N.(3.8)

If n > N2 and λ > 8ε, then from (3.4)-(3.8) we obtain

IΦ

(xn − x

λ

)

=

∞
∑

k=1

( |xn(k) − x(k)|

λ

)k2

=

(

K
∑

k=1

+
∑

k∈Γn\{1,...,K}

+
∑

k 6∈(Γn∪{1,...,K})

)

( |xn(k) − x(k)|

λ

)k2

<

K
∑

k=1

( ε

λ

)k2

+

∞
∑

k=K+1

(ε + 1/k

λ

)k2

<
K
∑

k=1

(1

8

)k2

+
∞
∑

k=K+1

(1

4

)k2

< 1.

This means ‖xn − x‖ ≤ λ for all n > N2. Letting λ ↓ 8ε we get ‖xn − x‖ ≤ 8ε
for all n > N2, i.e. ‖xn − x‖ → 0.

Let

h{pk} =
{

x = (x(k)) ∈ l{pk} :

∞
∑

k=1

|λx(k)|pk < ∞ for all λ > 0
}

.

From Theorem 3.1 we get

Corollary 3.1. A point x ∈ S(h{pk}) is a strongly extreme point if and only if
it is an extreme point and the sequence {pk} is bounded.

Proof. It is easy to verify that the δ2-condition is equivalent to the boundedness
of the sequence {pk} (see [5]).

The following corollary follows immediately from Remark 3.1(1) and Theorem
3.1.

Corollary 3.2. ([1, Theorem 2.10] and [3, Corollary 1]) Suppose that M vanishes
only at zero. Then x ∈ S(lM ) is a strongly extreme point if and only if x is an
extreme point and M ∈ δ2.

4. The rotundity and strong rotundity in

Musielak-Orlicz sequence spaces

Theorem 4.1. The Musielak-Orlicz sequence space lΦ is rotund if and only if

(i) Φ ∈ δ2,
(ii) each Φk vanishes only at zero, and
(iii) there exists at most one k such that [0,Φ−1

k (1
2 )] contains an affine inter-

val and if [0,Φ−1
k0

(1
2 )] contains an affine interval [a, b] for some k0, then
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[0,Φ−1
k (1 − Φk0

(a))] does not contain any affine interval for any k 6= k0,

i.e., [0,Φ−1
k (1 − Φk0

(a))] ⊂ SΦk
for every k 6= k0.

Proof. Necessity. If (i) does not hold, then we can construct an element x = (xk)
such that ‖x‖ = 1 but IΦ(x) < 1. By Theorem 2.1 x is not an extreme point.

If (ii) does not hold, then we can construct an element x ∈ S(lΦ) which is
not an extreme point. If (iii) does not hold, then we can construct an element
x ∈ S(lΦ) such that #{k : x(k) 6∈ SΦk

} ≥ 2.

Sufficiency. It suffices to prove that #{k : x(k) 6∈ SΦk
} ≤ 1 for any x ∈ S(lΦ).

From (i) we have IΦ(x) = 1. Then Φk(x(k)) > 1
2 for at most one k. By (iii) we

conclude that x is an extreme point.

Remark 4.1. (1) In [5], condition (iii) in Theorem 4.1 is replaced by

(iii′) there exists a sequence {ak} ⊂ [0,∞) such that Φn(an) + Φm(am) ≥ 1 for
all n 6= m and Φk is strictly convex on [0, ak] for all k ∈ N.

(2) By Theorem 1.1, lΦ is rotund if and only if lΦ = hΦ and hΦ is rotund.

(3) Observe that for every x ∈ S(hΦ) we have IΦ(x) = 1. Therefore hΦ is
rotund if and only if (ii) and (iii) are satisfied.

Corollary 4.1. The Nakano sequence space l{pk} is rotund if and only if {pk} is
bounded and #{k : pk = 1} ≤ 1.

Corollary 4.2. ([1, Theorem 2.7]) The Orlicz sequence space lM is rotund if
and only if M ∈ δ2, M vanishes only at zero and M is strictly convex on
[0,M−1(1/2)].

Corollary 4.3. Suppose that Φ satisfies the (∗)-condition (see (1.9)). Then the
Musielak-Orlicz sequence space lΦ is strongly rotund if and only if it is rotund.

Proof. The necessity of the condition is obvious. We prove the sufficiency. Let
x ∈ S(lΦ). By Theorem 4.1 and the definition of rotundity, we have Φ ∈ δ2 and
x is an extreme point. By Theorem 3.1, x is a strongly extreme point.

Corollary 4.4. ([1, Theorem 2.30] and [4, Theorem 21]) The rotundity and
strong rotundity are equivalent in Orlicz sequence spaces and in Nakano sequence
spaces.

A point x ∈ S(X) is called an H-point if for any sequence (xn) ⊂ X, ‖xn‖ → 1

and xn
w
→ x we have xn → x.

Theorem 4.2. Suppose that a Musielak-Orlicz function Φ satisfies the (∗)-condition
(see (1.9)) and each Φk vanishes only at zero, then x ∈ S(lΦ) is an H-point if
and only if Φ ∈ δ2.

Proof. Sufficiency. Suppose Φ ∈ δ2. Let (xn) ⊂ lΦ such that ‖xn‖ → 1 and

xn
w
→ x. Then xn → x coordinatewise. From the proof of Theorem 3.1 we have

IΦ(xn − x) → 0, which implies ‖xn − x‖ → 0.
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Necessity. Suppose x = (x(k)) is an H-point, but Φ 6∈ δ2. Then there exists
an x0 = (x0(k)) ∈ S(lΦ) such that IΦ(x0) ≤ 1 and IΦ(λx0) = ∞ for all λ > 1.
Consequently, there is a sequence i1 < i2 < · · · such that

‖(0, 0, . . . , x0(in + 1), . . . , x0(in+1), 0, . . . )‖ ≥
1

2
,

for all n = 1, 2, . . . . Let

un = (x(1), . . . , x(in), x(in + 1) − |x0(in + 1)|(sgnx(in + 1), . . . ,

x(in+1) − |x0(in+1)|(sgnx(in + 1), x(in+1 + 1), . . . ).

It was proved in [2] that un
w
→ x0 and ‖un − x0‖ ≥

1

2
. Moreover,

‖x0‖ ≤ lim inf
n→∞

‖un‖ ≤ lim sup
n→∞

‖un‖ ≤ ‖x0‖.

So ‖un‖ → 1. This contradicts to the definition of an H-point.

Recall that a Banach space X is said to possess property (H) if every point in
S(X) is an H-point.

Corollary 4.5. ([2, Theorem 2]) Suppose that a Musielak-Orlicz function Φ sat-
isfies the (∗)-condition (see (1.9)) and each Φk vanishes only at zero. Then the
Musielak-Orlicz sequence space lΦ possesses property (H) if and only if Φ ∈ δ2.

Corollary 4.6. ([4, Theorem 6]) The Nakano sequence space l{pk} possesses

property (H) if and only if the sequence {pk} is bounded. In fact, x ∈ S(l{pk}) is
an H-point if and only if the sequence {pk} is bounded.

Corollary 4.7. ([1, Theorem 3.17, 3.18]) Suppose that M vanishes only at zero.
Then the Orlicz sequence space lM possesses property (H) if and only if M ∈ δ2.
Furthermore, if M 6∈ δ2 then S(lM ) contains no H-points.
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[6] A. Kamińska, Uniform rotundity of Musielak-Orlicz sequene spaces, J. Approx. Theory 47

(1986), 302-322.



EXTREME POINTS IN MUSIELAK-ORLICZ SEQUENCE SPACES 229

[7] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (1987), 1-222.
[8] M. A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233

(1978), 155-161.

Department of Mathematics

Faculty of Science

Chiang Mai University

Chiang Mai, 50200, THAILAND

E-mail address: g4365178@cm.edu

E-mail address: sompongd@chiangmai.ac.th


