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A REFINEMENT OF OSTROWSKI’'S INEQUALITY FOR
ABSOLUTELY CONTINUOUS FUNCTIONS AND
APPLICATIONS

S. S. DRAGOMIR

ABSTRACT. A refinement of the Ostrowski inequality obtained by Dragomir
and Wang in [7] and applications for special means, quadrature formulae,
cumulative distribution functions and Jeffreys divergence measure are given.

1. INTRODUCTION

In 1997, Dragomir and Wang proved the following Ostrowski type inequality
[7].
Theorem 1. Let f : [a,b] — R be an absolutely continuous function on |a,b].
Then
a+b

(11) f@) -5 [ 10 < §+TQ‘ 171,

T —

for all x € [a,b], where ||-||; is the Lebesque norm on Ly [a,b], i.e.,
b
lall = [ lo ®) at.

1
The constant 3 1s the best possible.

1
Note that the fact that 3 is the best constant was proved in [17] and (1.1) can

also be obtained from a more general result given by Fink in [2] choosing n = 1
and doing some appropriate computation.

In [7], the authors applied (1.1) for special means and in Numerical Integration,
obtaining bounds for the remainder in a Riemann type quadrature formula.
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In this paper, we point out a refinement of (1.1) and apply it for special means,
in Numerical Integration, for cumulative density functions in Probability Theory
and for Jeffreys divergence measure in Information Theory.

2. INTEGRAL INEQUALITIES

The following result, which is an improvement on the Dragomir-Wang inequal-
ity (1.1), holds.

Theorem 2. Let f : [a,b] — K (K=R,C) be an absolutely continuous function
on [a,b]. Then

b
(2.) f@) - [0

T —a b—=z
< 3o Wleara + 375 1/ 1w

17Dyt + 1 Nzt = 1 g

(A llf’llﬁs,w,l); Kf) " (Z:H E

1 1
where p > 1 and — + — =1,
p q

N —

IN

a+ b‘
x —_
1 2
L S— 1 Wlfa7.1
for all z € [a,b], where |||, ;1 denotes the usual norm on Ly [m,n, i.e.

ol = [ lo (O] dt < oc.

Proof. Using the integration by parts formula for absolutely continuous functions
on [a,b], we have

(2.2) /(t—a)f/(t)dtz (x—a)f(fc)—/f(t)dt

and
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for all = € [a, b].

Adding the two inequalities, we obtain the Montgomery identity for absolutely
continuous functions (see, for example, [18, p. 565])

b T b
(2.4) (b—a)f(a:)—/f(t)dt:/(t—a)f’(t)dt—i—/(t—b)f’(t)dt

for all z € [a, b].
Taking the modulus, we deduce that

b
(2.5) b-a)f@) - [ s

T ’ b

< |[e-arwa+| e
. b

< [e-alrolas [o-ols ol

T b
< @-a) [If@d+ -0 [|70)]d

= (v—a) Hf,H[a,x]J +(b -z Hf,H[%b]’l

and the first inequality in (2.1) is proved.

Now, let us observe that
@ =) |y + O =D 1

2 {11 g+ 15 gy } 0= @)

= 5 I M 17 g+ 1 N = 17 ] 0= )
= 5 [ M+ 17 s = 1] 0= )

and the first part of the second inequality is proved.

IA

For the second inequality, we employ the elementary inequality for real numbers
which can be derived from Holder’s discrete inequality

1 1
(2.6) 0<ms+nt<(mP+nP)r x (s!+t%)a,

1 1
provided that m,s,n,t >0, p>1and — 4+ — = 1.
p q
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Using (2.6), we obtain
(l‘ B a) Hf/H[a,:c],l + (b o J}) Hf,H[x,bLl

1

< (I Mg + 1) = )7 + (6= )%

and the second part of the second inequality in (2.1) is also obtained.

Finally, we observe that
(x o (1) Hf,H[a,:c],l + (b o x) Hf,H[x,b],l
< max{r—a,b—z} |:Hf,H[a,$],1 + Hf/H[gc,b],J

b— +b
ol e |

and the last part of the second inequality in (2.1) is proved.

The following corollary is also natural.

Corollary 1. Under the above assumptions we have

27) f <a+b>

Another interesting result is the following one.

1
5 Hf H[ab] 1°

Corollary 2. Under the above assumptions, if there is an xo € [a,b] with

o b
(2.8) /\f’(t)|dt:/\f’(t)\dt

then

(29) 0= 31 i,

3. APPLICATIONS FOR SPECIAL MEANS

Let us recall the following means for two positive numbers.

1. The Arithmetic mean
a+b

A= A(a,b) = 5

a,b>0;

2. The Geometric mean

G =G (a,b) = Vab, a,b>0;
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. The Harmonic mean

. The Logarithmic mean

a if a=0b
L=1L(a,b):= b_ g , a,b>0,
" it b:
mb—Ina = 7 b
. The Identric mean
a if a=5b
I=1(ab):= L /B = , a,b>0;
- <—> if a#b
e \ a?
. The p-Logarithmic mean
a if a=0
L,=1Ly(a,b):= gt L , a,b>0,
-_— if b
Geo-al o7

where p € R\ {—1,0}.

Denoting Lo := I and L_q := L, then it is well known that L,, is monotonic
increasing over p € R and the following particular inequalities hold

H<G<L<I<A.

1. Consider the function f : [a,b] - R (0<a<b<o0), f(z) = 2P, p €

R\ {—1,0}. Then

b
1
o [T 0d = Db -1

a

£ gy = (—=a)lpl Ly (asb).
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Applying Theorem 2 for the function f (z) = aP, we get
(32)0 < |2P - LE(a,b)|

< L[ 2 )+ 0 2 127 (00)]

% [(b ) 1271 (a,b)

—I—‘:L‘—a Lp 1(a x) — (b—x)ng(a:,b)

IN

1
ol (@ =) ;7Y (a2) + (b= @) L7 (2.0)]°
1
—a\? — )\ 11
o + b-w q, where s >1, —4+—-=1;
b—a b—a s q

[ e

for all = € [a,b], which improves the inequality (3.1) from [7]
1
2. Consider the function f: [a,0] = R (0 < a <b < o), f(x) = —. Then

L [rwa = e,

b—a
[ i = G2 (a,b)’

1
Applying Theorem 2 for the function f (z) = —, we get
x
(3.3) z — L|

1
<

- (b—a)

(r—a)®  (b—a)
o) @ (m,b)] ol

(1
2G2ab

r—a b—=x 2L
G2 (a,z) G?(z,b) ’

[+ S (=) (122) ] e

1 1
where s >1, — 4 —
S

IA

1;

E +E _b{(? b)|] Gg (_a,ab)

for all = € [a,b], improving the similar result in [7]

-xL
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3. Consider the function f:[a,b] = R (0 < a <b < o0), f(x) =Inz. Then

b
1
b_a/f(t)dt — ni(ab),

/ b—
Hf H[a,b},l - L ((1,(;7) '

Applying Theorem 2 for the function f (z) = Inx, we get

—a)? —xz)?
(3.4)‘111(?)( < (bia) [(L(a,x)) +(Ili(x,b))]
1[ bza |
2 | L(a,b)

Tr—a b—=x

L(a,z) L(x0b)

E

et 1G22+ (=7

<
. 1 1
if s>1, —+-=1;
s q
l_i_\m—A(a,b)\ b—a
L [2 b—a L (a,b)

for all = € [a,b], improving the corresponding result from [7].

4. ERROR ESTIMATE IN THE RIEMANN QUADRATURE FORMULA

Let I, :a=29 < 21 < ... < Tp_1 < xz, = b be a partitioning of the interval
[a,b] and define h; := x;41 — x;, v (h) = max {h;|i =0,...,n — 1}. Consider the
following quadrature of the Riemann type [7]:

n—1
1=0

where & = (§o, ..., &n—1) and & € [z, x41] (1 =0,...,n — 1) are intermediate (ar-
bitrarily chosen) points.
The following theorem improves the corresponding result in [7].

Theorem 3. Let f : [a,b] — R be an absolutely continuous function on |a,b].
Then

b

(4.2) / F(8)dt = Ap (. Do) + R (fo 0 ).

a
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where Ag (f, I,&) is the Riemann quadrature given by (4.1) and the remainder
Rr (f,In,&) in (4.2) satisfies the bound

(43)  |Rr (f,1n,)| Z — i) || f]

n—1
/
[24,€i],1 t ZO (@is1 — &) Hf ‘ [€ir2it1],1
1=
Proof. We apply the first inequality in (2.2) on the interval [z;, z;11] to obtain

Tit1

(44) |hif (&) - / fydt| < (& - ) |If

T

[£:,&],1 ($z+1 gz Hf ‘

[ézvszrl

for all i € {0,...,n — 1}.
Summing over ¢ from 0 to n — 1 and using the generalised triangle inequality,
we get the desired estimate (4.3). O

Corollary 3. With the assumptions of Theorem 3, we have the midpoint quad-
rature formula

b
(4.5) / F(t)dt = Ay (f.1,) + Rag (£.1)

where Ayr (f, I,) is the midpoint formula, i.e.

— Ti + Tit1
L= S (B,
i=0

and the remainder Rys (f,I,) satisfies the estimate

(4.6) ‘RM (fa ‘ <5 Zh Hf ‘ [i,zit1], 1 - 2 ) Hf,H[a,b],l ’

Remark 1. Similar bounds for the value Rg (f,I,,§) can be stated if we use
other inequalities in the second part of (2.1), but we omit the details.

5. APPLICATIONS FOR CUMULATIVE DENSITY FUNCTION

Let X be a random variable taking values in the finite interval [a, b], with the
cumulative distribution function F' () = Pr (X < z) and the probability function
f : [a, b] — R+.
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Theorem 4. Assume that f € Ly [a,b]. Then we have
b—E(X)

 b-a

T —a b—ux

b—a

(5.1) F(2)

< 1
- wherep>1, —4+ - =1;
q
a-+b
1+$ 2
\ 2 b—a

for all x € [a,b], where
R(x)=1—-F(x), x € [a,}].

The proof follows by Theorem 2 applied for the cumulative function F' and
taking into account that

b b
/F(t)dt:F(t)t —/tf(t)dt:b—E(X)

and
F'(t)=f(t), te(ab).
We now give an example for a Beta Random Variable.
We recall that a Beta Random variable with parameters (p,q) has the proba-
bility density function
11— )"

f(tpq) = B

, 0<t <1,

where
1
B(p,q) = /tpl (11—t at
0

is the Euler Beta function.

Using Theorem 4 and the fact that for a Beta random variable
B(X)=
Ptq

we can state the following proposition.
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Proposition 1. Let X be a Beta random wvariable with the parameters (p,q),
p,q > 1. Then we have

(5.2) P“ng%ﬁﬁi
< zPr(X<z)+(1—2)Pr(X >x)

%u+wmxg@—PmX2@m

([Pr(X <)’ + [Pr(X > )")7 [27+ (1 — 2)7]

IN

1 1
where p > 1, — 4+ — =1;
P q

for all x € [a,b].
6. APPLICATIONS FOR JEFFREYS DISTANCE IN INFORMATION THEORY

Assume that a set y and the o—finite measure u are given. Consider the set of
all probability densities on p to be Q := {p|p :x — R, p(x) >0, f p(x)dp(z) = 1}.

The Kullback-Leibler divergence [19] is well known among the information diver-
gences. It is defined as:

(6.1) Dt ()= [ p(a)1og [’%} du (). p.g e,
X

where log is to base 2.

In Information Theory and Statistics, various divergences are applied in ad-
dition to the Kullback-Leibler divergence. These are the: wvariation distance
D, Hellinger distance Dy [20], x*>—divergence D,>, a—diwergence D, Bhat-
tacharyya distance Dp [21], Harmonic distance Dy, Jeffreys distance Dy [22],
triangular discrimination Da [23], etc. They are defined as follows:

(6.2) /|p — @) dp (@), pae

63 Dulpa) = [ [Vi@ - Va@)| du@), poe

' s (9. g) = . M@2_] ). p. :
64)  Depa) X/pu[( ) 1| dn). paeo
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65)  Dalpa)i= =z L= [ @) ¥ @) du@)| . pges
g

(6.6 Do (p.0) = [ Vp@a@du(a), poqe
(6.7 Do ()= [ 22 @), g e

.
68 Dya)= [ a2 duw), pae

!

(6.9 Data) =[O0 )y e

d

For other divergence measures, see the paper [24] by Kapur or the book on line
[25] by Taneja. For a comprehensive collection of preprints available on line, see
the RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

The following inequalities involving the Jeffreys divergence are known (see for
example the book on line by Taneja [25])

1
(6.10) Dpa(p,q) > exp [_iDJ (p, q)} . Dq €Q,
1
(6.11) Dpa(pyq) > 1-— 107 (P,q), p,ge
and
(6.12) Dy(p,q) >4[1—Dg(p,q)], p,q€Q,

where Dy, (-, ) is the Harmonic distance and Dp (-, -) is the Bhattacharyya dis-
tance.

The following result holds (see also [26]).
Theorem 5. We have

1
(6.13) 2D (p.g) < Dy (pa) < 5 [D\2 (p,q) + Dy2 (q,p)] , p,q €,

where D, 2 is the chi-square distance and Da s the triangular discrimination.

Proof. We use the celebrated Hermite-Hadamard inequality for convex functions

b
(6.14) f<a+b><bia/f(t)dt<w

2
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1
and choose f (t) = " to get

2 <lnb—lna<a+b

a+b~ b—a ~ 2ab’
which is equivalent to
2(b—a)? a+b 5
1 <(b-a)(lnb-1 < b— .
(6.15) iy =0-a)nb-Ina) < === (b-a)

If in (6.15) we choose b = ¢ (z), a =p(z), x € X, then we obtain

2(q (z) —p(x))*
p(x) +q(x)

< (¢(z) —p(z)) (Ing(z) —Inp(z))

p(x) +q(x)
— 2p(@)q(x)

and integrating over x on x we deduce that

2Da (p,q) < DJ_(p q)

S%/(q( +/

(q(z) —p(2))’

N —

1 p? (z B q* (z) ) —
= 3 X/q 1+X/p($)du() 1]
- %[DXQ(qp)—FD?(pQ)]

The inequality (6.13) is proved.

The following results are also known (see [26]).

Theorem 6. For all p,q € ), we have

1
(6.16) 0<Dy(p,q) —2Da (p,q) < 5D (p.q),

where

p*(x) ¢ (z)

4
D)= [ g ),



A REFINEMENT OF OSTROWSKI'S INEQUALITY 215

Theorem 7. For each p,q € ), we have
1 1
(6.17) 0< 3 [Dy(p,g) + D2 (g,9)] = Dy (p,4) < 5Dx (pr9)

Now, using the inequality (3.3), we can write

1 [(a:—a)2 . (b—x)2] |

b ar bx

1 Inb—Ina
<

6.18
( ) T b—a

for all z € [a,b] C (0,0).
If in this inequality we put z = aT*b, then we get
lnb—lna_ 2 < b—a
b—a a+b~ 2ab’

The following theorem complements Theorem 6.

(6.19) 0<

Theorem 8. For all p,q € ), we have

1
(6.20) 0<Dy(p,q) —2Da (p,q) < 5De (p.q),

where Da (p,q) is given by:
3
x)—p(x
D@(p,q):/‘q( ) —p(x)] ().
p(z)q(x)
X
provided that all the integrals exist.

Proof. If we multiply (6.19) by (b—a)? > 0, then we get

2(b—a)* 1 |p—a)®
21 < (b— Inb—1 - < = —
(6.21) 0<(b—a)(lnb—1Ina) i b =3 =
for all a,b € (0,00).

If in (6.21) we choose b = ¢ (z), a = p(z), = € x, we obtain

2
622) 0 < (q(@)=p(@) g (@) —Inp(a)) - 2. LD LWV

p(z)+q(x)
1 g@) —p@)f
2 p)glx)
Integrating (6.22) on x, we deduce (6.20). O

Remark 2. It is still not clear which bound from (6.16) and (6.20) is better.
Now, if in (6.18) we put = = v/ab, then we obtain

2
1 Inb—Ina 2(\/5—\/5)
(6.23) A e vy o

for 0 < a < b < o0.
Using (6.23), we can state the following theorem.
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Theorem 9. For all p,q € ), we have

(4@) —p@)?,
(6.24) 0 < / NOTIE) du(z) — Dy (p,q)
/\qm—p(x)\( i@ - V) "
- @) a(@) o
provided that all the integrals exist.
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