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POLYNOMIAL MAPS OF THE COMPLEX PLANE WITH

THE BRANCHED VALUE SETS ISOMORPHIC TO

THE COMPLEX LINE

NGUYEN VAN CHAU

Abstract. We present a completed list of the polynomial dominating maps
of C

2 with the branched value curves isomorphic to the complex line C, up to
polynomial automorphisms.

1. Let f : C
n −→ C

n be a polynomial dominating map, Close(f(Cn)) = C
n, and

denote by degf the geometric degree of f -the number of solutions of the equation
f = a for generic points a ∈ C

n. The branched value set Ef of f is the smallest
subset of C

n such that the map

f : C
n \ f−1(Ef ) −→ C

n \ Ef(*)

gives an unbranched degf −sheeted covering. It is well-known (see [M]) that the
branched value set Ef is either empty set or an algebraic hypersurface, and

Ef = {a ∈ C
n : #f−1(a) 6= degf}.

If Ef = ∅, then f is injective, and hence, f is an automorphism of C
n by the well-

known fact that injective polynomial maps of C
n are automorphisms (see [R]).

The famous Jacobian conjecture ([BCW]) asserts that f must have a singularity
if Ef 6= ∅. A question naturally raises as what can be said about polynomial
dominating maps of C

n if their branched value sets are isomorphic to a given
algebraic hypersurface E.

In this article we consider polynomial dominating maps of C
2 with the branched

value sets isomorphic to the complex line C. We are interested in finding a
list of such maps, up to polynomial automorphisms. We say that two maps
f, g : C

2 −→ C
2 are equivalent if there are polynomial automorphisms α and β

of C
2 such that α ◦ f ◦ β = g.

Theorem 1. A polynomial dominating map f of C
2 with finite fibres and the

branched value set isomorphic to C is equivalent to the map (x, y) 7→ (xdegf , y).

In view of this theorem, the equivalence classes of polynomial dominating maps
of C

2 with finite fibres and the branched value sets isomorphic to C are completely
determined by the geometric degree of maps.
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Theorem 1 is an immediate consequence of the following

Theorem 2. A polynomial dominating map of C
2 with the branched value set

isomorphic to C is equivalent to one of the following maps

i) (x, y) 7→ (xdegf , y);

ii) (x, y) 7→ (xdegf , xmy), m ≥ 1;

iii) (x, y) 7→
(

xdegf , xm
(

xny +
n−1
∑

i=0
aix

i
)

)

, m ≥ 1, n ≥ 1, a0 6= 0 and ai = 0 for

i + m = 0(moddegf ).

In fact, in the above list, only maps of type (i) have finite fibres. The fiber
at (0, 0) of a map of the types (ii) and (iii) is the line x = 0. Further, as shown
in Section 4, the topology of maps of type (ii) and type (iii) are quite different.
The proof of Theorem 2 presented in Section 3 is an application of the famous
theorem of Abhyankar, Moh and Suzuki ([AM], [S]) on the embedding of the
complex line into the complex plane. Section 4 is devoted to some remarks and
open questions.

2. Let us recall some elementary facts on the topology of polynomials in two-
variables. Let h(x, y) ∈ C[x, y]. By the exceptional value set Eh of h we mean a
minimal set Eh ⊂ C such that the map

h : C
2 \ h−1(Eh) −→ C \ Eh

gives a smooth locally trivial fibration. The set Eh is at most a finite set (see
[V]). The fiber of this fibration, denoted by Γh, is called the generic fiber of h. A
polynomial h is primitive if its generic fiber is connected. By the Stein factoriza-
tion a polynomial h(x, y) can be represented in the form h(x, y) = φ(r(x, y)) for
a primitive polynomial r(x, y) and an one-variable polynomial φ(t) (see [F]).

The following lemma is an immediate consequence of Abhyankar-Moh-Suzuki
theorem on the embedding of the complex line into the complex plane, which
asserts that regular embbedings of C in C

2 are equivalent to the natural embbe-
ding, or equivalently, that if p(x, y) is irreducible and if the curve p = 0 is a
smooth contractible algebraic curve, then p ◦ α(x, y) = x for some polynomial
automorphism α of C

2.

Lemma 1. Let h ∈ C[x, y]. Suppose that the generic fiber Γh has d connected

components and each of them is diffeomorphic to C. Then, there exists a polyno-

mial automorphism α in C
2 such that

h ◦ α(x, y) = xd + a1x
d−1 + · · · + ad.

We will use this lemma in the situation when all fibres of h, except for at most
one, are diffeomorphic to a dictinct union of d lines C. Then, the lemma shows
that h(α(x, y)) = xd + ad for an automorphism α.

Proof of Lemma 1. By the Stein factorization, we can represent h(x, y) = φ(r(x, y))
for a primitive polynomial r ∈ C[x, y] and φ ∈ C[t]. Further, one can choose r
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and φ so that

φ(t) = tdeg φ + lower terms.

Observe that for each c ∈ C the fiber h−1(c) consists of the curves r(x, y) = ci,
i = 1, . . . deg φ, where ci are zero points of φ(t)−c = 0. Since the generic fiber Γh

has d connected components and each of them is diffeomorphic to C, the generic
fiber Γr of r is diffeomorphic to C, deg φ = d, and

φ(t) = td + a1t
d−1 + · · · + ad.

Let γ ∈ C be a fixed generic value of r. Then the polynomial r(x, y) − γ is
irreducible and the curve r(x, y) − γ = 0 is diffeomorphic to C. So, in view of
the Abhyankar-Moh-Suzuki theorem, there exists a polynomial automorphism α

of C
2 such that r(α(x, y)) − γ = x. Then we get

h(α(x, y)) = φ(r(α(x, y)) = φ(x + γ) = xd + a1x
d−1 + · · · + ad.

3. Proof of Theorem 2. Let f : C
2
(x,y) −→ C

2
(u,v) be a polynomial dominating

map with the branched value set Ef isomorphic to C, where (x, y) and (u, v)
stand for coordinates in C

2. In view of the Abhyankar-Moh-Suzuki theorem we
can choose a polynomial automorphism α of C

2 so that the image α(Ef ) is the
line u = 0.

Let f̄ := α ◦ f , f̄ = (f̄1, f̄2). Then

Ef̄ = {u = 0}, f̄−1(Ef̄ ) = f̄−1
1 (0),

and the map f̄ : C
2 \ f̄−1

1 (0) −→ C
2 \ {u = 0} gives a unbranched degf −sheeted

covering. This covering induces unbranched degf −sheeted coverings

f̄ : f̄−1
1 (c) −→ {u = c} ' C, c 6= 0.

Since C is simply connected, for every 0 6= c ∈ C the fiber f̄−1
1 (c) consists of ex-

actly degf connected components and each of these components is diffeomorphic

to C. So, applying Lemma 1 we see that there exists an automorphism β of C
2

such that

f̄1(β(x, y)) = xdegf + c.

Let f̃ := f̄◦β−(c, 0). Then f̃(x, y) = (xdegf , f̃2(x, y)). Note that E
f̃

= {u = 0}

and f̃−1({u = 0}) = {x = 0}. So, by definition, for each (a, b) ∈ C
2, a 6= 0, the

equation f̃(x, y) = (a, b) has exactly degf dictinct solutions. This implies that

for each (a, b) ∈ C
2, a 6= 0, the equation f̃2(ε, y) = b has a unique solution for

each degf radical ε of a. Such a polynomial f̃2(x, y) must be of the form

f̃2(x, y) = axky + xlg(x), 0 6= a ∈ C, k ≥ 0 l ≥ 0, g ∈ C[x].

For k = 0, we have f̃ ◦ γ(x, y) = (xdegf , y) for the automorphism γ(x, y) :=
(x, a−1y − axlg(x)).
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Consider the case k > 0. Put m = min{k; l} and n = k − m.

For n = 0 we can represent f̃2(x, y) in the form

f̃2(x, y) = axm(y + h(x)) + c(xdegf ),

where h(x), c(x) ∈ C[x] and

h(x) =
∑

i+m6=0(mod degf )

aix
i.

Define

γ1(u, v) := (u, a−1(v − c(u))), γ2(x, y) := (x, y − h(x)).

Then we get

γ1 ◦ f̃ ◦ γ2(x, y) = (xdegf , xmy).

For the case n > 0 we can represent

f̃2(x, y) = axm(xny + h(x) + xnb(x)) + c(xdegf ),

where h(x), b(x), c(x) ∈ C[x] and

h(x) =
∑

i=0,...n−1, i+m6=0(mod degf )

aix
i.

Let

γ1(u, v) := (u, a−1(v − c(u))), γ2(x, y) := (x, y − b(x)).

Then

γ1 ◦ f̃ ◦ γ2(x, y) = (xdegf , xm(xny + h(x))).

Thus, the map f under consideration is always equivalent to one of maps of the
types (i)-(iii).

4. Let us to conclude the paper by some remarks and open questions.

From the topological point of view, maps of the types (i), (ii) and (iii) behave
quite differently. The maps of type (i) have finite fibres, while the fiber at (0, 0)
of a map of type (ii) or (iii) is the line {x = 0}. Furthermore, for an irreducible
germ curve γ ⊂ C

2 located at (0, 0) and intersecting with the line {u = 0} at
{(0, 0)}, the inverse image of γ by a map of type (ii) is connected and consists of
the line x = 0 and a branch located at (0, 0). But, the inverse image of γ by a
map of type (iii) consists of the line x = 0 and a branch at infinity.

As shown in Theorem 2 and its proof, the polynomial dominating maps of
C

2 with the branched value curve isomorphic to C form a small class among
polynomial dominating maps of C

2. The structure of covering (*) associated to
such a map is very simple. Up to automorphisms of C

2, this covering looks like
an unbranched covering from C

2 \ {x = 0} −→ C
2 \ {u = 0}. The singular set of

such a map is isomorphic to C. In particular, a polynomial map of C
2 with the

branched value curve isomorphic to C must has a singularity. This is true even
when the branched value curve is only homeomorphic to C (see [C1]). It is worth
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to present here the following observation, which is a deduced from the results of
[C2].

Theorem 3. (see [Thm. 4.4, C2]) Suppose f = (P,Q) is a non-zero constant

Jacobian polynomial map of C
2. If Ef 6= ∅, then every irreducible component `

of Ef is a singular curve parametrized by a polynomial map (p`, q`) : C −→ C
2

with

deg p`

deg q`

=
deg P

deg Q
·

Note that the situation is quite different in the case of holomorphic maps.
Orevkov in [O] had constructed a nonsingular holomorphic map from a Stein
manifold homeomorphic to R

4 onto an open ball in the complex plane C
2 which

gives a three-sheeted branching covering with the branched value set diffeomor-
phic to R

2.

It is worth to find analogous statements of Theorem 1 for high-dimensional
cases. Let F = (F1, F2, . . . Fn) : C

n
(x1,...xn) −→ Cn

(u1,...un) be a polynomial domi-

nating map with finite fibres.

Problem. Suppose EF = {u1 = 0}.

i) Does there exists an automorphism α of C
n such that

F1 ◦ α(x1, . . . xn) = x
degF

1 ?

ii) Is F equivalent to the map

(x1, . . . xn) 7→ (x
degF

1 , x2, . . . xn) ?

Such a map F gives a locally trivial fibration F1 : C
n \ F−1(0) −→ C \ {0}

with fiber diffeomorphic to a distinct union of degf space C
n−1. Further, every

connected component of the fibers F−1
1 (c), c 6= 0, is isomorphic to C

n−1. The
situation here seems to be simpler than those in the problem of embeddings
C

n−1 into C
n- a generalization of the Abhyankar-Moh-Suzuki theorem, which

asks whether a regular embbeding of C
n−1 in C

n is equivalent to the natural
embbeding, is still open for n > 2.
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