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APPROXIMATE RECOVERY OF MULTIVARIATE
PERIODIC FUNCTIONS USING WAVELET
DECOMPOSITIONS

DINH DUNG AND MAI XUAN THAO

ABSTRACT. We study the optimal recovery of multivariate periodic functions
of the Besov class of common smoothness SB,, o from their values at n points in
terms of the quantity R.(SB, g, Lq), which is a characterization of optimality
of methods of recovery. The smoothness of SBy;, is defined via modulus of
smoothness dominated by a function w of modulus of smoothness type. With
some restrictions on w and p, ¢, we give the asymptotic order of this quantity
when n — oco. An asymptotically optimal method of recovery is constructed
by using the wavelet family formed from the integer translates of the dyadic
scales of multivariate de la Vallée Poussin kernels.

1. INTRODUCTION

We investigate optimal methods of recovery of multivariate periodic functions
from their values at n points. Multivariate periodic functions are considered
as functions defined on d-torus T¢ := [—7,7]%. Let X be a normed space of
functions on T¢, {z!,....2"} C T a selection of n points and Py (y1,...,¥n) a
mapping from R' into a linear manifold in X of dimension at most n. We can
naturally consider the method of approximate recovery of a function f € X from
its values f(z!),..., f(2™) by the element g = P,(f(z!),..., f(2™)). The recovery
error is measured by ||f — g||. Let W be a subset in X. We are interested in
the optimal recovery of functions f € W over all such methods of approximate
recovery. The error of this optimal recovery is given by

Ry(W, X) := inf sup |[f — Bu(f(a), ., f(&))]],
few

where inf is taken over all selections of n points {z!,...,2"} C T¢ and mappings
P, from R" into a linear manifold in X of dimension at most n.

In the present paper, we study optimal methods of recovery of functions
from the Besov class of common smoothness SBy, in terms of the quantity
Ry (SByy,Lg) for 1 < p, ¢ < oo. Its smoothness is defined via modulus of
smoothness dominated by a function w of modulus of smoothness type. With
some restrictions on w and p, g, we give the asymptotic order of this quantity
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when n — co. An asymptotically optimal method of recovery is constructed us-
ing periodic wavelet decompositions of functions into the integer translates of the
dyadic scales of multivariate de la Vallée Poussin kernels. Problems of recovery
of periodic functions which are related to the present paper, were considered in
[3-5], [7], [8].

Let us define smoothness Besov spaces of functions on T?. For a positive
integer I, the symmetric difference operator AL, h € T¢, is defined inductively by

I . AlAl-1
Ay = ARAL,
starting from

Apf = f(+1/2) = f(- = h/2).

Let
wi(f,t)p = sup [|AL fllp, >0,
|h|<t
is the ith p-integral modulus of smoothness of f where || - ||, denotes the usual

p-integral norm of the space L, := L,(T?).
We introduce the class M.S; of functions w of modulus of smoothness type as
follows. It consists of all non-negative functions w on [0, 00) such that:

(i) w(0) =0,
i) wit) <w(t)ift <t
(iii) w(kt) < Kw(t), for k=1,2,.
(iv) w satisfies Condition Z;, that is, there exist a positive number a < [ and
positive constant C} such that

wt)t™ > Cth™%w(h), 0 <t < h,

(v) w satisfies Condition BS, that is, there exist a positive number b and positive
constant C' such that

wt)t™ < Chbw(h), 0<t<h<1.

Let 1 <p<o0,0<0<oo0andwe MS;. The Besov space B“’(, consists of all
functions f € L, for which the Besov semi-quasi-norm

00 1/6
(Fratr.oupetora) ", o<,
supe (£, /0 (0), b= o

t>0

(1) Flaz, =

is finite. We define the Besov quasi-norm by
(2) IfllBe, = Ifllp + |flB2,

The definition of B}y does not depend on [, i. e., for a given w, (1)~(2) determine
equivalent norms for all [ such that w € MS;. The function w(t) =", r > 0
belongs to the class MS for any [ > r. The space By, := B}, with w(t) =
t", r > 0, is the classical Besov space.
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We say that w satisfies Condition R(e) (¢ > 0) if w(t)t~¢ satisfies Condition
BS. If w satisfies Condition R(d/p), then By is compactly embedded into C (T9).

The Besov class
SBSy = {fe By | flms, <1}
is defined as the unit ball of the space B;J 0-

We denote ay := max{a,0} and use the notation F < F’ if FF < F' and
F'< F,and F < F' if F < CF’ with C being an absolute constant.

The main result of the present paper is the following

Theorem 1. Let 1 < p, ¢ < 00, 0 < 6 < co. Assume that either p > q or
p < q <2 and w satisfies Condition R(d/p). Then we have

R, (SBYg,Ly) = w(d/n)n\/P=d/a)+.
Theorem 1 was proved in [4] for the univariate classical Besov-Hélder class
SB) .
p7oo

We now construct an asymptotically optimal method of recovery using periodic
wavelet decompositions of functions into the integer translates of the dyadic scales
of multivariate de la Vallée Poussin kernels. Let

m—+r—1 . .
Vi (£) = % 3 Dk<t):SIH<”/2ZZ$§<572)+ rit/2)
k=m

be the de la Vallée Poussin kernel of order m, where
Dy, (t) == Z ekt
[k|<m

is the univariate Dirichlet kernel of order m. The multivariate de la Vallée Poussin
kernel V,, , is defined by

Vm,r(x> = Vm,r(xl)vm,r($2) T Vm,r(xd)-
We use the abbreviation V,,,(x) := Vi, ().

)

Next we let
vp = (3x 25)7W,, k=0,1,2,...
be the periodic dyadic scaling functions, and the periodic wavelets
Vk,s i = V(- — shg), s € Q,

be defined as the integer translates of vy, where

2 d k .
hk::?)x—Qk and Qk:{8620§83<3x2,j:0,,d}

Consider the recovery of a functions f on T¢ from its values at the points

{shi: s € Qy}
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by the method Sj defined as follows
Se(f) =D f(shi)vks.
SEQK

Notice that the number of the points {shy : s € Q} is 3¢ x 29¥. For the sake of
completeness we put S_i(f) := f(0).

Let
Ri(f) == f = Sk(f)

be the error of recovering f by Sk(f). For functions from SBy, we have the
following

Theorem 2. Let 1 < p, g < 00, 0< 60 < oo and w satisfy Condition R(d/p).
For a given natural number n, let k be the largest non-negative integer such that
3% x 29k < . Then we have

sup || Ri(f)lly = w(d/n)n(P=4/D+
fesBe,

In this way, under the assumptions of Theorem 1 the method of recovery Sj
defined in Theorem 2, is asymptotically optimal for Rn(SB]‘: 9> Lq). The lower
bound of Theorem 2 was proved in [8] (see Theorem 6.2 of Chapter 1) for the
univariate classical Besov-Hélder class SB) .

2. ESTIMATION OF THE RECOVERY ERROR VIA BEST
TRIGONOMETRIC APPROXIMATION

For functions f € L,, we define the convolution operator I, by letting

I (f) = [ Var,
for kK > 0, and

I_4(f):= ﬂ_d/f(m)dac.
Td

Let 7,, denote the space of trigonometric polynomials of order at most m in
each variable. Obviously, Sk (f) and I (f) belong to Zor+1_1. From the definition
it is easy to see that

3) I(f) = f, | €Tn.

Let us give some properties of the method of recovery Si. The recovery method
Sk is precise for trigonometric polynomials Zox-1, i.e.,

(4) Sk(f) =1 €Ty

This property is derived from (3) and the following assertion (see [5]). If the
integers m, n, s satisfy the inequality m+n < s, then the following equality holds
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for any f € 7., and g € T,
frg= sV f@rk/s)g( — 2mh/s),
k

where the sum is taken over all k € Z? such that 0 < ki <s, 7=1,2,..,d. The
method of recovery Sy interpolates f at the points shy, s € Qp, i.e.,

Sk(fa Sh‘k) = f(Shk>7 ES Qk
For the following property see [5]. For any f € Tas, s >k,

() 15k (F)llq < Co2C~4) £l

From properties of de la Vallée Poussin kernels it follows that for any continuous
function f on T¢

Jim [[Ry(ll = 0,
—00
and for any function f € L,(T9), 1 < ¢ < oo,

Jin |1 = I()llg = 0.

Hence, using (4) we deduce that any continuous function f on T¢ can be decom-
posed into the wavelets vy, ¢ by the series

(6) F@) =Y 6S%(f) =D Y Msths,
k=0 k=0 s€Qg

where both the series converge uniformly on T¢. Here

0So(f) == S-1(f); Sk(f) == Sk—1(f) — Sk—2(f), k=1,2,3, ...,

Mes = Nos({F(8'hi) Yorey )

and A s(-) are linear functions defined on R3" <2

Similarly, due to (3), any function f € L,(T%), 1 < g < oo, can be decomposed
into the wavelets vy, s by the series

(7) F@) =) 60() =D D thsths
k=0

k=0 s€Qy

where both the series converge in the norm of L,(T%). Here 61, (f) is defined in
the same way as Sk (f),

HE,s = :uk,s({(s[k(fa Slhk}s/EQk)v
and p, s(+) are linear functions defined on R3" 2"

Let

En(f)q = Jnf If —gllq (1 < g <00)
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be the best approximation to f by trigonometric polynomials of order at most
m. Then we have for any continuous function f on T¢,

IR4(F)lloe < CByr (f)ee
and for any function f € L,(T9), 1 < ¢ < oo,
(8) 1f = Te(F)llq < 3Eor-1(f)q-

For 1 < ¢ < oo, the recovery error ||R;(f)||q is estimated as follows.

Theorem 3. Let 1 < q < co. Then we have for any continuous function f on
Td

(9) IRe(£)llg < Cq Y 2%/ 9Egss(f)g.

s=—1

Proof. Let f be a continuous function on T¢. By (7) we have

f =TI ZM

On the other hand, from (3) we obtain Sk.(Ik._l(f)) = I;—1(f). Therefore, using
(8) we get

1R (f)llg

IN

1 = Ir—1( ||q+ZHSk (0L (f)llq

IN

3Ey1(f)g + Cy Z =R/ 51, (f)llg
s=k

< 3Ey1(f)q +3C, sz<s 9(Bas (f)q + Eas—1(f)q)-
s=k

Hence we obtain (9). O

Theorem 3 was proved in [4] for the univariate case. A similar inequality earlier
than that in [4], was proved in [7] for the univariate case and 1 < ¢ < 2.

3. OPTIMAL RECOVERY FOR BESOV CLASSES

Let 1 < p < o0, 0< 6 < oo. Then the following quasi-norms equivalence
holds

1/6
(10) IfllBe, = (Z{||5Ik Mp/w(2” )}> (0 < o0).

Moreover, a function f belongs to B 00 iff f can be represented as a series

(11) F=Y_fo [fi€T,

s=0
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converging in L,-norm, and the quasi-norm

~ 1/6
(12) (Z{||fk\|p/w(2’“)}9> < 00 (0 < o0)
k=0

is finite. In addition, the quasi-norm (12) is equivalent to || f|| BY - (The sum

n (10) and (12) is changed to the supremum for § = oo). The quasi-norms
equivalence (10) as well as (11) and (12) can be proved by a standard method of
establishing equivalence of different Besov quasi-norms, using the inequality (8),
Stechkin’s theorem of trigonometric approximation (see, e.g., Theorem 2.3 in p.
205 of [1]), Bernstein’s inequality (see, e.g., Theorem 2.5 in p. 102 of [1]) and the
following generalization of discrete Hardy inequality.

Let ¢ be a positive non-decreasing function on (0,00) and 0 < 6 < co. We
define the quasi-norm ||al|g4 for a sequence a = {ay, }rez as follows

1/6
lallo,s == (Z{\ak\/cb@k)}g) , (0 < o0)

keZ

(the sum is changed to sup when 6 = c0).

Let 0 < 6 < oo and let ¢ satisfy Conditions R(e) and Z; (¢ < ). If the
sequences a = {ay }rez and b = {by }rez with ag, by > 0, satisfy the condition

b < M a;min{2°0¢7F) 2lls=k)y
s€Z

then
(13) 1bllo.e < Co.pM|lall,p-
The proof of this inequality is similar to that for the case € = 0 in [2].

Theorem 4. Let 1 < p < oo, 0 <6 < oo and w satisfy Condition R(d/p). Then
there hold the following quasi-norms equivalences

1/6
(14) 1fllss, = (Z{uask /(2™ >}) (6 < o0),

and

¢

11z,

1/60
(Z{HRk Mp/w(2” )}> (6 < o0),

with the sum changing to the supremum when 6 = oo

Proof. We will prove the quasi-norms equivalence (14). The other can be proved
similarly. Due to (10), we need to prove that the quasi-norm in the right side
of (14) is equivalent to that in the right side of (10). By the assumptions of the
theorem, each function f € B}, is represented as series (6) and (7), and the
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quasi-norm equivalence (10) holds for the series (7). By (4), 05k (0Is(f)) = 0 for
all k, s such that s < k. Hence

0Sk(f) =Y Sk(81s(f)) =Y 6Sk(SLs(f))-

s>k

The inequality (5) gives

168k (Nllp < My 267DUP|SI(f)]lp.

s>k

Applying the generalized Hardy inequality (13) for ¢ = w satisfying Conditions
R(d/p) and Z; (d/p < 1), and by = ||6Sk(f)|lp, ar = |01x(f)|lp, we deduce that
the right side of (14) is not greater than the right side of (10) multiplied by some
positive constant. The inverse inequality can be proved in the same way. U

Proof of Theorem 2. Let us first prove the upper bound. By the inequality ||-||; <
| - llp for ¢ < p and the embedding of By, into By, it is enough to establish

p,00?

the upper bound for the case p < ¢. From Theorem 3 and Stechkin’s theorem of
trigonometric approximation we have for any continuous function on T

(15) IBe(F)lg < Cg > 2%/9wy(f,27579),.
s=—1

A theorem of DeVore, Riemenschneider and Sharpley (see Theorem 3.4 on p. 181
of [1]) states that

2_5
(16) w(f,27), < C, / BV (Y, dh.
0

Let f € SB; . This means that wi(f,h), < w(h). Because Conditions R(d/p)
implies Conditions R(d/p — d/q) and because w € M), there are a positive
constant C and an § > 0 such that for 0 < h < 27% we have

hU/Ptdla=d,(p) < C2ld/p=d/atd)s,, (99,

Hence the integral in the right side of (16) can be esimated as follows

2—s 9—s
/ WMV (f ) pdh < 2P/ atd)s (979 / h~tdh
0 0

< Q(d/P_d/Q)Sw(Q_S)'

Combining the last inequality with (15) and (16) gives

an IRK(f)lly < 20l=d/ak 3™ gislng(a-k=s),

s=—1
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Similarly as for the right side of (16), with integral changing to sum, using Con-
ditions R(d/p) we can estimate the sum in (17) as < w(27%). Consequently,

IRL(f)]ly < w(27F)2Wd/p=d/0k
= w(d/mnt/r=dla,

The upper bound is proved.

We now prove the lower bound. It suffices to construct a function g € SBy,
so that

(18) IRk (9)llg > w(27F)20d/p=d/a)+k,
Let us first consider the case p > gq. We define g by
g(x) := )\w(2*k)€i2kw1’

where ) is a positive number. By the equivalent quasi-norm (12) of By, we can

define a value of A so that g € SB;(, for all k. A direct computation shows that
Si(g9) = Aw(27F). Hence

T 1/q
IRe@lly > w@™) ( / |e12’““—1|qczx1)

> w(27F).
Thus (18) has been proved for the case p > ¢. For the case p < ¢, we define
g =22 ")lel, e
where
@ = Varr1 o y1) — Vorr(k)

and r(k) = [¢2¥] with 0 < ¢ < 1 ([a] denotes the integer part of a). Similarly,
we can define a value of A so that g € SBj, for all k and e. Put

G = Sk(g) * v,
where v := Vor—3. Obviously, by definition g * v = 0, hence
Ri(g) xv = —G.
By Young’s inequality and the inequality ||v][; < 3, we get
1Gllg < I1Bk(9)llqllvllr < 3[Rk (g)llq;
or equivalently,
(19) 1Rx(9)llq = [Gllg/3-
By (3) we have vy, * v = (3 x 2¥)~%y and, therefore,

G(z)= (3x2M)74 > g(sh)v(z — shy).

SEQK
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On the other hand,
27N g(shi)v(w — shi) = Y Gs(),

SEQk s€Zd

where G := (e”k(s’“’“)) «v. This equality was proved in [4] for the univariate case.
The multivariate case can be proved similarly. Denote by E the set of all s € Z¢
such that the set

d
Py = [J12Fs; — 272, 128s; + 2872)
j=1

is contained in the set [(1 +¢)2%,2¥+1]9  and by F the set of all s € Z¢ such that
Py {(2F, (14 )2M)d U (28 (1 + )28 )4} = 0.
It is easy to verify that, for any s € F,
Gs(@) = Aw (27 ")llell; ().

We have
Gl = D MGsllg = > IGsll
selR seF
> |EDw@7 ) el vl = 1FIA ) lell, el vl

= 2@ M)lelp ollo (1Bl = 1F] llell),

where |A| denotes the number of elements of the set A. By simple computations
we get the estimates |E| > (1 —¢) — 2 and |F| < 3¢ + 4, and ||¢|i < C|lneg|.
Therefore, we can find an € so that

[El = F] llelh = Ce.
Thus, we get
IGlly > w@)lely ol
We have [jv]|, < 220-VDk and ||¢|, < 270-1/P)k Hence
IGlly > w(27F)2@/r=d/ok,

This estimate and (19) prove (18) the case p < g. O

Proof of Theorem 1. The upper bound follows from Theorem 2. We will establish
the lower bound. Denote by d, (W, X) the Kolmogorov n-width of the set W in
the normed space X (see, e.g., [8] for the definition). By definition we have

(20) Ry (W, X) = dp (W, X).

For d, (5B}, Lg), under the assumption of Theorem 1 there holds the following

asymptotical order

(21) dn(SBg, Ly) = w(d/n)n(¥r=d/D+.
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This was proved in [6] for the univariate classical Besov-Holder class SBy/ .. The
general case can be proved in a similar way. Combining (20) with (21) gives the
lower bound. O
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