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APPROXIMATE RECOVERY OF MULTIVARIATE

PERIODIC FUNCTIONS USING WAVELET

DECOMPOSITIONS

DINH DUNG AND MAI XUAN THAO

Abstract. We study the optimal recovery of multivariate periodic functions
of the Besov class of common smoothness SBω

p,θ from their values at n points in
terms of the quantity Rn(SBω

p,θ, Lq), which is a characterization of optimality
of methods of recovery. The smoothness of SBω

p,θ is defined via modulus of
smoothness dominated by a function ω of modulus of smoothness type. With
some restrictions on ω and p, q, we give the asymptotic order of this quantity
when n → ∞. An asymptotically optimal method of recovery is constructed
by using the wavelet family formed from the integer translates of the dyadic
scales of multivariate de la Vallée Poussin kernels.

1. Introduction

We investigate optimal methods of recovery of multivariate periodic functions
from their values at n points. Multivariate periodic functions are considered
as functions defined on d-torus T

d := [−π, π]d. Let X be a normed space of
functions on T

d, {x1, ..., xn} ⊂ T
d a selection of n points and Pn(y1, ..., yn) a

mapping from R
n into a linear manifold in X of dimension at most n. We can

naturally consider the method of approximate recovery of a function f ∈ X from
its values f(x1), ..., f(xn) by the element g = Pn(f(x1), ..., f(xn)). The recovery
error is measured by ‖f − g‖. Let W be a subset in X. We are interested in
the optimal recovery of functions f ∈ W over all such methods of approximate
recovery. The error of this optimal recovery is given by

Rn(W,X) := inf sup
f∈W

‖f − Pn(f(x1), ..., f(xn))‖,

where inf is taken over all selections of n points {x1, ..., xn} ⊂ T
d and mappings

Pn from R
n into a linear manifold in X of dimension at most n.

In the present paper, we study optimal methods of recovery of functions
from the Besov class of common smoothness SBω

p,θ in terms of the quantity

Rn(SBω
p,θ, Lq) for 1 ≤ p, q ≤ ∞. Its smoothness is defined via modulus of

smoothness dominated by a function ω of modulus of smoothness type. With
some restrictions on ω and p, q, we give the asymptotic order of this quantity
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when n → ∞. An asymptotically optimal method of recovery is constructed us-
ing periodic wavelet decompositions of functions into the integer translates of the
dyadic scales of multivariate de la Vallée Poussin kernels. Problems of recovery
of periodic functions which are related to the present paper, were considered in
[3–5], [7], [8].

Let us define smoothness Besov spaces of functions on T
d. For a positive

integer l, the symmetric difference operator ∆l
h, h ∈ T

d, is defined inductively by

∆l
h := ∆1

h∆l−1
h ,

starting from

∆1
hf := f(· + h/2) − f(· − h/2).

Let

ωl(f, t)p := sup
|h|<t

‖∆l
hf‖p, t ≥ 0,

is the lth p-integral modulus of smoothness of f where ‖ · ‖p denotes the usual

p-integral norm of the space Lp := Lp(T
d).

We introduce the class MSl of functions ω of modulus of smoothness type as
follows. It consists of all non-negative functions ω on [0,∞) such that:

(i) ω(0) = 0,
(ii) ω(t) ≤ ω(t′) if t ≤ t′,
(iii) ω(kt) ≤ klω(t), for k = 1, 2, ...,
(iv) ω satisfies Condition Zl, that is, there exist a positive number a < l and

positive constant Cl such that

ω(t)t−a ≥ Clh
−aω(h), 0 ≤ t ≤ h,

(v) ω satisfies Condition BS, that is, there exist a positive number b and positive
constant C such that

ω(t)t−b ≤ Ch−bω(h), 0 ≤ t ≤ h ≤ 1.

Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞ and ω ∈ MSl. The Besov space Bω
p,θ consists of all

functions f ∈ Lp for which the Besov semi-quasi-norm

|f |Bω
p,θ

:=















(

∞
∫

0

{ωl(f, t)p/ω(t)}θdt/t

)1/θ

, θ < ∞,

sup
t>0

ωl(f, t)p/ω(t), θ = ∞
(1)

is finite. We define the Besov quasi-norm by

‖f‖Bω
p,θ

:= ‖f‖p + |f |Bω
p,θ

.(2)

The definition of Bω
p,θ does not depend on l, i. e., for a given ω, (1)–(2) determine

equivalent norms for all l such that ω ∈ MSl. The function ω(t) = tr, r > 0
belongs to the class MSl for any l > r. The space Br

p,θ := Bω
p,θ with ω(t) =

tr, r > 0, is the classical Besov space.
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We say that ω satisfies Condition R(ε) (ε ≥ 0) if ω(t)t−ε satisfies Condition
BS. If ω satisfies Condition R(d/p), then Bω

p,θ is compactly embedded into C(Td).

The Besov class

SBω
p,θ := {f ∈ Bω

p,θ : ‖f‖Bω
p,θ

≤ 1}

is defined as the unit ball of the space Bω
p,θ.

We denote a+ := max{a, 0} and use the notation F � F ′ if F � F ′ and
F ′ � F , and F � F ′ if F ≤ CF ′ with C being an absolute constant.

The main result of the present paper is the following

Theorem 1. Let 1 ≤ p, q ≤ ∞, 0 < θ ≤ ∞. Assume that either p ≥ q or
p < q ≤ 2 and ω satisfies Condition R(d/p). Then we have

Rn(SBω
p,θ, Lq) � ω(d/n)n(d/p−d/q)+ .

Theorem 1 was proved in [4] for the univariate classical Besov-Hölder class
SBr

p,∞.

We now construct an asymptotically optimal method of recovery using periodic
wavelet decompositions of functions into the integer translates of the dyadic scales
of multivariate de la Vallée Poussin kernels. Let

Vm,r(t) :=
1

r

m+r−1
∑

k=m

Dk(t) =
sin(rt/2) sin((2m + r)t/2)

r sin2(t/2)

be the de la Vallée Poussin kernel of order m, where

Dm(t) :=
∑

|k|≤m

eikt

is the univariate Dirichlet kernel of order m. The multivariate de la Vallée Poussin
kernel Vm,r is defined by

Vm,r(x) := Vm,r(x1)Vm,r(x2) · · · Vm,r(xd).

We use the abbreviation Vm(x) := Vm,m(x).

Next we let

vk := (3 × 2k)−dV2k , k = 0, 1, 2, ...

be the periodic dyadic scaling functions, and the periodic wavelets

vk,s := vk(· − shk), s ∈ Qk,

be defined as the integer translates of vk, where

hk :=
2π

3 × 2k
and Qk := {s ∈ Z

d : 0 ≤ sj < 3 × 2k, j = 0, ..., d}.

Consider the recovery of a functions f on T
d from its values at the points

{shk : s ∈ Qk}
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by the method Sk defined as follows

Sk(f) :=
∑

s∈Qk

f(shk)vk,s.

Notice that the number of the points {shk : s ∈ Qk} is 3d × 2dk. For the sake of
completeness we put S−1(f) := f(0).

Let

Rk(f) := f − Sk(f)

be the error of recovering f by Sk(f). For functions from SBω
p,θ, we have the

following

Theorem 2. Let 1 ≤ p, q ≤ ∞, 0 < θ ≤ ∞ and ω satisfy Condition R(d/p).
For a given natural number n, let k be the largest non-negative integer such that
3d × 2dk ≤ n. Then we have

sup
f∈SBω

p,θ

‖Rk(f)‖q � ω(d/n)n(d/p−d/q)+ .

In this way, under the assumptions of Theorem 1 the method of recovery Sk

defined in Theorem 2, is asymptotically optimal for Rn(SBω
p,θ, Lq). The lower

bound of Theorem 2 was proved in [8] (see Theorem 6.2 of Chapter 1) for the
univariate classical Besov-Hölder class SBr

p,∞.

2. Estimation of the recovery error via best

trigonometric approximation

For functions f ∈ Lq, we define the convolution operator Ik by letting

Ik(f) := f ∗ V2k ,

for k ≥ 0, and

I−1(f) := π−d

∫

Td

f(x)dx.

Let Tm denote the space of trigonometric polynomials of order at most m in
each variable. Obviously, Sk(f) and Ik(f) belong to T2k+1−1. From the definition
it is easy to see that

Ik(f) = f, f ∈ T2k .(3)

Let us give some properties of the method of recovery Sk. The recovery method
Sk is precise for trigonometric polynomials T2k−1 , i.e.,

Sk(f) = f, f ∈ T2k .(4)

This property is derived from (3) and the following assertion (see [5]). If the
integers m,n, s satisfy the inequality m+n < s, then the following equality holds
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for any f ∈ Tm and g ∈ Tn

f ∗ g = s−1
∑

k

f(2πk/s)g(· − 2πk/s),

where the sum is taken over all k ∈ Z
d such that 0 ≤ kj < s, j = 1, 2, ..., d. The

method of recovery Sk interpolates f at the points shk, s ∈ Qk, i.e.,

Sk(f, shk) = f(shk), s ∈ Qk.

For the following property see [5]. For any f ∈ T2s , s ≥ k,

‖Sk(f)‖q ≤ Cq2
d(s−k)/q‖f‖q.(5)

From properties of de la Vallée Poussin kernels it follows that for any continuous
function f on T

d

lim
k→∞

‖Rk(f)‖∞ = 0,

and for any function f ∈ Lq(T
d), 1 ≤ q ≤ ∞,

lim
k→∞

‖f − Ik(f)‖q = 0.

Hence, using (4) we deduce that any continuous function f on T
d can be decom-

posed into the wavelets vk,s by the series

f(x) =
∞
∑

k=0

δSk(f) =
∞
∑

k=0

∑

s∈Qk

λk,svk,s,(6)

where both the series converge uniformly on T
d. Here

δS0(f) := S−1(f); δSk(f) := Sk−1(f) − Sk−2(f), k = 1, 2, 3, ...,

λk,s = λk,s({f(s′hk)}s′∈Qk
),

and λk,s(·) are linear functions defined on R
3d×2dk

.

Similarly, due to (3), any function f ∈ Lq(T
d), 1 ≤ q ≤ ∞, can be decomposed

into the wavelets vk,s by the series

f(x) =

∞
∑

k=0

δIk(f) =

∞
∑

k=0

∑

s∈Qk

µk,svk,s,(7)

where both the series converge in the norm of Lq(T
d). Here δIk(f) is defined in

the same way as δSk(f),

µk,s = µk,s({δIk(f, s′hk}s′∈Qk
),

and µk,s(·) are linear functions defined on R
3d×2dk

.

Let

Em(f)q := inf
g∈Tm

‖f − g‖q (1 ≤ q ≤ ∞)
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be the best approximation to f by trigonometric polynomials of order at most
m. Then we have for any continuous function f on T

d,

‖Rk(f)‖∞ ≤ CE2k−1(f)∞.

and for any function f ∈ Lq(T
d), 1 ≤ q ≤ ∞,

‖f − Ik(f)‖q ≤ 3E2k−1(f)q.(8)

For 1 ≤ q < ∞, the recovery error ‖Rk(f)‖q is estimated as follows.

Theorem 3. Let 1 ≤ q < ∞. Then we have for any continuous function f on
T

d

‖Rk(f)‖q ≤ Cq

∞
∑

s=−1

2ds/qE2k+s(f)q.(9)

Proof. Let f be a continuous function on T
d. By (7) we have

f = Ik−1(f) +

∞
∑

s=k

δIs(f)

On the other hand, from (3) we obtain Sk(Ik−1(f)) = Ik−1(f). Therefore, using
(8) we get

‖Rk(f)‖q ≤ ‖f − Ik−1(f)‖q +
∞
∑

s=k

‖Sk(δIs(f))‖q

≤ 3E2k−1(f)q + Cq

∞
∑

s=k

2d(s−k)/q‖δIs(f)‖q

≤ 3E2k−1(f)q + 3Cq

∞
∑

s=k

2d(s−k)/q(E2s(f)q + E2s−1(f)q).

Hence we obtain (9).

Theorem 3 was proved in [4] for the univariate case. A similar inequality earlier
than that in [4], was proved in [7] for the univariate case and 1 ≤ q ≤ 2.

3. Optimal recovery for Besov classes

Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞. Then the following quasi-norms equivalence
holds

‖f‖Bω
p,θ

�

(

∞
∑

k=0

{‖δIk(f)‖p/ω(2−k)}θ

)1/θ

(θ < ∞).(10)

Moreover, a function f belongs to Bω
p,θ iff f can be represented as a series

f =
∞
∑

s=0

fs, fs ∈ T2s ,(11)
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converging in Lp-norm, and the quasi-norm

(

∞
∑

k=0

{‖fk‖p/ω(2−k)}θ

)1/θ

< ∞ (θ < ∞)(12)

is finite. In addition, the quasi-norm (12) is equivalent to ‖f‖Bω
p,θ

. (The sum

in (10) and (12) is changed to the supremum for θ = ∞). The quasi-norms
equivalence (10) as well as (11) and (12) can be proved by a standard method of
establishing equivalence of different Besov quasi-norms, using the inequality (8),
Stechkin’s theorem of trigonometric approximation (see, e.g., Theorem 2.3 in p.
205 of [1]), Bernstein’s inequality (see, e.g., Theorem 2.5 in p. 102 of [1]) and the
following generalization of discrete Hardy inequality.

Let φ be a positive non-decreasing function on (0,∞) and 0 < θ ≤ ∞. We
define the quasi-norm ‖a‖θ,φ for a sequence a = {ak}k∈Z as follows

‖a‖θ,φ :=

(

∑

k∈Z

{|ak|/φ(2−k)}θ

)1/θ

, (θ < ∞)

(the sum is changed to sup when θ = ∞).

Let 0 < θ ≤ ∞ and let φ satisfy Conditions R(ε) and Zl (ε < l). If the
sequences a = {ak}k∈Z and b = {bk}k∈Z with ak, bk ≥ 0, satisfy the condition

bk ≤ M
∑

s∈Z

as min{2ε(s−k), 2l(s−k)},

then

‖b‖θ,φ ≤ Cθ,φM‖a‖θ,φ.(13)

The proof of this inequality is similar to that for the case ε = 0 in [2].

Theorem 4. Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞ and ω satisfy Condition R(d/p). Then
there hold the following quasi-norms equivalences

‖f‖Bω
p,θ

�

(

∞
∑

k=0

{‖δSk(f)‖p/ω(2−k)}θ

)1/θ

(θ < ∞),(14)

and

‖f‖Bω
p,θ

�

(

∞
∑

k=0

{‖Rk(f)‖p/ω(2−k)}θ

)1/θ

(θ < ∞),

with the sum changing to the supremum when θ = ∞.

Proof. We will prove the quasi-norms equivalence (14). The other can be proved
similarly. Due to (10), we need to prove that the quasi-norm in the right side
of (14) is equivalent to that in the right side of (10). By the assumptions of the
theorem, each function f ∈ Bω

p,θ is represented as series (6) and (7), and the



192 DINH DUNG AND MAI XUAN THAO

quasi-norm equivalence (10) holds for the series (7). By (4), δSk(δIs(f)) = 0 for
all k, s such that s ≤ k. Hence

δSk(f) =
∑

s

δSk(δIs(f)) =
∑

s>k

δSk(δIs(f)).

The inequality (5) gives

‖δSk(f)‖p ≤ Mp

∑

s>k

2(s−k)d/p‖δIs(f)‖p.

Applying the generalized Hardy inequality (13) for φ = ω satisfying Conditions
R(d/p) and Zl (d/p < l), and bk = ‖δSk(f)‖p, ak = ‖δIk(f)‖p, we deduce that
the right side of (14) is not greater than the right side of (10) multiplied by some
positive constant. The inverse inequality can be proved in the same way.

Proof of Theorem 2. Let us first prove the upper bound. By the inequality ‖·‖q �
‖ · ‖p for q ≤ p and the embedding of Bω

p,θ into Bω
p,∞, it is enough to establish

the upper bound for the case p ≤ q. From Theorem 3 and Stechkin’s theorem of
trigonometric approximation we have for any continuous function on T

d

‖Rk(f)‖q ≤ Cq

∞
∑

s=−1

2ds/qωl(f, 2−k−s)q.(15)

A theorem of DeVore, Riemenschneider and Sharpley (see Theorem 3.4 on p. 181
of [1]) states that

ωl(f, 2−s)q ≤ Cq

∫ 2−s

0
h1/q−1/p−1ωl(f, h)pdh.(16)

Let f ∈ SBω
p,∞. This means that ωl(f, h)p ≤ ω(h). Because Conditions R(d/p)

implies Conditions R(d/p − d/q) and because ω ∈ MSl, there are a positive
constant C and an δ > 0 such that for 0 ≤ h ≤ 2−s we have

h−d/p+d/q−δω(h) ≤ C2(d/p−d/q+δ)sω(2−s).

Hence the integral in the right side of (16) can be esimated as follows

2−s
∫

0

h1/q−1/p−1ωl(f, h)pdh � 2(d/p−d/q+δ)sω(2−s)

2−s
∫

0

hδ−1dh

� 2(d/p−d/q)sω(2−s).

Combining the last inequality with (15) and (16) gives

‖Rk(f)‖q � 2(d/p−d/q)k
∞
∑

s=−1

2ds/pω(2−k−s).(17)
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Similarly as for the right side of (16), with integral changing to sum, using Con-
ditions R(d/p) we can estimate the sum in (17) as � ω(2−k). Consequently,

‖Rk(f)‖q � ω(2−k)2(d/p−d/q)k

� ω(d/n)nd/p−d/q.

The upper bound is proved.

We now prove the lower bound. It suffices to construct a function g ∈ SBω
p,θ

so that

‖Rk(g)‖q � ω(2−k)2(d/p−d/q)+k.(18)

Let us first consider the case p ≥ q. We define g by

g(x) := λω(2−k)ei2kx1 ,

where λ is a positive number. By the equivalent quasi-norm (12) of Bω
p,θ, we can

define a value of λ so that g ∈ SBω
p,θ for all k. A direct computation shows that

Sk(g) = λω(2−k). Hence

‖Rk(g)‖q � ω(2−k)

(
∫ π

−π
|ei2kx1 − 1|qdx1

)1/q

� ω(2−k).

Thus (18) has been proved for the case p ≥ q. For the case p < q, we define

g := λω(2−k)‖ϕ‖−1
p ϕ

where

ϕ := V2k+1,r(k+1) − V2k ,r(k)

and r(k) = [ε2k] with 0 < ε < 1 ([a] denotes the integer part of a). Similarly,
we can define a value of λ so that g ∈ SBω

p,θ for all k and ε. Put

G := Sk(g) ∗ v,

where v := V2k−3 . Obviously, by definition g ∗ v = 0, hence

Rk(g) ∗ v = −G.

By Young’s inequality and the inequality ‖v‖1 ≤ 3, we get

‖G‖q ≤ ‖Rk(g)‖q‖v‖1 ≤ 3‖Rk(g)‖q,

or equivalently,

‖Rk(g)‖q ≥ ‖G‖q/3.(19)

By (3) we have vk ∗ v = (3 × 2k)−dv and, therefore,

G(x) = (3 × 2k)−d
∑

s∈Qk

g(shk)v(x − shk).
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On the other hand,

2−dk
∑

s∈Qk

g(shk)v(x − shk) =
∑

s∈Zd

Gs(x),

where Gs := (ei2k(s,x))∗v. This equality was proved in [4] for the univariate case.
The multivariate case can be proved similarly. Denote by E the set of all s ∈ Z

d

such that the set

Ps :=

d
∏

j=1

(|2ksj − 2k−2|, |2ksj + 2k−2|)

is contained in the set [(1 + ε)2k, 2k+1]d, and by F the set of all s ∈ Z
d such that

Ps ∩ {(2k, (1 + ε)2k)d ∪ (2k+1, (1 + ε)2k+1)d} = ∅.

It is easy to verify that, for any s ∈ E,

Gs(x) = λω(2−k)‖ϕ‖−1
p v(x).

We have

‖G‖q ≥
∑

s∈E

‖Gs‖q −
∑

s∈F

‖Gs‖q

≥ |E|λω(2−k)‖ϕ‖−1
p ‖v‖q − |F |λω(2−k)‖ϕ‖−1

p ‖ϕ‖1‖v‖q

= λω(2−k)‖ϕ‖−1
p ‖v‖q(|E| − |F | ‖ϕ‖1),

where |A| denotes the number of elements of the set A. By simple computations
we get the estimates |E| ≥ (1 − ε) − 2 and |F | ≤ 3ε + 4, and ‖ϕ‖1 ≤ C| ln ε|.
Therefore, we can find an ε so that

|E| − |F | ‖ϕ‖1 ≥ Cε.

Thus, we get

‖G‖q � ω(2−k)‖ϕ‖−1
p ‖v‖q.

We have ‖v‖q � 2d(1−1/q)k and ‖ϕ‖p � 2d(1−1/p)k . Hence

‖G‖q � ω(2−k)2(d/p−d/q)k .

This estimate and (19) prove (18) the case p < q.

Proof of Theorem 1. The upper bound follows from Theorem 2. We will establish
the lower bound. Denote by dn(W,X) the Kolmogorov n-width of the set W in
the normed space X (see, e.g., [8] for the definition). By definition we have

Rn(W,X) ≥ dn(W,X).(20)

For dn(SBω
p,θ, Lq), under the assumption of Theorem 1 there holds the following

asymptotical order

dn(SBω
p,θ, Lq) � ω(d/n)n(d/p−d/q)+ .(21)
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This was proved in [6] for the univariate classical Besov-Hölder class SBω
p,∞. The

general case can be proved in a similar way. Combining (20) with (21) gives the
lower bound.
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