
ACTA MATHEMATICA VIETNAMICA 175
Volume 27, Number 2, 2002, pp. 175-183

SOME GEOMETRIC PROPERTIES OF

SPECIAL DOMAINS IN A BANACH SPACE

LE TAI THU

1. Introduction

The Hartogs domains and Reinhardt domains are classical subjects of complex
analysis in several variables. They have been investigated since the beginning
of the 20th century. In particular, much attention has been given to properties
of these domains from the viewpoint of hyperbolic analysis since S. Kobayashi
introduced the notion of the Kobayashi pseudodistance and used it to study
geometric function theory in several complex variables.

In 1981 Kerzman and Rosay [7] and Sibony [17] studied the complete hyper-
bolicity of the Hartogs domain Ωϕ(∆), where ∆ is the open unit disc in C. In
2000 Thai and Duc [19] gave a sufficient condition for the complete hyperbolicity
of the Hartogs domain Ωϕ(X), where X is a complex space. Unfortunately, this
condition is not explicit.

The first aim of this note is to give more explicit conditions for the complete
hyperbolicity of Ωϕ(X), where X is a Banach analytic space.

Up to now, as far as we know, there are the following three classes of (finite
dimensional) complex manifolds having (PEP):

a) Every Siegel domain of the second kind in C
n [16],

b) Every hyperbolic compact Riemann surface [15],

c) Every compact manifold whose universal covering is a polynomially convex
bounded domain of C

n [18].

The second aim of this paper is to show the new class of Banach analytic spaces
which also have (PEP). That is the Hartogs domain Ωϕ(X), where X is a Banach
analytic space.

In [13], Jarnicki and Pflug gave necessary and sufficient conditions on the O(>0)-
domain of holomorphy of pseudoconvex Reinhardt domains in C

n. Ealier, in [11]
Pflug showed that every bounded balanced pseudoconvex Reinhardt domain in
C

n is finitely complete Caratheodory and thus is a O(>0)-domain of holomorphy.

The last aim of this paper is to generalize the above-mentioned results to the
case of Reinhardt domains in a Banach space.
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Here is a brief outline of the content of this paper. In §2 we review some basic
notions needed for our purpose. In §3, §4, and §5 we are going to prove the
following results.

Theorem A. Let X be a Banach analytic space and ϕ an upper-semicontinuous

function on X.

(i) If Ωϕ(X) is complete hyperbolic, then ϕ is continuous.

(ii) Let X be complete hyperbolic and ϕ satisfy the following condition: For

each x ∈ X, there exists a neighbourhood V of x such that for every ε > 0, there

exist functions h1, . . . , hn holomorphic on V for which

a) hj(x
′) 6= 0, ∀x′ ∈ V , ∀j = 1, . . . , n;

b) ϕ(x′) − ε ≤ max
1≤j≤n

{log|hj(x
′)|} ≤ ϕ(x′), ∀x′ ∈ V .

Then Ωϕ(X) is complete hyperbolic.

Theorem B. Let X be a Banach analytic space and ϕ : X −→ [−∞; +∞) an

upper-semicontinuous function on X. Then Ωϕ(X) has (PEP) if and only if X
has (PEP) and ϕ(x) > −∞ for all x ∈ X.

Theorem C. Let Ω be a balanced pseudoconvex Reinhardt domain in a Banach

space B with an unconditional basis
{

en

}∞

n=1
such that the gauge functional hΩ

is continuous. Then Ω is a O(>0)-domain of holomorphy.

2. Basic notions

We shall make use of properties of Banach analytic spaces in Mazet [10]
and properties of the Kobayashi pseudodistance on Banach analytic spaces in
Kobayashi [8] or Franzoni and Vesentini [4].

2.1. We denote the Kobayashi pseudodistance on a Banach analytic space X
by dX . A complex space X is said to be hyperbolic if dX is a distance defined
the topology of X. If X is Cauchy complete for dX , we say that X is complete
hyperbolic. It is known [4] that every infinite dimensional Banach analytic space
contains a domain D such that dD is a distance but it does not define the topology
of D. Moreover [8], every finite dimensional Cauchy complete hyperbolic space
is finitely complete, i.e. every ball in X is relatively compact.

2.2. Let X be a Banach analytic space. A plurisubharmonic function ϕ on X is
an upper-semicontinuous function

ϕ : X −→ [−∞,+∞),

such that ϕ◦σ is either subharmonic or −∞ for every holomorphic map σ : ∆ →
X, where ∆ is the open unit disc in C.

2.3. A subset S of an open subset Z of a Banach space B is said to be pluripolar
if for every x ∈ S there exist a neighbourhood U of x and a plurisubharmonic
function ϕ on U such that ϕ

∣

∣

U∩S
= −∞.
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2.4. A Banach analytic space X is called to have the holomorphic extension
property through closed pluripolar sets ((PEP) for short) if every holomorphic
map

f : Z \ S −→ X,

extends holomorphically over Z, where S is a closed pluripolar subset of a domain
Z of a Banach space B.

2.5. Let B be a Banach space and
{

en

}∞

n=1
⊂ B. We say that

{

en

}∞

n=1
is an

unconditional basis of B if
{

en

}∞

n=1
is a Schauder basis of B and for all x ∈ B,

the series
∞
∑

n=1
e∗n(x)en is unconditional convergent to x, where

{

e∗n
}∞

n=1
denotes

the sequence of coefficient functionals of
{

en

}∞

n=1
. A domain Ω in B is said to be

a Reinhardt domain if
∞
∑

n=1

eiθne∗n(x)en ∈ Ω

for all x =
∞
∑

n=1
e∗n(x)en ∈ Ω and all

{

θn

}∞

n=1
⊂ R.

2.6. Let ϕ be an upper-semicontinuous function on a Banach analytic space X.
Define

Ωϕ(X) =
{

(x, λ) ∈ X × C : |λ| < e−ϕ(x)
}

⊂ X × C.

The domain Ωϕ(X) is called a Banach Hartogs domain.

2.7. Let B be a Banach space and δ0(x) :=
(

1 + ‖x‖2
)−

1

2 , x ∈ B. For every
domain G ⊂ B, put δG := min{ρG, δ0}, where ρG denotes the Euclidean distance
to B \ G. For N ≥ 0, let

O(N)(G, δG) :=
{

f ∈ O(G) : ‖δN
G · f‖∞ < +∞

}

be the space of all holomorphic functions with polynomial growth in G of degree
≤ N (‖ · ‖∞ denotes the supremum norm). The domain G is said to be of type
O(>0)(G ∈ O(>0)) if for each N > 0, G is an O(N)(G, δG) - domain of holomorphy.

3. Proof of Theorem A

Lemma ([3], [1]). Let θ : X → Y be a holomorphic map between Banach analytic

spaces. If Y is complete hyperbolic and for each y ∈ Y there exists a neigh-

bourhood V of y such that θ−1(V ) is complete hyperbolic, then X is complete

hyperbolic.

Proof. We first show that X is hyperbolic. Let {xn} ⊂ X and dX(xn, x0) → 0,
x0 ∈ X. We must prove that xn → x0. Since Y is hyperbolic and dY (θxn, θx0) ≤
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dX(xn, x0), it follows that
{

θxn

}

converges to θx0. Put θx0 = y0. By the hypoth-

esis, we can find a neighbourhood V of y0 such that θ−1(V ) is hyperbolic. On the
other hand, since dY defines the topology of Y , there exists a neighbourhood W
of y0 such that dY (W,∂V ) > 0. Thus there exists δ > 0 such that f(δ∆) ⊂ V for
every holomorphic map f from ∆ into Y such that f(0) ∈ W , where ∆ denotes
the open unit disc in C. We may assume that the neighbourhood W has the from

W = U(yo, r) =
{

y ∈ Y : dY (y0, y) < r
}

and xn ∈ θ−1(W ) for all n ≥ 1.

Put W ′ = U(y0, r/2). To prove that dθ−1(W )(xn, x0) → 0 and hence xn → x0,
we only need to show that there exist positive numbers c, s such that

dX(p, q) ≥ min
{

s, cdθ−1(W )(p, q)
}

, for all p, q ∈ θ−1(W ′).(*)

Consider a holomorphic chain joining p and q:
{

fi

}k

i=1
, fi : ∆ → X are holomor-

phic, fi(0) = pi−1, fi(ai) = pi, i = 1, . . . , k, where p0 = p; pk = q; a1, . . . , ak ∈ ∆.

There are only two cases:

(1) pj 6∈ θ−1(W ′) for some j = 1, . . . , k. We have

k
∑

i=1

d∆(0, ai) ≥
k

∑

i=1

dX

(

fi(0), fi(ai)
)

≥
k

∑

i=1

dY

(

θfi(0), θfi(ai)
)

≥ dY

(

y0, θfj(aj)
)

≥ r/2.

(2) p0, . . . , pk ∈ θ−1(W ′). Then θfi(δ∆) ⊆ V for all i = 1, . . . , k. If aj 6∈ (δ/2)∆
for some j = 1, . . . , k. Then

k
∑

i=1

d∆(0, ai) ≥ d∆(0, δ/2).

If ai ∈ (δ/2)∆ for i = 1, . . . , k, then there is c > 0 such that

d∆(y, z) ≥ cdδ∆(y, z) for all y, z ∈ (δ/2)∆.

Thus

k
∑

i=1

d∆(0, ai) ≥ c

k
∑

i=1

dδ∆(0, ai) ≥ c

k
∑

i=1

dθ−1(W )(fi(0), fi(ai))

= c

k
∑

i=1

dθ−1(W )(pi, pi−1)

≥ cdθ−1(W )(p, q).

So there exist c, s > 0 with the required property.
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Finally, we prove that X is complete hyperbolic. Let {xn} be a Cauchy se-
quence in X. It is easy to see that {θxn} is also a Cauchy sequence in Y .
We may assume that {θxn} converges to y0 ∈ Y . By the hypothesis, we can
find a neighbourhood V of y0 such that θ−1(V ) is complete hyperbolic. We let
W = U(y0, r) ⊂ V . Without loss of generality we can assume that xn ∈ θ−1(W ′)

for every n ≥ 1, where W ′ = U
(

y0,
r

2

)

. Since {xn} is a Cauchy sequence, there

exists n0 ≥ 1 such that dX(xm, xn) < s for all m,n ≥ n0. By the inequality (*),
it implies that

dX(xm, xn) ≥ cdθ−1(W )(xm, xn)

≥ cdθ−1(V )(xm, xn) for all m,n ≥ n0.

This implies that {xn} is a Cauchy sequence in a complete hyperbolic space
θ−1(V ). Hence {xn} converges to a point in θ−1(V ).

We now prove Theorem A.

(i) Assume that Ωϕ(X) is Cauchy complete hyperbolic but ϕ is not continuous
at x0 ∈ X. Since ϕ is upper semicontinuous, we can find a sequence {xk} ⊂ X
which converges to x0 such that

e−ϕ(x0) < r < s < e−ϕ(xk) for k ≥ 1.

Let λ0 =
e−ϕ(x0)

r
, i.e., |rλ0| = e−ϕ(x0). Then (x0, rλ0) 6∈ Ωϕ(X). Choose λ > 0

such that

|rλ| < e−ϕ(x0),

and choose α > 0 such that

|rλ| = e−ϕ(x0)−α.

Take δ > 0 such that e−ϕ(x0)−α ≤ e−ϕ(xk), ∀ ‖x − x0‖ < δ. We have

dΩϕ(X)

(

(xk, rλ0), (xj , rλ0)
)

≤ dΩϕ(X)

(

(xk, rλ0), (x0, rλ0)
)

+ dΩϕ(X)

(

(x0, rλ0), (xj , rλ0)
)

≤ dB(x0,δ)(xk, x0) + dB(x0,δ)(x0, xj).

Thus
{

(xk, rλ0)
}

is a Cauchy sequence in Ωϕ(X), but
{

(xk, rλ0)
}

converges to
(x0, rλ0) 6∈ Ωϕ(X).

(ii) Consider the canonical projection

π : Ωϕ(X) −→ X

(x, λ) 7−→ x.

For every x ∈ X, there exists a neighbourhood V of x such that ∀ε > 0,
∃ h1, . . . , hn ∈ H(V ) such that

a) hj(x) 6= 0, ∀j = 1, . . . , n; and ∀x ∈ V ;

b) ϕ(x) − ε < max
{

log|hj(x)| : 1 ≤ j ≤ n
}

< ϕ(x).
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Without loss of generality we can assume that V = B(x0, δ), δ > 0. Choose εk ↓ 0.
By the hypothesis, for each k ≥ 1, we can find hk

j ∈ H(V ), j = 1, 2, . . . , nk, such

that hk
j (x) 6= 0 for every x ∈ V , and

ϕ(x) − εk < max
{

log |hk
j (x)| : j = 1, 2, . . . , nk

}

< ϕ(x), ∀x ∈ V.

For each k there exists 1 ≤ jk ≤ nk such that

ϕ(xk) − εk ≤ log |hk
jk

(xk)| < ϕ(xk)

or

eϕ(xk)−εk ≤ |hk
jk

(xk)| < eϕ(xk).

Put

fk(x, λ) = hk
jk(x)λ, for (x, λ) ∈ π−1(V ).

Since

π−1(V ) ⊂
{

(x, λ) : |λ| < e−ϕ(x), x ∈ V
}

,

we have

|fk(x, λ)| = |hk
jk

(x)| |λ| < eϕ(x)e−ϕ(x) = 1, ∀x ∈ V.

Hence

sup
π−1(V )

|fk| ≤ 1, for k ≥ 1.

Obviously, fk(x, 0) = 0 for x ∈ V and k ≥ 1.

Now we prove that π−1(V ) is complete hyperbolic.

Assume that {(xk, λk)} ⊂ π−1(V ) is a Cauchy sequence for dπ−1(V ). Since

π−1(V ) is bounded, it follows that {(xk, λk)} is a Cauchy sequence in B. Hence

(xk, λk) → (x0, λ0) ∈ π−1(V ).

Assume that (x0, λ0) ∈ ∂π−1(V ), i.e., |λ0| = e−ϕ(x0). We have

lim
k→∞

dπ−1(V )

(

(xk, λk), (xk, 0)
)

≥ lim Cπ−1(V )

(

(xk, λk), (xk, 0)
)

≥ lim log
1 + |fk(xk, λk)|

1 − |fk(xk, λk)|
= +∞,

where Cπ−1(V ) denotes the Caratheodory distance of π−1(V ). This is impossible.

Hence (x0, λ0) 6∈ ∂π−1(V ), i.e., {(xk, λk)} is the convergent sequence in π−1(V ).

Remark. There exists a continuous plurisubharmonic function ϕ in ∆2
R =

{(z1, z2) ∈ C
2 : |z1| < R, |z2| < R} for some R > 0 such that Ωϕ(∆2

R) is
not complete hyperbolic.

Let g be the continuous logarithmically-plurisubharmonic function in C
2 which

constructed by M. Jarnicki and P. Pflug [14]. Then {z ∈ C
2 : g(z) < 1} is bounded

and has a connected component Z such that Z is not complete hyperbolic [14].
Choose R > 0 such that {z ∈ C

2 : g(z) < 1} ⊂ ∆2
R. Consider the Hartogs domain
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Ωϕ(∆2), where ϕ = logg. Since {(z, 1) : z ∈ Z}, it follows that Ωϕ(∆2
R) is not

complete hyperbolic.

4. Proof of Theorem B

(⇒) Assume that Ωϕ(X) has (PEP).

Since X is contained in Ωϕ(X) as a closed Banach analytic subspace, it follows
that X has (PEP). Since X contains no complex lines, ϕ(x) > −∞ for all x ∈ X.

It remains to show that ϕ is plurisubharmonic. Given σ : ∆ → X is a holo-
morphic map. In order to prove the subharmonicity of ϕ ◦ σ it suffices to check
that Ωϕ◦σ(∆) is pseudoconvex [6].

Assume that g = (g1, g2) : ∆∗ → Ωϕ◦σ(∆) is holomorphic, where ∆∗ = ∆\{0}.
Extend g1 to a holomorphic map ĝ1 : ∆ → ∆. Consider the holomorphic map
θ : Ωϕσ(∆) → Ωϕ(X) given by

θ(x, λ) = (σ(x), λ) for (x, λ) ∈ Ωϕσ(∆).

Since Ωϕ(X) has the (PEP), f = θ ◦ g can be extended to a holomorphic map

f̂ = (f̂1, f̂2) : ∆ → Ωϕ(X). By the relation f̂1 ◦σ = g1, it follows that f̂1 ◦σ = ĝ1.
Thus the form

ĝ(x) =
(

ĝ1(x), f̂2(x)
)

for x ∈ ∆,

defines a holomorphic extension of g. Since Ωϕσ(∆) is a domain in C
2, it follows

that Ωϕσ(∆) is pseudoconvex.

(⇐) Now assume that X has (PEP) and ϕ is plurisubharmonic on X with
ϕ(x) > −∞ for all x ∈ X. Suppose that

f = (f1, f2) : Z \ S −→ Ωϕ(X)

is a holomorphic map, where Z is an open set in a Banach space B and S is
a closed pluripolar subset of Z. By [2], we may assume that B ∼= C

n. By the
hypothesis, f1 can be extended to a holomorphic map

f̂1 : Z −→ X.

Assume that x0 is an arbitrary point of S. Since ϕ(x0) > −∞, it follows from
[6] that e−aϕ is integrable at x0 for all a > 0. Choose a neighbourhood U of x0

such that
∫

U

e−3ϕ0f(x)dx < +∞.

Since |f2(x)|3 < e−3ϕ0f(x) for all x ∈ U \ S, it follows that f2 ∈ L3(U). On
the other hand, since λ2n− 3

2

= 0 [9], where λα(E) denotes the α-dimensional

Hausdorff measure of E, α > 0, f2 can be extended to a holomorphic function f̂2

on U by [5]. Hence f can be extended to a holomorphic map f̂ : U → X × C.
Since log |f2(x)| + ϕ(f1(x)) < 0 for x ∈ U , by the maximum principle, we have

log |f̂2(x)| + ϕ(f̂1(x)) < 0 for x ∈ U.
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Thus f̂ : U −→ Ωϕ(X). Since x0 is arbitrary, f is extended to a holomorphic
map from Z into Ωϕ(X).

5. Proof of Theorem C

(i) Let z0 ∈ ∂Ω and ε > 0. Consider the cone

V =
{

tz
∣

∣t > 0 and z ∈ ∂Ω such that ‖z − z0‖ < ε
}

.

By the continuity of hΩ, it is easy to see that V is an open neighbourhood of z0.

Put Bn = Span (e1, . . . , en) for n ≥ 1. Since
∞
⋃

n=1
Bn is dense in B, there exists

z′ ∈ V ∩Bn such that ‖z′ − z0‖ < ε. Writing z′ = tz, t > 0 and z ∈ ∂Ω such that

‖z − z0‖ < ε. We have z ∈ Bn. Thus
∞
⋃

n=1
∂(Ω ∩ Bn) is dense in ∂Ω.

(ii) Let z0 ∈
∞
⋃

n=1
∂(Ω ∩ Bn). Take n such that z0 ∈ ∂(Ω ∩ Bn). Given N > 0,

by [12] there exists g ∈ O(N)(Ω ∩ Bn, δΩ∩Bn
) such that g cannot be extended

holomorphically to z0. Then f = g · πn ∈ O(Ω) and f cannot be extended

holomorphically to z0. Moreover, f ∈ O(N)(Ω, δΩ) because

ρ(z,B \ Ω) ≤ ρ(z,B \ π−1
n (Ω ∩ Bn)) = ρ(πnz,Bn \ Ω ∩ Bn)

for z ∈ Ω.

(iii) Choose a countable dense subset {zn} of
⋃

n≥1
∂(Ω ∩ Bn) and a sequence

εn ↓ 0. For n,m ≥ 1 consider the Banach space Fn,m given by

Fn,m =
{

f ∈ O(Ω ∪ B(zn, εm)) : f
∣

∣

Ω
∈ O(N)(Ω, δΩ),

∥

∥f
∥

∥

B(zn,εm)
< ∞

}

.

Let Rn,m : Fn,m −→ O(N)(Ω, δΩ) be the restriction map. Then Im Rn,m 6=

O(N)(Ω, δΩ) for n, m ≥ 1. By the Baire theorem,
⋃

Im Rm,n 6= O(N)(Ω, δΩ).

Thus there exists f ∈ O(N)(Ω, δΩ) which cannot be extended holomorphically
through every point of ∂Ω.
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