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ARCWISE CONNECTEDNESS OF THE SOLUTION

SETS OF A SEMISTRICTLY QUASICONCAVE

VECTOR MAXIMIZATION PROBLEM

NGUYEN QUANG HUY

Abstract. This paper presents some new facts on arcwise connectedness and
contractibility of the solution sets in semistrictly quasiconcave vector maxi-
mization problems, where at least one of the objective functions is strictly
quasiconcave.

1. Introduction

Topological properties of the solution sets of vector optimization (VOP) prob-
lems have been investigated intensively (see [1]–[18], [20]–[29], and references
therein). The following four fundamental properties are of frequent consider-
ation: compactness, contractibility, arcwise connectedness, and connectedness.
Compactness of the weakly efficient solution set of a convex VOP problem has
been characterized in [9]. Contractibility of the solution sets in convex VOP was
studied in [23], [15], [18] and [2]. Arcwise connectedness of the solution sets in
quasiconcave VOP has been addressed in [5]–[7] and [20]. Connectedness of the
solution sets in several basic classes of problems such as convex VOP problems,
quasiconcave VOP problems, linear fractional VOP problems, strongly convex
VOP problems, etc., has been studied by several different methods.

The aim of this paper is to present some new facts on arcwise connected-
ness and contractibility of the solution sets in semistrictly quasiconcave vector
maximization problems, where at least one of the objective functions is strictly
quasiconcave.

Some preliminaries will be given in Section 2. The arcwise connectedness of the
solution sets is studied in Section 3. In the Section 4 we discuss the contractibil-
ity of the solution sets of a bicriteria semistrictly quasiconcave maximization
problem.
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2. Preliminaries

Let R
m be the m-dimensional Euclidean space which is partially ordered by

the cone R
m
+ = {u = (u1, u2, . . . , um) : ui ≥ 0 for all i = 1, 2, . . . ,m}. For

any ui = (ui
1, u

i
2, . . . , u

i
m) ∈ R

m (i = 1, 2), we write u1 ≤ u2 (resp., u1 < u2) if
u2 − u1 ∈ R

m
+ (resp., u2 − u1 ∈ R

m
+ \ {0}). If u2 − u1 belongs to the interior of

R
m
+ , then we write u1 � u2.

Consider the following VOP problem

(P )

{
Maximize F (x) = (f1(x), f2(x), . . . , fm(x))

subject to x ∈ X,

where the feasible region X ⊂ R
n is nonempty, compact, convex, and the objective

functions fi : X → R (i = 1, 2, . . . ,m) are continuous on X.

Definition 2.1. An efficient solution (resp., a weakly efficient solution) of
(P ) is a vector x ∈ X such that there exists no y ∈ X satisfying F (x) < F (y)
(resp., F (x) � F (y)). The set of all the efficient solutions (resp., weakly efficient
solutions) of (P ) is denoted by E(P ) (resp., by Ew(P )).

Definition 2.2. The set F (E(P )) = {F (x) : x ∈ E(P )} ⊂ R
m is called the

efficient frontier set of (P ).

Definition 2.3. [19, p. 238] (cf. [7], [26]) A real function f defined on a convex
subset X ⊂ R

n is said to be

(i) quasiconcave on X, if

f(tx1 + (1 − t)x2) ≥ min{f(x1), f(x2)} for all x1, x2 ∈ X, and t ∈ (0, 1);

(ii) semistrictly quasiconcave on X, if f is quasiconcave and

f(tx1 + (1 − t)x2) > min{f(x1), f(x2)} for all x1, x2 ∈ X satisfying f(x1) 6=
f(x2), and for all t ∈ (0, 1);

(iii) strictly quasiconcave on X, if

f(tx1 + (1 − t)x2) > min{f(x1), f(x2)} for all x1, x2 ∈ X satisfying x1 6= x2,
and for all t ∈ (0, 1).

Note that

strict quasiconcavity ⇒ semistrict quasiconcavity ⇒ quasiconcavity,

but the reverse implications are not true in general.

Example 2.1. Let X = [−2, 2] ⊂ R and

f(x) =





0 for every x ∈ [−2, 0],

x for every x ∈ (0, 1],

1 for every x ∈ (1, 2].

We check at once that f is continuous and quasiconcave on X, but it is not
semistrictly quasiconcave on X.
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Example 2.2. Let X = [0, 2] ⊂ R and

f(x) =

{
x for every x ∈ [0, 1],

1 for every x ∈ (1, 2].

Note that f is continuous and semistrictly quasiconcave on X, but it is not strictly
quasiconcave on X.

Example 2.3. Let X = [−1, 1] ⊂ R and f(x) = −x2 + 1 for every x ∈ X. It is
clear that f is continuous and strictly quasiconcave on X. Note that the function
g(x) = −|x| + 1 is also continuous and strictly quasiconcave on X.

We observe that some authors call the property described in part (ii) (resp., in
part (iii)) of Definition 2.3 strict quasiconcavity (resp., strong quasiconcavity).

Lemma 2.1. (See [7, Theorem 5]) If f1 and f2 are semistrictly quasiconcave

functions on X, then the efficient frontier set of (P ), where m = 2, is arcwise

connected.

Recall that a set A ⊂ R
n is said to be arcwise connected if for any u ∈ A and

v ∈ A there exists a continuous mapping γ : [0, 1] −→ A satisfying γ(0) = u, and
γ(1) = v. If γ is such a mapping, then we say that γ is a continuous curve in A
joining u and v.

Definition 2.4. A set A ⊂ Rn is said to be contractible if there exists a
continuous mapping H : A×[0, 1] −→ A and a point x0 ∈ A such that H(x, 0) = x
and H(x, 1) = x0 for every x ∈ A.

Definition 2.5. A subset B ⊂ A is said to be a retract of A if there exists a
continuous map h, called a retraction, from A into B such that h(x) = x whenever
x ∈ B.

It is well known that any convex set is contractible, and any retract of a
contractible set is contractible. It is also well known that any contractible set is
arcwise connected.

3. Arcwise connectedness of the solution sets

Unless otherwise stated, in the sequel we shall assume that the functions fi (i =
1, 2, . . . ,m) in the definition of (P ) are quasiconcave on X.

Define I = {1, 2, . . . ,m}. Given any i ∈ I, j ∈ I, 2 ≤ j ≤ i, and α ∈ R, we
consider the following VOP problem:

(P i
j α)

{
Maximize (f1(x), . . . , fj−1(x), fj+1(x), . . . , fi(x))

subject to x ∈ X, fj(x) ≥ α.

It is understood that if j = i then the symbol fj+1(x) is absent in the description
of this problem.

Let E(P i
j α) (resp., Ew(P i

j α)) stand for the efficient solution set (resp., the

weakly efficient solution set) of (P i
jα).
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Lemma 3.1. Suppose that there exists i0 ∈ I such that fi0 is a strictly quasicon-

cave function on X. Let i ∈ I and j ∈ I be such that i0 ≤ i, j 6= i0, 2 ≤ j ≤ i.
Then, for any α ∈ R,

E(P i
j α) ⊂ E(P ).

Proof. Let i0, i, j, α be as in the statement of the lemma. Let x̄ ∈ E(P i
j α). We

have to show that x̄ ∈ E(P ). To obtain a contradiction, suppose that there exist
i1 ∈ I and y ∈ X such that fi(y) ≥ fi(x̄) for every i ∈ I, and fi1(y) > fi1(x̄).

Define z =
1

2
y +

1

2
x̄. By the convexity of X, z ∈ X. As fi is quasiconcave and

fi0 is strictly quasiconcave, we have

fi(z) ≥ min{fi(y), fi(x̄)} = fi(x̄) (for every i ∈ I),(3.1)

fi0(z) > min{fi0(y), fi0(x̄)} = fi0(x̄).(3.2)

From (3.1) we deduce that fj(z) ≥ fj(x̄) ≥ α. This implies that z is a feasible
point of (P i

j α). Then, from (3.1), (3.2) and the assumption that j 6= i0 it follows

that x̄ /∈ E(P i
jα), a contradiction. We have thus proved that E(P i

j α) ⊂ E(P ).

Lemma 3.2. Assume that there exists i0 ∈ I such that fi0 is a strictly quasicon-

cave function. Then, E(P ) is homeomorphic to F (E(P )).

Proof. Since the map F : X −→ R
m is continuous, the restriction

F∗ : E(P ) −→ F (E(P ))(3.3)

of F to E(P ) with values in F (E(P )) is also continuous. We claim that the map
in (3.3) is one-to-one. It suffices to prove that for any x̄, x̂ ∈ E(P ), x̄ 6= x̂, we
have F (x̄) 6= F (x̂). On the contrary, suppose there exist x̄, x̂ ∈ E(P ), x̄ 6= x̂, such

that F (x̄) = F (x̂). Clearly, z :=
1

2
x̄ +

1

2
x̂ belongs to X. By the quasiconcavity

of fi (i ∈ I) and the strict quasiconcavity of fi0, we have

fi(z) ≥ min{fi(x̂), fi(x̄)} = fi(x̄) (for every i ∈ I),

fi0(z) > min{fi0(x̂), fi0(x̄)} = fi0(x̄).

This implies that x̄ /∈ E(P ), a contradiction. Our claim has been proved.

Consider the inverse map of the one in (3.3):

G∗ : F (E(P )) −→ E(P ).(3.4)

We proceed to prove that the map in (3.4) is continuous. Let there be given
any point ū ∈ F (E(P )) and any sequence {uk} in F (E(P )) such that uk −→ ū
as k → ∞. We set x̄ = G∗(ū) and xk = G∗(u

k) for every k ∈ N . Then
x̄ ∈ E(P ) ⊂ X and xk ∈ E(P ) ⊂ X for every k ∈ N . It suffices to show that the
sequence {xk} converges in E(P ) to x̄.

To obtain a contradiction, suppose that {xk} does not converge in E(P ) to x̄.

Then there exist ε > 0 and a subsequence {xk′

} of {xk} such that ‖xk′

− x̄‖ ≥ ε

for all k′. As X is compact, there is no loss of generality in assuming that {xk′

}
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converges to a point x̂ ∈ X. Obviously, ‖x̂ − x̄‖ ≥ ε. Since x̄ = G∗(ū) and
x̄ ∈ E(P ), we have

ū = F∗(x̄) = F (x̄).(3.5)

Similarly, since xk = G∗(u
k) and xk ∈ E(P ) for every k ∈ N , we have

uk′

= F∗(x
k′

) = F (xk′

) for every k′.(3.6)

On one hand, from (3.5) and (3.6) we obtain

F (xk′

) = uk′

−→ ū = F (x̄) (as k′ → ∞).

On the other hand, from (3.6) and the continuity of F we deduce that

ū = F (x̂).

Consequently,

F (x̄) = ū = F (x̂).(3.7)

Since x̄ ∈ E(P ), (3.7) implies that there exists no y ∈ X with the property
that F (y) > F (x̂). This means that x̂ ∈ E(P ). Hence, on account of (3.7), we
have F∗(x̄) = F∗(x̂). Because F∗ is an one-to-one map, we obtain x̂ = x̄. This
contradicts the fact that ‖x̂ − x̄‖ ≥ ε > 0.

We have thus shown that F∗ is a homeomorphism.

The following lemma follows directly from Lemmas 2.1 and 3.2.

Lemma 3.3. Let m = 2. If the functions fi (i = 1, 2) are semistrictly quasicon-

cave on X, and one of them is strictly quasiconcave, then the efficient solution

set E(P ) is arcwise connected.

Now we are in the position to establish the main result of this section.

Theorem 3.1. Suppose that the functions fi (i = 1, 2, . . . ,m) are semistrictly

quasiconcave on X. Suppose that m ≥ 2. If there exists i0 ∈ I such that fi0 is

strictly quasiconcave, then the efficient solution set E(P ) is arcwise connected.

Proof. We prove this theorem by induction on the number of the objective func-
tions.

For m = 2, the assertion of the theorem follows from Lemma 3.3. By renum-
bering the objective functions, if necessary, we can assume that i0 = 1.

Suppose that the assertion is true for all the integers m ≤ k, where k ≥ 2 is a
given integer. We have to prove that the assertion is true for m = k + 1, that is
the efficient solution set E(P k+1) of the VOP problem

(P k+1)

{
Maximize (f1(x), f2(x), . . . , fk+1(x))

subject to x ∈ X

is arcwise connected.
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We define

f
¯2 = min

x∈X
f2(x), f̄2 = max

x∈X
f2(x),

and consider the VOP problem

(P k+1
2 α)

{
Maximize (f1(x), f3(x), . . . , fk+1(x))

subject to x ∈ X, f2(x) ≥ α,

where α ∈ [f
¯2, f̄2].

Let x̄ ∈ E(P k+1) and ȳ ∈ E(P k+1). We set ᾱ = f2(x̄) and β̄ = f2(ȳ). Then

we have x̄ ∈ E(P k+1
2 ᾱ). On the contrary, suppose that x̄ /∈ E(P k+1

2 ᾱ). It is

clear that x̄ is a feasible point of (P k+1
2 ᾱ). Since x̄ /∈ E(P k+1

2 ᾱ), there exist
i1 ∈ {1, 2, . . . , k + 1} \ {2} and y ∈ X such that f2(y) ≥ ᾱ = f2(x̄),

fi(y) ≥ fi(x̄) for every i ∈ {1, 2, . . . , k + 1} \ {2}, and fi1(y) > fi1(x̄).

From this we see that x̄ /∈ E(P k+1), a contradiction. We have thus proved that

x̄ ∈ E(P k+1
2 ᾱ).

Similarly,

ȳ ∈ E(P k+1
2 β̄).

Consider the bicriteria optimization problem
{

Maximize (f1(x), f2(x))

subject to x ∈ X,
(3.8)

and the scalar optimization problems:
{

Maximize f1(x)

subject to x ∈ X, f2(x) ≥ ᾱ,
(3.9)

{
Maximize f1(x)

subject to x ∈ X, f2(x) ≥ β̄.
(3.10)

Since x̄ is a feasible point for (3.9), from the compactness of X and the continuity
of f2 we deduce that the feasible region of (3.9) is nonempty and compact. Note

that (3.9) is a weighted problem of (P k+1
2 ᾱ) with the weight (1, 0, . . . , 0). Since

f1 is strictly quasiconcave, (3.9) has a unique solution x̃. We check at once that

x̃ is an efficient solution of (P k+1
2 ᾱ). Similarly, since x̃ is an efficient solution for

the section

{x ∈ X : f2(x) ≥ ᾱ},

it is an efficient solution of (3.8). Likewise, there exists a unique solution ỹ of

(3.10), which is an efficient solution of both the problems (P k+1
2 β̄) and (3.8).

Applying Lemma 3.3 to problem (3.8) we deduce that there exists a continuous
curve in the solution set of (3.8) joining x̃ and ỹ. Since f1 is strictly quasiconcave
and f2 is semistrictly quasiconcave, the efficient solution set of (3.8) is a subset
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of E(P k+1). So the just mentioned curve is contained in E(P k+1). Since x̄ and

x̃ belong to E(P k+1
2 ᾱ), by the induction hypothesis, there exists a continuous

curve in E(P k+1
2 ᾱ) joining x̄ and x̃. Similarly, there exists a continuous curve

in E(P k+1
2 β̄) joining ȳ and ỹ. According to Lemma 3.1, we have E(P k+1

2 ᾱ) ⊂

E(P k+1) and E(P k+1
2 β̄) ⊂ E(P k+1). Hence the just mentioned two curves are

contained in E(P k+1). From what has been said, we conclude that there exists
a continuous curve in E(P k+1) joining x̄ and ȳ. The proof of the theorem is
complete.

Since F is a continuous map, the following corollary follows directly from
Theorem 3.1.

Corollary 3.1. Under the assumptions of Theorem 3.1, the set F (E(P )) is ar-

cwise connected.

Theorem 3.2. Under the assumptions of Theorem 3.1, the weakly efficient so-

lution set Ew(P ) is arcwise connected.

Proof. Let a ∈ Ew(P ) and b ∈ Ew(P ). Consider the scalar optimization problem




Maximize g(x) := f1(x) + f2(x) + · · · + fm(x)

subject to x ∈ X, f1(x) ≥ f1(a), f2(x) ≥ f2(a), . . . ,

fm(x) ≥ fm(a).

(3.11)

Note that a is a feasible point for (3.11). Since the feasible region of (3.11) is
compact, from the continuity of g(·) it follows that (3.11) has a solution x̃.

We claim that x̃ ∈ E(P ). Otherwise there exist i1 ∈ I and y ∈ X such that

fi(y) ≥ fi(x̃) for every i ∈ I \ {i1}, fi1(y) > fi1(x̃).

Then fi(y) ≥ fi(x̃) ≥ fi(a) for all i ∈ I. So y is a feasible point for (3.11). Since

g(y) = f1(y) + f2(y) + · · · + fm(y)

> f1(x̃) + f2(x̃) + · · · + fm(x̃)

= g(x̃),

we see that x̃ cannot be a solution of (3.11), a contradiction. We have thus proved
that x̃ ∈ E(P ).

Fix any t ∈ [0, 1]. It is clear that xt := tx̃ + (1 − t)a belongs to X. We
have xt ∈ Ew(P ). On the contrary, suppose that there exists y ∈ X such that
fi(y) > fi(xt) for all i ∈ I. Combining this with the semistrict quasiconcavity of
fi (i ∈ I) we deduce that

fi(y) > min{fi(x̃), fi(a)} = fi(a)

for all i ∈ I. Then a /∈ Ew(P ), a contradiction. Therefore xt ∈ Ew(P ) for any
t ∈ [0, 1]. This means that line-segment [a, x̃] is contained in Ew(P ).

Similarly, there exists ỹ ∈ E(P ) such that [b, ỹ] ⊂ Ew(P ).
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According to Theorem 3.1, there exists continuous curve in E(P ) joining x̃ and
ỹ.

Since E(P ) ⊂ Ew(P ), from what has been said we conclude that there exists
a continuous curve in Ew(P ) joining a and b. The proof is complete.

Note that if all the objective functions fi (i = 1, . . . ,m) are strictly quasicon-
cave then the efficient solution set E(P ) is contractible (see [16]).

4. Contractibility of the solution sets in the case m = 2

In this section we consider problem (P ) under the assumption that m = 2, f1

and f2 are semistrictly quasiconcave continuous functions on X. Let f
¯2

and f̄2 be
defined as in the preceding section. For every α ∈ [f

¯2, f̄2], we consider the scalar
optimization problem

{
Maximize f1(x)

subject to x ∈ X, f2(x) ≥ α.
(4.1)

Denote the solution set of (4.1) by S(α).

Lemma 4.1. If f1 is strictly quasiconcave then it holds

E(P ) =
⋃

{S(α) : α ∈ [f
¯2

, f̄2]}.(4.2)

Besides, the map S : [f
¯2

, f̄2] −→ 2E(P ), α −→ S(α), is single-valued and contin-

uous on [f
¯2

, f̄2].

Proof. By [24, Theorem 1], the representation (4.2) holds. The strict quasicon-
cavity of f1 implies that, for every α ∈ [f

¯2, f̄2], the solution set S(α) is a singleton.
From the upper semicontinuity of S(·) (see [24, Lemma 3]) we deduce that S(·)
is continuous on [f

¯2, f̄2].

Theorem 4.1. If f1 is strictly quasiconcave on X then E(P ) is a retract of X.

In particular, E(P ) is contractible.

Proof. First we recall that the map S(·) in Lemma 4.1 is single-valued. For every
x ∈ X, it holds f2(x) ∈ [f

¯2, f̄2]. By (4.2), vector S(f2(x)) belongs to E(P ).

We will show that the map h : X −→ E(P ) defined by setting h(x) = S(f2(x))
for all x ∈ X, is a retraction. By Lemma 4.1, h is continuous on X. It suffices
to prove that h(x̄) = x̄ for every x̄ ∈ E(P ). Let x̄ ∈ E(P ), and let α = f2(x̄).
We claim that x̄ is a solution of (4.1). Indeed, if there exists y ∈ X such that
f2(y) ≥ α = f2(x̄) and f1(y) > f1(x̄) then x̄ /∈ E(P ), a contradiction. As x̄ is the
unique solution of (4.1), we have S(α) = x̄. Therefore h(x̄) = S(f2(x̄)) = x̄. We
have thus proved that E(P ) is a retract of X. From the convexity of X it follows
that E(P ) is contractible.
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Note added in revision

This paper was written independently from the important paper of J. Benoist
(“Contractibility of the efficient set in strictly quasiconcave vector maximization”,
J. Optim. Theory Appl. 110, August 2001, pp. 325-336). Theorem 3.1 of that
paper covers Theorems 3.1 and 4.1 in this paper. We are aware of that work of
J. Benoist when the revised version of this paper has been done. Note that our
proofs are quite different from the proof by Benoist. Actually, Benoist’s proof
is based on the concept of sequentially strictly quasiconcave sets introduced by
himself in [1], while our proofs are based on the method of using the auxiliary
problems (P i

j α) due to Choo and Atkins [6].
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