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STRASSEN’S LOCAL LAW FOR DIFFUSION PROCESSES

UNDER STRONG TOPOLOGIES

M’HAMED EDDAHBI AND MODESTE N’ZI

Abstract. Under the assumption of pathwise uniqueness, we prove Strassen
type functional local law of the iterated logarithm for solutions of stochastic
differential equations in modulus spaces defined in term of the Young function
M2(x) = exp(x2) − 1 and the modulus of continuity ϕ0(t) = (t log(1/t))1/2.

1. Introduction

Let W = {(W1(t), . . . ,Wd(t)) : t ≥ 0} be a standard Brownian motion on a
complete probability space (Ω, F , P) and Cm ([0, 1]) be the space of all R

m–
valued continuous functions defined on [0, 1]. A classical result of Strassen [12]
states that {W1(n·)/

√
2n log log n : n ≥ 3} is almost surely relatively compact

in C1 ([0, 1]) with limit set points K = {f ∈ H : µ(f) ≤ 1}, where H stands
for the Cameron–Martin space of absolutely continuous functions with Lebesgue
derivative ḟ and

µ(f) =
1

2

1
∫

0

|ḟ(s)|2ds.

An immediate consequence of the above result is the usual law of the iterated
logarithm

P

[

lim sup
n→∞

W1(n)√
2n log log n

= 1
]

= 1.(1)

A time inversion argument which consists of noting that
{

tW
(1

t

)

: t > 0
}

is a

Brownian motion yields the following local version of (1):

P









lim sup
n→∞

W1

( 1

n

)

√

2

n
log log n

= 1









= 1.(2)
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In the same spirit, by defining a time inversion transformation on C1 ([0,∞[),
Gantert [6] proved a local version of Strassen’s theorem without the help of the
connection between large deviations and laws of the iterated logarithm which can
be found for instance in Stroock and Varadhan [13] and Baldi [1].

Recently N’zi [10] derived by the way of large deviations an analogous result
for Lévy’s area process. Indeed, even though this process shares many properties
with the Brownian motion, it seems that it doesn’t satisfy the time inversion one.
This was pointed out by Helmes [7] who studied the non–functional local law of
the iterated logarithm for a class of stochastic integrals containing Lévy’s area
process.

The aim of this paper is to generalize the results of Gantert [6] and N’zi [10]
in two directions: we deal with a large class of diffusion processes and consider
stronger topologies than the uniform one. The proof follows the same line in
Baldi [1] and uses a recent result of Eddahbi [5].

We now give the context of our study.

Let us set Φ =
{

ϕ ∈ C1([0, 1]) : ϕ(t) > 0 on ]0, 1] and ϕ(0) = 0
}

. For every
ϕ and ψ in Φ, we denote by Bϕψ,M2,q

the Banach space of Borelian functions

f : [0, 1] −→ R
m such that

‖f‖ϕψ,M2,q
:= ‖f‖∞ + ‖f‖ϕ + ‖f‖M2

+





1
∫

0

(ωM2
(f, t)

ψ(t)

)q dt

t





1

q

< +∞

where

‖f‖∞ = sup
x∈[0,1]

|f(x)| ,

‖f‖ϕ = sup
0≤s<t≤1

|f(t) − f(s)|
ϕ(|t− s|) ,

where ‖f‖M2
stands for the Orlicz–norm associated with the Young function

M2(x) = exp(x2) − 1, defined by

‖f‖M2
= sup

p≥1

‖f‖Lp([0,1])√
p

and ωM2
(f, t) is the modulus of continuity in Orlicz norm given by

ωM2
(f, t) = sup

0≤h≤t
‖4hf‖M2

with

4hf(x) = 11[0,1−h](x)[f(x+ h) − f(x)], for h ∈ [0, 1].

Let us note that Bϕψ,M2,q
is a subspace of

Cϕm([0, 1]) =
{

f ∈ Cm([0, 1]) : ‖f‖∞ + ‖f‖ϕ < +∞
}

.

If ϕ(t) = tα then Cϕm([0, 1]) is the Hölder space of order α. When q = +∞, we
simply write Bϕψ,M2

for Bϕψ,M2,∞
. Let
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Bϕ,0ψ,M2
=

{

f ∈ Bϕψ,M2
: |f(t) − f(s)| = o(ϕ(|t− s|)) as |t− s| goes to 0

‖f‖p = o(
√
p), ωp(f, t) = o(

√
pψ(t)) as max

(

p,
1

t

)

goes to + ∞
}

.

Then Bϕ,0ψ,M2
is a separable Banach space. For more details on Besov–Orlicz spaces

we refer the reader to Ciesielski et al. [4].

Now let us recall the large deviations principle in modulus spaces obtained by
Eddahbi [5].

Let σε (resp. bε) be a R
m × R

d (resp. R
m)–valued field defined on R+ × R

m.
We consider the Itô’s stochastic differential equation for every t ≥ 0:

Xε
t = xε(t) + ε

t
∫

0

σε(s,X
ε
s )dWs +

t
∫

0

bε(s,X
ε
s )ds.(3)

In the sequel, we make the following assumptions:

(H1) (i) (t, x) 7→ σε(t, x) and (t, x) 7→ bε(t, x) are measurable functions, contin-
uous in x

uniformly with respect to t.

(ii) σε converges uniformly to a R
m × R

d–valued matrix field σ as ε goes
to 0,

(iii) bε converges uniformly to a R
m–valued vector field b as ε goes to 0,

(iv) xε(·) converges in Bϕ,0ψ,M2
to a function x(·) as ε goes to 0.

(H2) The equation (3) admits an unique solution adapted to the Brownian fil-
tration.

(H3)

∫

0+

dr

ωσ(r) + ωb(r)
= ∞, where ωσ and ωb denote respectively the modulus

of continuity of σ and b.

Some conditions ensuring the existence and the uniqueness of solutions of (3)
can be found in Yamada and Watanabe [14], Watanabe and Yamada [15], Ikeda
and Watanabe [8], Barlow and Perkins [2] and Rutkowski [11].

For every h ∈ H, S(h) stands for the solution of the deterministic differential
equation

S(h)t = y(t) +

t
∫

0

σ(s, S(h)s)ḣs ds+

t
∫

0

b(s, S(h)s) ds.(4)

It is clear that (H3) implies the existence and uniqueness of solution of (4).
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Now, we define the Cramer transform

λ(f) =
{

inf
+∞

{µ(h) : h ∈ H, S(h) = f} if
otherwise

(S(h))−1({f}) 6= ∅,
}

and the Cramer functional

Λ(A) = inf
f∈A

λ(f), A ⊂ Cm([0, 1]).

In what follows, we assume that ϕ and ψ satisfy the conditions below: ϕ and

ψ are increasing functions null in zero, ϕ0(t) = o(ϕ(t)) as t goes to zero,
ϕ0(t)

ψ(t)

is bounded near zero and the maps t 7−→ ϕ(t)√
t

and t 7−→ ψ(t)√
t

are decreasing

functions converging to infinity as t goes to zero.

Theorem 1.1. Under assumptions (H1)–(H3), for every a > 0, ρ > 0 and R > 0
there exist ε0 > 0, α0 > 0 and η > 0 such that for every h ∈ H with µ(h) ≤ a,

every function y(·) ∈ Bϕ,0ψ,M2
such that ‖x− y‖ϕ

ψ,M2
≤ η,

P
[

‖Xε − S(h)‖ϕ
ψ,M2

≥ ρ, ‖εW − h‖ ≤ α
]

≤ exp
(

− R

ε2

)

for all ε ∈ ]0, ε0] and α ∈ ]0, α0].

Under the assumptions (H1)–(H3), using the technics in Ciesielski and Kamont

[3] and Mellouk [9], we can prove that Xε
· belongs to Bϕ,0ψ,M2

.

Theorem 1.2. Under assumptions (H1)–(H3), for every Borel set A of Bϕ,0ψ,M2

−Λ(
◦
A) ≤ lim inf

ε↘0
ε2 log P [Xε

· ∈ A] ≤ lim sup
ε↘0

ε2 log P [Xε
· ∈ A] ≤ −Λ(Ā)

where
◦
A (resp. Ā) stands for the interior (resp. adherence) of A in the topology

of Bϕ,0ψ,M2
.

2. Main result

This section is devoted to the proof of a local version of Strassen’s law in Bϕ,0ψ,M2

for diffusion processes. The ideas of the proof are similar to that of Baldi [1].

First of all we introduce a system of contractions by adapting the definition of
Baldi [1] to our purpose. Let U be an open subset of R

m and y ∈ U .

Definition 2.1. A family
(

Γα
)

α∈R+
of continuous bijective transformations Γα :

U −→ U is said to be a system of contractions centered at y if

(i) Γα(y) = y for all α ∈ R+,

(ii) for α > β,

|Γα(z1) − Γα(z′1) − Γα(z2) + Γα(z
′
2)| ≤ |Γβ(z1) − Γβ(z

′
1) − Γβ(z2) + Γβ(z

′
2)|

for every z1, z2, z
′
1 and z′2 in U ,
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(iii) Γ1 is the identical mapping on U and Γ−1
α = Γα−1 .

Moreover, for every ε > 0 and every compact subset K of Bϕ,0ψ,M2
, there exists

δ > 0 such that

if |αβ − 1| < δ then ‖ΓαoΓβ(f(·)) − f(·)‖ϕψ,M2
< ε

for every f in K.

Let σ̄ be a R
m×R

d–valued matrix field and b̄ a R
m–valued vector field defined

on U . We put ā = σ̄tσ̄.

Let L̄ denote the differential operator on U defined by

L̄ :=
1

2

m
∑

i,j=1

āi,j(z)
∂

∂xi∂xj
+

m
∑

j=1

b̄j(z)
∂

∂xj
.

Let

φ(u) =

√

L2(u)

u
,

where

L2(u) =

{

log log u if u ≥ 3,

1 if 0 < u < 3.

For every α > 0, we set

σ̄α(z) = φ(α)(gradΓφ(α))(Γ
−1
φ(α)(z)).σ̄(Γ−1

φ(α)(z)),(5)

b̄α(z) =
1

α
(L̄Γφ(α))oΓ

−1
φ(α)(z),(6)

where (Γα) is a system of contractions centered at y.

Definition 2.2. We say that the triple (σ̄α, b̄α, Γα)α∈R+
satisfies the assumption

(K) if Γα is twice continuously differentiable for all α > 0 and there exist a
R
m × R

d–valued matrix field σ̄ and a R
m–valued vector field b̄ on U such that

lim
α↗+∞

σ̄α(z) = σ̄(z) , lim
α↗+∞

b̄α(z) = b̄(z)

uniformly on compact subsets of U .

In the sequel, (σ̄α, b̄α, Γα)α∈R+
satisfies the assumption (K) in Definition 2.2.

Let Y be the Itô’s process with values in U and defined by

Yt = y +

t
∫

0

σ̄(Ys)dWs +

t
∫

0

b̄(Ys)ds.

For every u > 0, we put

W u
t =

√
uW (

t

u
),

Yut = Y t
u

and Zu
t = Γφ(u)(Yut ).
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Itô’s formula yields

Zu
t = y +

1
√

L2(u)

t
∫

0

σ̄u(Zu
s )dW u

s +

t
∫

0

b̄u(Zu
s ) ds

where σ̄u and b̄u are given by (5) and (6).

Applying the large deviations principle in Theorem 1.2 for σu= σ 1

u
and b̄u =

b 1

u
, we have

−Λ(
◦
A) ≤ lim inf

u↗+∞

1

L2(u)
log P [Zu

· ∈ A] ≤ lim sup
u↗+∞

1

L2(u)
log P [Zu

· ∈ A] ≤ −Λ(Ā)

for every Borel subset of Bϕ,0ψ,M2
.

Now, we are able to state our main result.

Theorem 2.1. Under assumptions (H1)–(H3) and (K), the process {Zu
· : u > 0}

is P–almost surely relatively compact in the topology of Bϕ,0ψ,M2
as u goes to +∞,

with limit set points Kλ(1) = {f ∈ Cm([0, 1]) : λ(f) ≤ 1}·

The proof of Theorem 2.1 consists of a suitable combination of Propositions
2.1 and 2.2 below.

Proposition 2.1. For every ε > 0, there exists P–almost surely u0 > 0 such that
if u > u0 then

d(Zu
· ,Kλ(1)) ≤ ε

where d(g,Kλ(1)) := inf
h∈Kλ(1)

‖g − h‖ϕ
ψ,M2

.

To prove Proposition 2.1 we need some technical lemmas.

Lemma 2.1. For every c > 1 and ε > 0, there exists a.s. j0 = j0(ω) such that if
j > j0 then

d(Zcj

· ,Kλ(1)) ≤ ε.

Proof. Let Kε = {g ∈ Bϕ,0ψ,M2
, d(g,Kλ(1)) ≥ ε} and δ > 0 be such that Λ(Kε) >

1 + 2δ. By virtue of Theorem 1.2, we have

lim sup
u↗+∞

1

L2(u)
log P[Zu

· ∈ Kε] ≤ −(1 + 2δ).

It follows that for j sufficiently large, we have

P[Zcj

· ∈ Kε] ≤ exp(−(1 + δ)L2(c
j)) ≤ C

j1+δ
.

Now, noting that
∑

j

P[Zcj

· ∈ Kε] < +∞ we see that the conclusion is an immedi-

ate consequence of the Borel–Cantelli lemma.
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Lemma 2.2. Let

Yj = sup
cj−1≤u≤cj

‖Zu
· − Γφ(u)oΓ

−1
φ(cj)

(Zcj

· )‖ϕψ,M2
.

For every ε > 0, there exists cε > 1 such that for every 1 < c < cε there exists
j0 = j0(ω) satisfying Yj(ω) < ε for every j ≥ j0.

Proof. Note that

Yj = sup
cj−1≤u≤cj

‖Γφ(u)(Yu· ) − Γφ(u)(Yc
j

· )‖ϕψ,M2

By virtue of Lemma 2.1 there exists a constant C > 0 such that for j sufficiently

large, ‖Zcj

· ‖ϕψ,M2
≤ C a.s. In view of the Borel–Cantelli lemma, it suffices to

prove that
∑

j

P[Yj ≥ ε, ‖Zcj

· ‖ϕψ,M2
≤ C] < +∞.

In view of the definition of a system of contractions, it is easy to derive the
following inclusions

{Yj ≥ ε} ⊂
{

sup
cj−1≤u≤cj

‖Γφ(cj−1)(Y ·

u
) − Γφ(cj−1)(Y ·

cj
)‖ϕψ,M2

≥ ε

}

⊂
{

sup
1≤v≤c

‖Γφ(cj−1)(Y ·

vcj
) − Γφ(cj−1)(Y ·

cj
)‖ϕψ,M2

≥ ε

}

=

{

sup
1≤v≤c

‖Γφ(cj−1)oΓ
−1
φ(cj)

(Zcj
·

v
) − Γφ(cj−1)oΓ

−1
φ(cj)

(Zcj

· )‖ϕψ,M2
≥ ε

}

.(7)

Therefore

{Yj ≥ ε} ⊂ Ajε,1 ∪Ajε,2 ∪Ajε,3,(8)

where

Ajε,1 =

{

sup
1≤v≤c

‖Γφ(cj−1)oΓ
−1
φ(cj)

(Zcj
·

v
) −Zcj

·

v
‖ϕψ,M2

≥ ε

3

}

,

Ajε,2 =

{

sup
1≤v≤c

‖Zcj
·

v
−Zcj

· ‖ϕψ,M2
≥ ε

3

}

,(9)

Ajε,3 =

{

sup
1≤v≤c

‖Γφ(cj−1)oΓ
−1
φ(cj)

(Zcj

· ) −Zcj

· ‖ϕψ,M2
≥ ε

3

}

.

Since for every δ > 0 and j sufficiently large it holds

0 ≤ φ(cj)

φ(cj−1)
=

1√
c

√

L2(c
j)

L2(cj−1)
≤ 1√

c
(1 + δ),

we deduce from (7)–(9) and (iii) of Definition 2.1 that for c close enough to 1,

P[{Yj ≥ ε, ‖Zcj

· ‖ϕψ,M2
≤ C}] ≤ P[Zcj

· ∈ Aε,c],
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where

Aε,c =

{

g ∈ Cm([0, 1]) : sup
1≤v≤c

‖g(·) − g(
·
v
)‖ϕψ,M2

≥ ε

3
, ‖g(·)‖ϕψ,M2

≤ C

}

.

By virtue of the closedness of Aε,c in Bϕ,0ψ,M2
and Theorem 1.2, for every δ > 0

and for j sufficiently large we have

P[Zcj

· ∈ Aε,c] ≤ exp
[

−(Λ(Aε,c) − δ)L2(c
j)

]

.

It remains to prove that we can choose δ > 0 such that, for c close to 1, Λ(Aε,c) >
1 + 2δ.

Let g ∈ Aε,c be such that λ(g) < +∞. Since ‖f‖ϕψ,M2
≤ D(‖f‖ϕ + ‖f‖ψ) for f

null in zero, we have

D

(

sup
1≤v≤c

‖g(·) − g(
·
v
)‖ϕ + sup

1≤v≤c
‖g(·) − g(

·
v
)‖ψ

)

≥ sup
1≤v≤c

‖g(·) − g(
·
v
)‖ϕψ,M2

≥ ε

3
·

So, there exists s ∈ [0, 1], t ∈ [0, 1] and v ∈ [1, c] satisfying

ε

6D
θ(|t− s|) ≤

∣

∣

∣

∣

[

g(t) − g
( t

v

)]

−
[

g(s) − g
(s

v

)]

∣

∣

∣

∣

,

where θ = ϕ or ψ. Since

∣

∣

∣

∣

[

g(t) − g
( t

v

)]

−
[

g(s) − g
(s

v

)]

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

t
∫

s∨ t
v

ġ(u)du−
s∧ t

v
∫

s
v

ġ(u)du

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

t
∫

s∨ t
v

ġ(u)du

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

s∧ t
v

∫

s
v

ġ(u)du

∣

∣

∣

∣

∣

∣

∣

,

we have

ε

6D
θ(|t− s|) ≤

∣

∣

∣

∣

∣

∣

∣

t
∫

s∨ t
v

ġ(u)du

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

s∧ t
v

∫

s
v

ġ(u)du

∣

∣

∣

∣

∣

∣

∣

.(10)

Now, let h ∈ H be such that λ(g) = µ(h) and S(h) = g. Since ‖g‖ ≤ ‖f‖ϕψ,M2
≤

C, σ and b are locally bounded, we deduce that
∣

∣

∣

∣

∣

∣

t
∫

s

ġ(u)du

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

t
∫

s

σ(g(s))ḣs ds+

t
∫

s

b(g(s)) ds

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

t
∫

s

σ(g(s))ḣs ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

t
∫

s

b(g(s)) ds

∣

∣

∣

∣

∣

∣

.
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Thus

∣

∣

∣

∣

∣

∣

t
∫

s

ġ(u)du

∣

∣

∣

∣

∣

∣

≤ M1

√

|t− s| ‖h‖H +M2 |t− s| .(11)

It follows from (10) and (11) that

ε

6D
θ(|t− s|) ≤M1 ‖h‖H

(

∣

∣

∣t− s ∨ t

v

∣

∣

∣

1

2

+
∣

∣

∣s ∧ t

v
− s

v

∣

∣

∣

1

2

)

+M2

(

∣

∣

∣
t− s ∨ t

v

∣

∣

∣
+

∣

∣

∣
s ∧ t

v
− s

v

∣

∣

∣

)

.

So

‖h‖H =
√

2λ(g) ≥

ε

6D
θ(|t− s|) −M2

(

∣

∣

∣t− s ∨ t

v

∣

∣

∣ +
∣

∣

∣s ∧ t

v
− s

v

∣

∣

∣

)

M1

(

∣

∣

∣
t− s ∨ t

v

∣

∣

∣

1

2

+
∣

∣

∣
s ∧ t

v
− s

v

∣

∣

∣

1

2

) ·

Therefore

√

2λ(g) ≥

ε

6D
θ(|t− s|) −M2

(

∣

∣

∣
t− s ∨ t

v

∣

∣

∣
+

∣

∣

∣
s ∧ t

v
− s

v

∣

∣

∣

)

M1

(

∣

∣

∣t− s ∨ t

v

∣

∣

∣

1

2

+
∣

∣

∣s ∧ t

v
− s

v

∣

∣

∣

1

2

) ·(12)

We consider two cases:

1) s <
t

v
. We have

√

2λ(g) ≥

ε

6D
θ(t− s) −M2

(

(

t− t

v

)

+
(

s− s

v

)

)

M1

(

(

t− t

v

) 1

2

+
(

s− s

v

) 1

2

)

≥

ε

6D
θ
(

t
(

1 − s

t

))

−M2

(

(

1 − 1

v

)

(t+ s)

)

M1

(

(

1 − 1

v

) 1

2
(

t
1

2 + s
1

2

)

) ·

The increasing property of θ and the decreasing one of t 7−→ θ(t)√
t

lead to
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√

2λ(g) ≥

ε

6D
θ

(

t
(

1 − 1

v

)

)

− 2M2

(

t
(

1 − 1

v

)

)

2M1

(

t
(

1 − 1

v

)

)
1

2

=

εθ

(

t
(

1 − 1

v

)

)

12DM1

(

t
(

1 − 1

v

)

)
1

2

−
M2

(

t
(

1 − 1

v

)

)

M1

(

t
(

1 − 1

v

)

)
1

2

=

εθ

(

t
(

1 − 1

v

)

)

12DM1

(

t
(

1 − 1
v

))
1

2

− M2

M1

(

t
(

1 − 1

v

)

)
1

2

≥
εθ

(

1 − 1

c

)

12DM1

(

1 − 1

c

)
1

2

− M2

M1

(

1 − 1

c

) 1

2

.

Since
θ(t)√
t

converges to infinity as t goes to zero, there exist cε > 1 and δ > 0

such that if 1 < c < cε then

√

2λ(g) ≥
εθ

(

1 − 1

c

)

12DM1

(

1 − 1

c

) 1

2

− M2

M1

(

1 − 1

c

)
1

2 ≥ 1 + 2δ.

2) s >
t

v
· In view of (12) we have

√

2λ(g) ≥
ε

6D
θ(|t− s|) −M2

(

|t− s| +
∣

∣

∣

t

v
− s

v

∣

∣

∣

)

M1

(

∣

∣t− s
∣

∣

1

2 +
∣

∣

∣

t

v
− s

v

∣

∣

∣

1

2

)

≥

ε

6D
θ(|t− s|) −M2

(

|t− s|
(

1 +
1

v

)

)

M1

(

∣

∣t− s
∣

∣

1

2

(

1 +
(1

v

) 1

2
)

)

≥

ε

6D
θ

(

t
(

1 − s

t

))

−M2

(

t
(

1 − s

t

)(

1 +
1

v

)

)

2M1

(

t
(

1 − s

t

)) 1

2

·
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Hence

√

2λ(g) ≥
εθ

(

t
(

1 − s

t

))

12DM1

(

t
(

1 − s

t

)) 1

2

− M2

M1

(

t
(

1 − s

t

))
1

2

.

By virtue of the decreasing property of
θ(t)√
t

, we have

√

2λ(g) ≥
εθ

(

1 − 1

c

)

12DM1

(

1 − 1

c

) 1

2

− M2

M1

(

1 − 1

c

)
1

2 ·

Finally, letting c→ 1 yields the existence of cε > 1 and δ > 0 such that for every
1 < c < cε we have Λ(Aε,c) > 1 + 2δ.

The same argument as in the proof of Lemma 2.1, and the Borel–Cantelli
lemma lead to the conclusion of the proof.

Proof of Proposition 2.1. Let c > 1 and cj−1 ≤ u ≤ cj . We have

d(Zu
· ,Kλ(1)) ≤ d(Zu

· ,Γφ(u)oΓ
−1
φ(cj)

(Zcj

· ))

+ d(Zcj

· ,Γφ(u)oΓ
−1
φ(cj)

(Zcj

· )) + d(Zcj

· ,Kλ(1))

= I1 + I2 + I3.

By virtue of Lemma 2.1, for j sufficiently large, I3 ≤ ε

3
.

Since for every δ > 0 and j sufficiently large,

0 ≤ φ(cj)

φ(u)
≤ φ(cj)

φ(cj−1)
=

1√
c

√

L2(c
j)

L2(cj−1)
≤ 1√

c
(1 + δ),

and {‖Zcj

· ‖ : j ≥ 0} is bounded, we deduce that, for c close to 1 and j sufficiently

large, I2 ≤ ε

3
.

Finally, in view of Lemma 2.2, I1 ≤ ε

3
for j sufficiently large and c close enough

to 1.

Proposition 2.2. For every g ∈ Kλ(1) and every ε > 0, there exists c = cε > 1
such that

P

[

‖Zcj

· − g‖ϕψ,M2
≤ ε i.o.

]

= 1.

Proof. . Let g ∈ Kλ(1) and h ∈ H be such that S(h) = g and
√

2λ(g) = µ(h). In
view of Theorem 1.1, for j sufficiently large and α sufficiently small we have

P

[

‖Zcj

· − g‖ϕψ,M2
> ε,

∥

∥

∥

∥

∥

1
√

L2(cj)
W cj

· − h

∥

∥

∥

∥

∥

≤ α

]

≤ exp(−2L2(c
j)) =

C

j2
·
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By Strassen’s law for the Brownian motion in the uniform topology,

P

[

∥

∥

∥

1
√

L2(cj)
W cj

· − h
∥

∥

∥ ≤ α i.o.

]

= 1.(13)

Now, since
∑

j

1

j2
is finite, the Borel–Cantelli lemma and (13) lead to the conclu-

sion.

Remark. An analogue of Theorem 2.1 can be proved for Brownian functionals
F (W ) with values in Bϕ,0ψ,M2

such that

(i) For every a > 0 the restriction of the functional F on {h ∈ H : µ(h) ≤ a} is

continuous with respect to the topology of Bϕ,0ψ,M2
,

(ii) For every R > 0, a > 0, and ρ > 0, there exist η > 0 and ε0 > 0 such that
for every ε ∈ (0, ε0], every h ∈ H such that µ(h) ≤ a we have

P

[

‖F (εW ) − F (h)‖ϕψ,M2
> ρ, ‖εW − h‖ ≤ η

]

≤ exp

(

−R

ε2

)

,

(iii) There exists τ > 0 such that for every ε > 0, (u, t) ∈ R
2
+

F
(

εW
( ·
u

))

(t) = ετF (W )
( t

u

)

,

(iv) For every ε > 0, there exists cε > 1 such that if 1 < c < cε then

Λ(Aε,c) > 1,

where

Aε,c =

{

g ∈ Cm([0, 1]) : sup
1≤v≤c

‖g(·) − g(
·
v
)‖ϕψ,M2

≥ ε
√
cτ

}

.
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