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FIXED POINTS OF CONVEX-VALUED GENERALIZED

UPPER HEMICONTINUOUS MAPS, REVISITED

SEHIE PARK

Abstract. We give new fixed point theorems for a generalized upper hemi-
continuous multimap whose domain and range may have different topologies.
These include known theorems which appeared in nearly 50 published works.

1. Introduction

The celebrated Kakutani fixed point theorem in 1941 for convex-valued up-
per semicontinuous multimaps initiated the study of fixed points of multimaps
in the last six decades. The Kakutani theorem and its numerous generalizations
were applied to game theory, mathematical economics, systems and control the-
ory, coincidence theory, minimax theory, variational inequalities, convex analysis,
and many equilibrium theorems. Moreover, the compactness, convexity, upper
semicontinuity, selfmapness, and finite dimensionality related to the Kakutani
theorem are all extended, and further, for the case of infinite dimension, it is
known that the domain and range of the multimap may have different topologies.
This is why the Kakutani theorem has so many generalizations; see [P7].

In our previous works [P5, 6], we unified, improved, and generalized a lot
of fixed point theorems on Kakutani maps or acyclic maps defined on convex
subsets of topological vector spaces. One of the main fixed point theorems in [P6]
is concerned with convex-valued generalized upper hemicontinuous maps whose
domains and ranges may have different topologies. After the author published
the paper [P6], he became aware that there still appear a number of results of
this kind of generalization.

In the present paper, we obtain some refined and generalized versions of the
main theorems in [P5, 6] with slightly different proofs. We also show that some
old or recent results of others are consequences of ours. Our results contain
known theorems of Sehgal and Singh [SS], Roux and Singh [RS], Kim and Tan
[KT], Ding and Tan [DT], Yuan, Smith, and Lou [YSL], and many others.
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2. Preliminaries

A convex space X is a nonempty convex set with any topology that induces the
Euclidean topology on the convex hulls of its finite subsets. A nonempty subset
L of a convex space X is called a c-compact set if for each finite set S ⊂ X there
is a compact convex set LS ⊂ X such that L ∪ S ⊂ LS . Let [x,L] denote the
closed convex hull of {x} ∪ L in X, where x ∈ X.

Let E be a Hausdorff topological vector space (t.v.s.) and E∗ its topological
dual. A multimap or set-valued map (simply, map) F : X → 2E\{∅} is said to
be upper hemicontinuous (u.h.c.) if for each h ∈ E∗ and for any real α, the set
{x ∈ X : supRe h(Fx) < α} is open in X.

Let cc(E) denote the set of nonempty closed convex subsets of E and kc(E)
the set of nonempty compact convex subsets of E. Bd, Int, and denote the
boundary, interior, and closure, resp., with respect to E.

Let X ⊂ E and x ∈ E. The inward and outward sets of X at x, IX(x) and
OX(x), are defined as follows:

IX(x) = x +
⋃

r>0

r(X − x), OX(x) = x +
⋃

r<0

r(X − x).

For p ∈ {Re h : h ∈ E∗} and U, V ⊂ E, let

dp(U, V ) = inf{|p(u − v)| : u ∈ U, v ∈ V }.

Recall that a real function g : X → R on a topological space X is lower

[resp. upper] semicontinuous (l.s.c.) [resp. u.s.c.] if {x ∈ X : gx > r} [resp.
{x ∈ X : gx < r}] is open for each r ∈ R. If X is a convex set, then g is
quasiconcave [resp. quasiconvex] if {x ∈ X : gx > r} [resp. {x ∈ X : gx < r}] is
convex for each r ∈ R.

In this paper all topological spaces are assumed to be Hausdorff.

We use the following form of the existence theorem of maximizable quasicon-
cave functions on convex spaces due to Park and Bae [PB].

Theorem 0. Let X be a convex space and X̂ the set of all u.s.c. quasiconcave

real functions on X. Suppose that

(0.1) for each x ∈ X, Sx is a nonempty convex subset of X̂;

(0.2) for each g ∈ X̂, S−1g is compactly open in X; and

(0.3) there exists a c-compact set L ⊂ X and a nonempty compact set K ⊂ X
such that for every x ∈ X\K and g ∈ Sx, gx < max g[x,L].

Then there exist an x ∈ K and a g ∈ Sx such that gx = max g(X).

3. Main results

We begin with the following generalization of [P5, Corollary 3.1]:
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Theorem 1. Let X be a convex space, L a c-compact subset of X, K a nonempty

subset of X, E a t.v.s. containing X as a subset, and F : X → 2E\{∅}. Suppose

that, for each p ∈ {Re h : h ∈ E∗},

(1.0) p|X is continuous on X;

(1.1) Xp = {x ∈ X : sup p(Fx) ≥ p(x)} is compactly closed in X;

(1.2) x ∈ K and p(x) = max p(X) implies x ∈ Xp; and

(1.3) x ∈ X\K and p(x) = max p[x,L] implies x ∈ Xp.

Then there exists an x ∈
⋂

{Xp : p ∈ {Reh : h ∈ E∗}}.

Proof. Note that {(Re h)|X : h ∈ E∗} ⊂ X̂ by (1.0). For each x ∈ X, define

Sx = {p|X : p ∈ {Re h : h ∈ E∗} and sup p(Fx) < p(x)}.

Then Sx is a convex subset of X̂. Suppose that Sx 6= ∅ for each x ∈ X; that is,
for each x ∈ X, there exists a p ∈ {Re h : h ∈ E∗} such that x /∈ Xp. Note that,

for each g ∈ X̂,

S−1g = {x ∈ X : sup p(Fx) < p(x)} = X\Xp

if g = p|X for some p ∈ {Re h : h ∈ E∗} and

S−1g = ∅ if g /∈ {(Re h)|X : h ∈ E∗}.

Then S−1g is compactly open in X for each g ∈ X̂ by (1.1). Therefore, (0.1) and
(0.2) are satisfied. Further, (1.3) implies (0.3). In fact, for every x ∈ X\K and
p ∈ {Re h : h ∈ E∗} satisfying sup p(Fx) < p(x), we have x /∈ Xp. Therefore,
p(x) < max p[x,L] by (1.3). Now, by applying Theorem 0, there exist an x ∈ K
and an h ∈ E∗ such that p = Reh, p|X ∈ Sx and p(x) = max p(X). Note that
p|X ∈ Sx implies x /∈ Xp. This contradicts (1.2).

Remarks. 1. As we noted in [P6], in Theorem 1, we do not require any concrete
connection between topologies of X and E except

(1.0) (Re h)|X ∈ X̂ (that is, (Re h)|X is continuous on X) for all h ∈ E∗.

In order to assure the continuity of (Reh)|X for all h ∈ E∗, it is sufficient to
assume that

(i) as a convex space, X has any topology finer than the relative weak topology
with respect to E, and

(ii) E has any topology finer than its weak topology.

This is why there have appeared fixed point theorems on maps whose domains
and ranges have different topologies.

2. If F is u.h.c. on each nonempty compact subset C of X, then F satisfies
the “continuity” condition (1.1) for all p ∈ {Re h : h ∈ E∗}, but not conversely;
see [P5]. Any map F satisfying (1.1) can be said to be generalized u.h.c.

3. The “boundary” condition (1.2) is equivalent to the following:
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(1.2)′ x ∈ K and p(x) = max p(IX(x)) implies x ∈ Xp.

In fact, p(x) = max p(X) is equivalent to p(x) = max p(IX(x)).

Let X be a nonempty convex subset of a vector space E. Following Fan [F],
the algebraic boundary δE(X) of X in E is the set of all x ∈ X for which there
exists y ∈ E such that x + ry /∈ X for all r > 0. If E is a t.v.s., the topological

boundary Bd X = BdEX of X is the complement of IntEX in X. It is known
that δE(X) ⊂ Bd X and in general δE(X) 6= Bd X; see [YSL].

Moreover, the “boundary” condition (1.2)′ is equivalent to the following:

(1.2)′′ x ∈ K ∩ δE(X) and p(x) = max p(IX(x)) implies x ∈ Xp.

In fact, if x ∈ K\δE(X) and p(x) = max p(IX(x)), then for any y ∈ E, there
exists an r > 0 such that x + ry ∈ X and hence p(x) ≥ p(x + ry), which readily
implies p(y) ≤ 0 or p = 0. This contradicts the arbitrariness of p. Therefore,
(1.2) is trivially satisfied.

4. The “coercivity” or “compactness” condition (1.3) is equivalent to the
following:

(1.3)′ x ∈ X\K and p(x) = max p(IL(x)) implies x ∈ Xp.

In fact, p(x) = max p[x,L] is equivalent to p(x) = max p(IL(x)). Note that if X
itself is compact (that is, if X = K), then (1.3)′ holds trivially.

From Theorem 1, we have the following basic fixed point theorem:

Theorem 2. Under the hypothesis of Theorem 1, further suppose that either

(A) E∗ separates points of E and F : X → kc(E); or

(B) E is locally convex and F : X → cc(E).

Then there exists an x ∈ X such that x ∈ Fx.

Proof. By Theorem 1, there exists an x ∈
⋂

{Xp : p ∈ {Re h : h ∈ E∗}}. Suppose
that x /∈ Fx. Then under the assumptions (A) or (B), the standard separation
theorems on a t.v.s. assure the existence of a p ∈ {Re h : h ∈ E∗} satisfying
inf p(Fx) > p(x); that is, x /∈ Xp, which is a contradiction.

Remarks. 1. Using the method in [P5], we can reformulate Theorem 2 to
a coincidence theorem and an existence theorem for critical points or zeros of
multimaps.

2. Note that x ∈ Fx if and only if x ∈
⋂

{Xp : p ∈ {Re h : h ∈ E∗}}. This is a
useful information on the location of a fixed point.

From Theorem 2, we obtain the following more visualizable geometric form of
a fixed point and surjectivity theorem, which generalizes [P5, Theorem 6] and
refines [P6, Theorem 2]:

Theorem 3. Let X be a convex space, L a c-compact subset of X, K a nonempty

compact subset of X, E a t.v.s. containing X as a subset, and F a map satisfying

either
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(A) E∗ separates points of E and F : X → kc(E), or

(B) E is locally convex and F : X → cc(E).

(I) Suppose that for each p ∈ {Re h : h ∈ E∗},

(1.0) p|X is continuous on X;

(3.1) Xp = {x ∈ X : inf p(Fx) ≤ p(x)} is compactly closed in X;

(3.2) dp(Fx, IX(x)) = 0 for every x ∈ K ∩ δE(X); and

(3.3) dp(Fx, IL(x)) = 0 for every x ∈ X\K.

Then there exists an x ∈ X such that x ∈ Fx.

(II) Suppose that for each p ∈ {Re h : h ∈ E∗},

(1.0) p|X is continuous on X;

(3.1)′ Xp = {x ∈ X : sup p(Fx) ≥ p(x)} is compactly closed in X;

(3.2)′ dp(Fx,OX(x)) = 0 for every x ∈ K ∩ δE(X); and

(3.3)′ dp(Fx,OL(x)) = 0 for every x ∈ X\K.

Then there exists an x ∈ X such that x ∈ Fx. Further, if F is u.h.c., then

F (X) ⊃ X.

Proof. In order to use Theorem 2, we first show that (3.2) =⇒ (1.2). Let x ∈
K ∩ δE(X) such that p(x) = max p(X). Suppose that inf p(Fx) > p(x). Then
for any v ∈ Fx, u ∈ X, z = x + r(u − x) ∈ IX(x), and r > 0, we have

|p(v − z)| = p(v − x) + rp(x − u) ≥ p(v − x) = p(v) − p(x)

and hence

dp(Fx, IX(x)) = dp(Fx, IX(x)) ≥ inf p(Fx) − p(x) > 0.

This contradicts (3.2). Therefore, we should have inf p(Fx) ≤ p(x) or x ∈ Xp.
Hence, (1.2)′′ holds.

Similarly, we can show that (3.3) =⇒ (1.3). Note that “(3.1) holds for all p”
is equivalent to “(1.1) = (3.1)′ holds for all p”. Therefore, all of the requirements
of Theorem 2 are satisfied. Now by Theorem 2, Case (I) follows.

For (II) consider 2x−Fx instead of Fx in (I) as in [P5], we can conclude that F
has a fixed point. For the surjectivity result, let y ∈ X. Consider x 7→ Fx+x−y
instead of Fx and [y, L] instead of L in Case (II). Then there exists an x ∈ X
such that x ∈ Fx + x − y; that is, y ∈ Fx. This completes our proof.

Remarks. 1. (3.1) and (3.1)′ are actually the same.

2. Note that the map x 7→ Fx + x − y in the proof of Case (II) is u.h.c.
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3. Note that if K is a weakly compact convex subset of a t.v.s. (E, τ) on which
E∗ separates points, then a continuous map f : (K, τ) → (K, τ) may have no fixed
point. See Kakutani [K, Theorem 1]. In this case, Kp = {x ∈ K : p(fx) ≤ p(x)}
in Theorem 3(I) may not be closed for some p ∈ {Re h : h ∈ E∗}.

We give some of the simplest examples of Theorem 3.

Examples. 1. [P2, Example 1]: Let X = K = [0, 1] in E = R, fx = x for
x ∈ X\(1/3, 2/3), and fx = 1 for x ∈ (1/3, 2/3). Then the set {x ∈ X : p(x) ≤
p(fx)} is closed for all p ∈ E∗. Note that f : X → X is not continuous, but has
a fixed point by Theorem 3(I).

2. [P2, Example 2]: Let X = K = [0, 1] and E = R. For a given c ∈ (0, 1),
let f : X → X be a function such that fx > x for x < c and fx < x for x > c.
Then c is the only fixed point of f if and only if the set {x ∈ X : p(x) ≤ p(fx)}
is closed for all p ∈ E∗.

3. Let X = (0, 1], K = L = [1/2, 1], E = R, and f : X → X be given by
fx = (x + 1)/2. Then {x ∈ X : p(x) ≤ p(fx)} is closed for all p ∈ E∗. Note that

fx =
x + 1

2
∈ IL(x) = [x,∞) for all x ∈ (0,

1

2
) = X\K.

Therefore, Theorem 3(I) works.

4. Particular results

(1) A particular form of Theorem 3 for the real case is given in [P5, Theorem
6], which unifies, improves, and generalizes historically well-known fixed point
theorems published in nearly 40 papers; see the diagram in [P5, p.205].

Now we add some more known consequences of Theorem 3 as follows:

(2) Knaster, Kuratowski, and Mazurkiewicz [KKM, p.136]: If f : Bn → R
n is

a continuous map such that f maps Sn−1 = Bd Bn back into Bn, then f has a
fixed point.

This is the origin of the so-called Rothe boundary condition.

(3) Sehgal and Singh [SS, Corollary 2]: Let K be a convex and weakly compact
subset of a real locally convex t.v.s. E and f : K → E a strongly continuous
map such that f(BdK) ⊂ K. Then f has a fixed point.

Note that f satisfies (3.1).

(4) Deimling [D, p.93]: Let X be a nonempty closed bounded convex subset
of a reflexive Banach space E, and f : X → X a weakly sequentially continuous
map. Then f has a fixed point.

Equip E with the weak topology.

(5) Arino, Gautier, and Penot [AGP, Theorem 1]: Let X be a nonempty weakly
compact convex subset of a metrizable locally convex t.v.s. E, and f : X → X a
weakly sequentially continuous. Then f has a fixed point.

Note that f is weakly continuous.
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(6) Roux and Singh [RS, Theorem 5]: Let (E, τ) be a t.v.s. on which E∗

separates points, w the weak topology of E, K a nonempty τ -compact convex
subset of E, and f : (K, τ) → (E,w) a continuous inward map. Then f has a
fixed point.

Here, inward means fx ∈ IK(x) for all x ∈ K.

(7) Roux and Singh [RS, Theorem 6]: Let (E, τ) be a t.v.s. on which E∗

separates points, w the weak topology of E, K a nonempty w-compact convex
subset of E, and f : (K,w) → (E, τ) a continuous inward map. Then f has a
fixed point.

This contains some results in Sehgal, Singh, and Whitfield [SSW].

(8) Park [P2, Theorem]: Let X be a nonempty compact convex subset of a
t.v.s. E on which E∗ separates points, and f : X → E a weakly inward [outward]
map such that

{x ∈ X : Re h(x) < Re h(fx)}

is open for all h ∈ E∗. Then f has a fixed point.

Here, weakly inward means fx ∈ IX(x) for all x ∈ X.

(9) Kim and Tan [KT, Theorem 2]: Let X be a nonempty paracompact
bounded convex subset of a locally convex t.v.s. E, K a nonempty compact
subset of X, and F : X → cc(E) an u.h.c. map satisfying the following:

(a) for each x ∈ X, Fx ∩ IX(x) 6= ∅; and

(b) for each x ∈ X\K, y ∈ X and h ∈ E∗, if Re h(y) > inf Reh(Fy), then
Re h(y) ≤ Reh(x).

Then there exists an x̂ ∈ X such that x̂ ∈ Fx̂.

Choose a point y ∈ X and let L = {y}. If we replace (b) by

(b)′ for each x ∈ X\K and h ∈ E∗, Reh(x) < inf Reh(Fx) implies Reh(y) >
Re h(x).

Then (b)′ implies (1.3), which is equivalent to (3.3). See Jiang [J]. Therefore,
in this case, the result follows from Theorem 3(B) for Case (I).

Actually, Kim and Tan based their argument on [KT, Corollary 2], which is
quite different from our results.

(10) Kim and Tan [KT, Theorem 4]: Let X be a nonempty convex subset of a
normed vector space E, K a nonempty compact subset of X, and F : X → cc(E)
an u.h.c. map satisfying (a) and (b) in (9). Then there exists an x̂ ∈ X such that
x̂ ∈ Fx̂.

In this result, if we replace (b) by (b)′, then it also follows from Theorem 3(B)
for Case (I). Further, note that in a normed vector space E, for any A,B ∈ cc(E),
d(A,B) = 0 if and only if dp(A,B) = 0 for all p ∈ {Re h : h ∈ E∗}, where d
denotes the induced metric. See Jiang [J].
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(11) Ding and Tan [DT2, Corollary 3]: Let X be a nonempty convex subset
of a normed vector space E, and G : X → kc(E) continuous on each nonempty
compact subset C of X. Suppose that there exist a nonempty compact convex
subset L of X and a nonempty compact subset K of X such that

(i) for each y ∈ K, Gy ∩ IX(y) 6= ∅ [resp. Gy ∩ OX(y) 6= ∅];

(ii) for each y ∈ X\K, Gy ∩ IL(y) 6= ∅ [resp. Gy ∩ OL(y) 6= ∅].

Then G has a fixed point.

This result contains Browder [Br, Corollaries 2 and 2′] and Shih and Tan [ST,
Corollary 1].

(12) Yuan, Smith, and Lou [YSL]: Using Theorem 0 due to Park and Bae
[PB], they proved some coincidence theorems for u.h.c. multimaps in t.v.s., and,
as applications, coincidence theorems and several matching theorems for closed
coverings of convex sets were derived.

Most of results in [YSL] are consequences or slight variations of earlier works of
Park [P3-6]. Interested readers may compare these results. Especially, Theorems
3, 3′ and Corollaries 4, 4′, 6, 6′ in [YSL] are consequences of Theorem 3 of this
paper.

Final Remark. The major particular forms of Theorem 3 can be adequately
summarized by the following enlarged version of the diagrams given in [P1,4,5].
For the references which are not appeared in the end of this paper, see [P5,7].

In the diagram, the class I stands for that of Euclidean spaces, II for normed
vector spaces, III for locally convex Hausdorff topological vector spaces, and IV
for topological vector spaces having sufficiently many linear functionals. More-
over, f stands for single-valued maps and F for set-valued maps; and K stands for
a nonempty compact convex subset of a space E, and X for a nonempty convex
subset of E satisfying certain coercivity conditions with respect to F : X → 2E

with certain boundary conditions.

In fact, Theorem 3 contains all of the fixed point theorems in the diagram.
Note that, in the diagram, Bohl’s theorem [Bo] in 1904 was well-known to be
equivalent to Brouwer’s theorem in 1912.

E F : K −→ K F : K −→ 2K

I Brouwer 1912 Kakutani 1941
II Schauder 1927, 1930 Bohnenblust

and Karlin 1950
III Tychonoff 1935 Fan 1952

Glicksberg 1952

IV Fan 1964 Granas and Liu 1986
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f : K −→ E F : K −→ 2E

I Bohl 1904
Knaster, Kuratowski
and Mazurkiewicz 1929

II Rothe 1938
Halpern 1965 Browder 1968
Fan 1969 Fan 1969
Reich 1972 Glebov 1969
Sehgal and Singh 1983 Halpern 1970

III Cellina 1970
Reich 1972, 1978
Cornet 1975
Lasry and Robert 1975
Simons 1986

Halpern and Bergman 1968 Granas and Liu 1986
IV Kaczynski 1983 Park 1988, 1991

Roux and Singh 1989
Sehgal, Singh
and Whitfield 1990
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Fan 1984
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Jiang 1988

IV Park 1992, 1993
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slage, J. Reine Angew. Math. 127 (1904), 179–276.
[Br] F. E. Browder, On a sharpened form of the Schauder fixed point theorems, Proc. Nat. Acad.

Sci. U.S.A. 74 (1977), 4749–4751.
[D] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[DT1] X. P. Ding and K.-K. Tan, A set-valued generalization of Fan’s best approximation theo-

rem, Canadian J. Math. 44 (1992), 784–796.
[DT2] ——–, A minimax inequality with applications to existence of equilibrium point and fixed

point theorems, Colloq. Math. 63 (1992), 233–247.



150 SEHIE PARK

[F] Ky Fan, Extentions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969),
234–240.

[J] J. Jiang, Fixed point theorems for paracompact sets, Acta Math. Sinica 4 (1988), 64–71.
[K] S. Kakutani, Topological properties of the unit sphere of a Hilbert space, Proc. Imp. Acad.

Tokyo 19 (1943), 269–271.
[KT] W. K. Kim and K.-K. Tan, A variational inequality in non-compact sets and its applica-

tions, Bull. Austral. Math. Soc. 46 (1992), 139–148.
[KKM] B. Knaster, C. Kuratowski und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für

n-dimensionale Simplexe, Fund. Math. 14 (1929), 132–137.
[P1] Sehie Park, Fixed point theorems on compact convex sets in topological vector spaces, Con-

temp. Math. Amer. Math. Soc. 72 (1988), 183–191.
[P2] ——–, A generalization of the Brouwer fixed point theorem, Bull. Korean Math. Soc. 28

(1991), 33–37.
[P3] ——–, Generalized matching theorems for closed coverings of convex sets, Numer. Funct.

Anal. and Optimiz. 11 (1990), 101–110.
[P4] ——–, Some coincidence theorems on acyclic multifunctions and applications to KKM the-

ory, Fixed Point Theory and Applications (K.-K. Tan, Ed.), World Scientific Publ., River
Edge, NJ, 1992, pp.248–277.

[P5] ——–, Fixed point theory of multifunctions in topological vector spaces, J. Korean Math.
Soc. 29 (1992), 191–208.

[P6] ——–, Fixed point theory of multifunctions in topological vector spaces, II, J. Korean Math.
Soc. 30 (1993), 413–431.

[P7] ——–, Eighty years of the Brouwer fixed point theorem, Antipodal Points and Fixed Points
(by J. Jaworowski, W.A. Kirk, and S. Park), Lect. Notes Ser. 28, RIM-GARC, Seoul Nat.
Univ., 1995, pp. 55–97.

[PB] Sehie Park and J. S. Bae, Existence of maximizable quasiconcave functions on convex

spaces, J. Korean Math. Soc. 28 (1991), 285–292.
[RS] D. Roux and S. P. Singh, On a best approximation theorem, Jñānābha 19 (1989), 1–9.
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