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GEOMETRIC SOLUTIONS OF NONLINEAR SECOND ORDER

HYPERBOLIC EQUATIONS

MIKIO TSUJI AND NGUYEN DUY THAI SON

Dedicated to Tran Duc Van on the occasion of his fiftieth birthday

Abstract. We will consider the Cauchy problem for nonlinear hyperbolic
equations of second order with smooth data. It is well known that the Cauchy
problem has a smooth solution in a neighbourhood of the initial curve. But
it might fail to admit a smooth solution in the whole space. This means
that singularities appear generally in finite time. We are interested in the
global theory. Therefore our problem is how to extend the solution after the
appearance of singularities. For this purpose, we will first lift the solution
surface into cotangent space so that the singularities would disappear, and
we will construct globally a geometric solution there. Next we will project it
to the base space. In this procedure we will meet the singularities of smooth
mappings.

1. Introduction

In this paper we will consider the Cauchy problem for nonlinear second order
partial differential equations of hyperbolic type. It is well known that the Cauchy
problem with smooth data has a smooth solution in a neighbourhood of the
initial curve, and that singularities appear generally in finite time. But, even
if singularities may appear in solutions, physical phenomena can exist with the
singularities. Moreover it seems to us that the singularities might cause various
kinds of interesting phenomena. We are interested in the global theory for the
above Cauchy problem. Therefore we would like to extend the solutions beyond
their singularities. The best method to solve this is to construct exact solutions
in neighbourhoods of singularities. In §2, we will study the method of integration
for second order partial differential equations. The principal idea of the method
is to express the solution surface by a family of smooth curves. Historically, it
is G. Darboux [3] and E. Goursat [5, 6] who investigated this subject for the
first time. Their principal idea is to reduce the solvability of the above problem
to the integration of first order partial differential equations. In [25], we have
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considered the meaning of “integrability in the sense of Darboux and Goursat”
of second order partial differential equations “from our point of view”. But, as
the integrability condition of Darboux and Goursat is strong, many important
examples are not contained in the class of equations which are integrable in that
sense. The first purpose of this note is how to construct the solutions without their
integrability condition. Then the family of characteristic strips is obtained as
solutions of a certain nonlinear system of first order partial differential equations.
This topic will be discussed in §2. In §3 we will apply that result to certain
nonlinear hyperbolic equations, and we will construct geometric solutions of the
equations in cotangent space. The second purpose is how to extend the solutions
beyond their singularities. This will be discussed in §3 also. In §4 we will treat
a certain system of conservation laws. The authors would like to express their
sincere gratitude to Kazuhiko Aomoto for his fruitful comments and criticism.

2. Integration of Monge-Ampère equations

In this section we will study the method of integration of second order nonlinear
partial differential equations, especially of Monge-Ampère type as follows:

F (x, y, z, p, q, r, s, t) = Ar +Bs+ Ct+D(rt− s2) − E = 0(2.1)

where p = ∂z/∂x, q = ∂z/∂y, r = ∂2z/∂x2, s = ∂2z/∂x∂y, and t = ∂2z/∂y2.
Here we assume that A, B, C, D and E are real smooth functions of (x, y, z, p, q).
Partial differential equations of second order which appear in physics and geom-
etry are often written in the above form.

Before beginning our discussion, we will briefly explain some classical notions
from our point of view so that our manuscript would become self-contained.
Equation (2.1) is regarded as a smooth surface defined in eight dimensional space
R

8 = {(x, y, z, p, q, r, s, t)}. As p and q are first order derivatives of z = z(x, y),
we put the relation dz = pdx + qdy. Moreover, as r, s and t are second or-
der derivatives of z = z(x, y), we introduce the relations dp = rdx + sdy and
dq = sdx+ tdy. Let us call { dz = pdx+ qdy, dp = rdx+ sdy, dq = sdx+ tdy }
the “contact structure of second order”. We define a solution of (2.1) as a maxi-
mal integral submanifold of the contact structure of second order in the surface
{(x, y, z, p, q, r, s, t) ∈ R

8;F (x, y, z, p, q, r, s, t) = 0}. We will use this geometric
formulation to solve equation (2.1) in exact form. Let

Γ : (x, y, z, p, q) =
(

x(ξ), y(ξ), z(ξ), p(ξ), q(ξ)
)

, ξ ∈ R
1,

be a smooth curve in R
5. It is called a “strip” if it satisfies the following:

dz

dξ
(ξ) = p(ξ)

dx

dξ
(ξ) + q(ξ)

dy

dξ
(ξ).(2.2)

Let Γ be any strip in R
5, and consider equation (2.1) in an open neighbourhood

of Γ. As a “characteristic” strip means that one can not determine the values of
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the second order derivatives of solution along the strip, we have

det





Fr Fs Ft

ẋ ẏ 0
0 ẋ ẏ



 = Ftẋ
2 − Fsẋẏ + Frẏ

2 = 0(2.3)

where Ft = ∂F/∂t, Fs = ∂F/∂s, Fr = ∂F/∂r, ẋ = dx/dξ and ẏ = dy/dξ. Here
we substitute the relations ṗ = rẋ+ sẏ and q̇ = sẋ + tẏ into (2.3), then we get
the following:

Definition 2.1. A curve Γ in R
5 = {(x, y, z, p, q)} is a “characteristic strip” if it

satisfies (2.2) and

Aẏ2 −Bẋẏ + Cẋ2 +D(ṗẋ+ q̇ẏ) = 0.(2.4)

A strip Γ is called “non-characteristic” when it does not satisfy (2.4). Next we
will give the definition of “hyperbolicity”. Denote the discriminant of (2.3) by
∆. Then it follows that

∆ = F 2
s − 4FrFt = B2 − 4(AC +DE).

If ∆ < 0, equation (2.1) is called elliptic. If ∆ > 0, equation (2.1) is hyperbolic.
In this note, we will treat the equations of hyperbolic type. Let λ1 and λ2 be
the solutions of λ2 + Bλ + (AC +DE) = 0. Then, in the case where D 6= 0, a
characteristic strip satisfies the following equations (see [3] and [6]):











dz − pdx− qdy = 0,

Ddp+ Cdx+ λ1dy = 0,

Ddq + λ2dx+Ady = 0,

(2.5)

or










dz − pdx− qdy = 0,

Ddp+ Cdx+ λ2dy = 0,

Ddq + λ1dx+Ady = 0.

(2.6)

Let us denote ω0 = dz − pdx − qdy, ω1 = Ddp + Cdx + λ1dy and ω2 =
Ddq+λ2dx+Ady. Exchanging λ1 and λ2 in ω1 and ω2, we define $1 and $2 by
$1 = Ddp+Cdx+ λ2dy and $2 = Ddq+λ1dx+Ady. Take an exterior product
of ω1 and ω2, and also of $1 and $2. Substitute into their product the relations
of the contact structure ω0 = 0, dp = rdx + sdy and dq = sdx + tdy. Then we
get

ω1 ∧ ω2 = $1 ∧$2 = D
{

Ar +Bs+ Ct+D(rt− s2) − E
}

dx ∧ dy.(2.7)

In the above we have assumed D 6= 0, though it is not essential for our dis-
cussion. The key point is to represent equation (2.1) as a product of one forms.
For example, we will consider in §3 and §4 a certain case where D ≡ 0. It will
be shown that, though the above decomposition might be a small idea, it would
effectively work to solve equation (2.1) in exact form. In a space whose dimension
is greater than two, it is generally impossible to do so. Here we recall briefly the
characteristic method developed principally by G. Darboux [3] and E. Goursat [5,
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6] “from our point of view”, because this would help us to explain our problem.
The idea of Darboux and Goursat is how to reduce the solvability of (2.1) to the
integration of first order partial differential equations.

Definition 2.2. A function V = V (x, y, z, p, q) is called a “first integral” of
{ω0, ω1, ω2} if dV ≡ 0 mod {ω0, ω1, ω2}.

Proposition 2.1. Assume that λ1 6= λ2 and D 6= 0, and that {ω0, ω1, ω2}, or

{ω0,$1,$2}, has two independent first integrals {u, v}. Then there exists a func-

tion k = k(x, y, z, p, q) 6= 0 satisfying

du ∧ dv = k ω1 ∧ ω2 = kD{Ar +Bs+ Ct+D(rt− s2) − E}dx ∧ dy.(2.8)

If {ω0, ω1, ω2}, or {ω0,$1,$2}, has at least two independent first integrals,
equation (2.1) is called integrable in the sense of Monge. But, if we may follow
G. Darboux (p. 263 of [3]), it seems to us that we had better call it integrable in

the sense of Darboux. Moreover, as E. Goursat had profoundly studied equations
(2.1) satisfying the above condition, we would like to add the name of Goursat.
By these reasons, we will call equations (2.1) with two independent first integrals
integrable in the sense of Darboux and Goursat. Then the representation (2.8)
gives the characterization of “Monge-Ampère equations which are integrable in
the sense of Darboux and Goursat”. Concerning the global existence of first
integrals for certain Monge-Ampère equations, see [9].

Next we advance to the integration of the Cauchy problem for (2.1). Let {u, v}
be two independent first integrals of {ω0, ω1, ω2}. For any function g of two vari-
ables whose gradient does not vanish, g(u, v) = 0 is called an “intermediate
integral” of (2.1). Let C0 be an initial strip defined in R

5 = {(x, y, z, p, q)}.
If the strip C0 is not characteristic, we can find an “intermediate integral”
g(u, v) which vanishes on C0. Here we put g(u, v) = f(x, y, z, p, q). The Cauchy
problem for (2.1) satisfying the initial condition C0 is to look for a solution
z = z(x, y) of (2.1) which contains the strip C0, i.e., the two dimensional surface
{(x, y, z(x, y), ∂z/∂x(x, y), ∂z/∂y(x, y))} in R

5 contains the strip C0. The repre-
sentation (2.8) assures that, as du ∧ dv = 0 on the surface g(u, v) = 0, a smooth
solution of f(x, y, z, ∂z/∂x, ∂z/∂y) = 0 satisfies equation (2.1). Therefore we get
the following:

Theorem 2.1. ([3], [5, 6]) Assume that the initial strip C0 is not characteristic.

Then a function z = z(x, y) is a solution of the Cauchy problem for (2.1) with the

initial condition C0 if and only if it is a solution of f(x, y, z, ∂z/∂x, ∂z/∂y) = 0
satisfying the same initial condition C0.

Now we will advance to the principal subject of this note which is to study
the method of integration of (2.1) in the case where neither {ω0, ω1, ω2} nor
{ω0,$1,$2} has not two independent first integrals. We start from the point
at which equation (2.1) is represented as a product of one forms as (2.8). We
suppose D 6= 0 for simplicity, though it is not indispensable for our study. The
essential condition for our following discussion is ∆ 6= 0.
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Let us pay attention to the property that the left hand side of (2.8) is a
differential form of second order defined in R

5 = {(x, y, z, p, q)}. This suggests us
to introduce a notion of “geometric solution” as follows:

Definition 2.3 A regular geometric solution of (2.1) is a submanifold of dimen-
sion 2 defined in R

5 = {(x, y, z, p, q)} on which it holds that dz = pdx+ qdy and
ω1 ∧ ω2 = 0.

Remark. In the above definition, we have added “regular” to “geometric solu-
tion”. This means that we will soon introduce a “singular” geometric solution
whose dimension may depend on each point. The problem to construct the geo-
metric solution is similar to the Pfaffian problem. A difference between the
classical Pfaffian problem and the above one is that we consider it in C∞-space.
Therefore we need some condition which is corresponding to “hyperbolicity”. In
[27], D. V. Tunitskii introduced the notion of “multi-valued solution” and proved
the global existence of such a solution and its uniqueness. But we cannot follow
some part of his discussion. For example, the author mentions in the first line of
the first page that the value of the fixed number k belongs to the set {1, 2, ...,∞},
and he develops his theory in Ck-space. If k is equal to 1, it seems to us that it
would be difficult to construct multi-valued solutions.

Our problem is to find a “submanifold on which ω0 = 0 and ω1 ∧ ω2 = 0”.
First we will sum up the classsical method, though it is written in J. Hadamard
[8], and also in R. Courant-D. Hilbert [2] a little. Let us consider the Cauchy
problem for equation (2.1). The initial condition is given by a smooth strip C0

which is defined in R
5 = {(x, y, z, p, q)} and written down as follows:

C0 : (x, y, z, p, q) =
(

x0(ξ), y0(ξ), z0(ξ), p0(ξ), q0(ξ)
)

, ξ ∈ R
1.

The idea of the classical method is to represent the solution surface by a family
of characteristic strips. Then they are determined as solutions of the following
system of equations (see [16], [8], and [2]):



























































∂z

∂α
− p

∂x

∂α
− q

∂y

∂α
= 0,

D
∂p

∂α
+ C

∂x

∂α
+ λ1

∂y

∂α
= 0,

D
∂q

∂α
+ λ2

∂x

∂α
+A

∂y

∂α
= 0,

D
∂p

∂β
+ C

∂x

∂β
+ λ2

∂y

∂β
= 0,

D
∂q

∂β
+ λ1

∂x

∂β
+A

∂y

∂β
= 0.

(2.9)

The initial condition for system (2.9) is given by
{

x(ξ, ξ) = x0(ξ), y(ξ, ξ) = y0(ξ), z(ξ, ξ) = z0(ξ),

p(ξ, ξ) = p0(ξ), q(ξ, ξ) = q0(ξ), ξ ∈ R
1.

(2.10)
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The local solvability of the Cauchy problem (2.9)-(2.10) is already proved first
by H. Lewy [16] and afterward by J. Hadamard [8]. Let

(

x(α, β), y(α, β), z(α, β),

p(α, β), q(α, β)
)

be a solution of (2.9)-(2.10). Then we can prove ∂z/∂β−p∂x/∂β−
q∂y/∂β = 0. Therefore we do not need to add this equation to system (2.9). This
means that (2.9) is just a “determined” system. What we must do more is to
represent z = z(α, β) as a function of (x, y). To do so, we calculate the Jacobian
D(x, y)/D(α, β). As it holds along the initial strip C0 that















































∂x

∂α
(ξ, ξ) =

1

λ1 − λ2

(

Dq̇0(ξ) + λ1ẋ0(ξ) +Aẏ0(ξ)
)

,

∂x

∂β
(ξ, ξ) = −

1

λ1 − λ2

(

Dq̇0(ξ) + λ2ẋ0(ξ) +Aẏ0(ξ)
)

,

∂y

∂α
(ξ, ξ) = −

1

λ1 − λ2

(

Dṗ0(ξ) +Cẋ0(ξ) + λ2ẏ0(ξ)
)

,

∂y

∂β
(ξ, ξ) =

1

λ1 − λ2

(

Dṗ0(ξ) + Cẋ0(ξ) + λ1ẏ0(ξ)
)

,

(2.11)

it follows immediately that

D(x, y)

D(α, β)
=

1

λ1 − λ2

{

Aẏ0
2 −Bẋ0ẏ0 + Cẋ0

2 +D(ṗ0ẋ0 + q̇0ẏ0)
}

.

As we have assumed that the initial strip C0 is not characteristic, we see by
(2.4) that the JacobianD(x, y)/D(α, β) does not vanish in a neighbourhood of C0.
Therefore we can uniquely solve the system of equations x = x(α, β), y = y(α, β)
with respect to (α, β) in a neighbourhood of each point of C0 and denote them
by α = α(x, y) and β = β(x, y). Then we get the solution of the Cauchy problem
for (2.1) by z(x, y) = z(α(x, y), β(x, y)). Summing up the above discussion, we
obtain the following:

Theorem 2.2. ([16], [8]) Assume that the initial strip C0 is not characteristic.

Then the Cauchy problem for (2.1) with the initial condition C0 uniquely admits

a smooth solution in a neighbourhood of each point of C0.

Remark. If the equation and the solution are sufficiently differentiable, the
solution is uniquely determined by the initial data. For example, the uniqueness
of solution in C∞-space is one of the classical known results (see H. Lewy [16]
and J. Hadamard [8]). But the uniqueness of solution in C2-space is a delicate
problem. We will consider this subject in a forthcoming paper.

Before ending this section, we will give some remarks on the above character-
istic method and the geometric solution in the sense of Definition 2.3. First we
will give the meaning of (2.9) from our point of view. Suppose that a geometric
solution is represented by two parameters as follows:

x = x(α, β), y = y(α, β), z = z(α, β), p = p(α, β), q = q(α, β).(2.12)

Then ωi and $i (i = 1, 2) are written as

ωi = ci1dα+ ci2dβ, $i = di1dα+ di2dβ (i = 1, 2).
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Hence we have ω1 ∧ ω2 = (c11c22 − c12c21) dα ∧ dβ and $1 ∧$2 = (d11d22 −
d12d21) dα ∧ dβ. As it holds that ω1 ∧ ω2 = $1 ∧$2 = 0 on the solution surface,
a sufficient condition so that (2.12) be a geometric solution of (2.1) is given by

c11 = c21 = d12 = d22 = 0.(2.13)

This is also a necessary condition. In fact, if ω1 ∧ω2 = $1 ∧$2 = 0, then we can
choose the parameters (α, β) so that (2.13) is satisfied. On the other hand, from
the contact relation dz = pdx+ qdy, we get the following two equations:

∂z

∂α
− p

∂x

∂α
− q

∂y

∂α
= 0,

∂z

∂β
− p

∂x

∂β
− q

∂y

∂β
= 0.(2.14)

Therefore we get totally six equations from (2.13) and (2.14). As we are looking
for a “determined” system, we add only one equation of (2.14) to (2.13). Then
we get system (2.9). This is the meaning of system (2.9) from our point of view.
Next let us start from Definition 2.3. Then the contact relation dz = pdx+qdy is
much more fundamental than (2.13). Therefore the characteristic system should
contain two equations (2.14). Our problem is how to choose three equations from
(2.13) so that a new system becomes equivalent to (2.9). Let us go back to the
Cauchy problem for (2.1). As the initial strip C0 is not characteristic, it follows
from (2.5) and (2.6) that

(Dṗ0(ξ) + Cẋ0(ξ) + λ2ẏ0(ξ),Dq̇0(ξ) + λ1ẋ0(ξ) +Aẏ0(ξ)) 6= (0, 0),

and also

(Dṗ0(ξ) + Cẋ0(ξ) + λ1ẏ0(ξ),Dq̇0(ξ) + λ2ẋ0(ξ) +Aẏ0(ξ)) 6= (0, 0).

Here we assumeDṗ0(ξ)+Cẋ0(ξ)+λ2ẏ0(ξ) 6= 0. In this case we choose c11 = c21 =
d12 = 0 as three equations which we add to (2.14). Then we get the following
system of five equations:



























































∂z

∂α
− p

∂x

∂α
− q

∂y

∂α
= 0,

∂z

∂β
− p

∂x

∂β
− q

∂y

∂β
= 0,

D
∂p

∂α
+ C

∂x

∂α
+ λ1

∂y

∂α
= 0,

D
∂q

∂α
+ λ2

∂x

∂α
+A

∂y

∂α
= 0,

D
∂p

∂β
+C

∂x

∂β
+ λ2

∂y

∂β
= 0.

(2.15)

We see that system (2.15) does not satisfy the condition which is stated in p.
182 of H. Lewy [16] and in p. 489 of J. Hadamard [8]. But we can show that the
Cauchy problem (2.15)-(2.10) has uniquely a classical solution in a neighbourhood
of the initial strip C0. In fact, substituting the first and second equations of (2.15)
into (∂/∂β)(∂z/∂α) = (∂/∂α)(∂z/∂β), we have

∂p

∂β

∂x

∂α
+
∂q

∂β

∂y

∂α
=
∂p

∂α

∂x

∂β
+
∂q

∂α

∂y

∂β
.
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This represents just dp∧dx+dq∧dy = 0 obtained by dz = pdx+qdy. Substituting
again ∂p/∂α, ∂p/∂β and ∂q/∂α of (2.15) into the above, we get (∂y/∂α)(D∂q/∂β+
λ1∂x/∂β+A∂y/∂β) = 0. As we can prove in a similar way as (2.11) that ∂y/∂α
does not vanish along the initial strip C0, we have D∂q/∂β+λ1∂x/∂β+A∂y/∂β =
0. This means that we can appropriately choose five equations from (2.13) and
(2.14) so that a new system of five equations becomes equivalent to system (2.9).

3. Nonlinear hyperbolic equations

In this section we will consider the Cauchy problem for nonlinear hyperbolic
equations as follows:

F (q, r, t) =
∂2z

∂x2
−

∂

∂y
f
(∂z

∂y

)

= r − f ′(q)t = 0 in {x > 0, y ∈ R
1} ≡ R

2
+,(3.1)

z(0, y) = z0(y),
∂z

∂x
(0, y) = z1(y) on {x = 0, y ∈ R

1}(3.2)

where f(q) is in C∞(R1) and f ′(q) > 0. Here z = z(x, y) is an unknown function
of (x, y) ∈ R

2. We assume that the initial functions zi(y) (i = 0, 1) are sufficiently
smooth, and that z′0(y) is bounded. Equation (3.1) is of Monge-Ampère type
which we have studied in §2. In fact, if we may put A = 1, B = D = E = 0, and
C = −f ′(q) in (2.1), then we get (3.1).

It is well known that the Cauchy problem (3.1)-(3.2) does not have a classical
solution in the large. For example, see N. J. Zabusky [30] and P. D. Lax [14].
After them, many people have considered the life-span of classical solutions. As
the number of papers on this subject is too many, we do not mention here on
that subject.

The above phenomenon means that singularities generally appear in finite time.
Our main problem is how to extend the solutions of (3.1) beyond the singular-
ities. We can see that the solutions take many values after the appearance of
singularities. If we may consider this problem from the physical point of view,
we would be obliged to construct single-valued solutions of (3.1). To solve the
problem of this kind, we recall what we have done for nonlinear first order partial
differential equations. First we have lifted the solution surface into cotangent
space so that its singularities would disappear. Then we could extend the lifted
solution so that it would be defined in the whole space. Next we have projected
it to the base space and gotten a multi-valued solution. Our final problem has
been how to choose a single value from many values of the projected solution
so that the new single-valued solution should satisfy some additional conditions
attached to some physical phenomena.

Now we will construct a geometric solution of (3.1)-(3.2) by the method intro-
duced in §2. The first step is to represent equation (3.1) as a product of one forms.

Let us denote ω1 = dp ± λ(q)dq and ω2 = ±λ(q)dx + dy where λ(q) =
√

f ′(q).
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Take an exterior product of ω1 and ω2, and substitute into their product the
relations of the contact structure ω0 = 0, dp = rdx + sdy and dq = sdx + tdy.
Then we get

ω1 ∧ ω2 =
{

r − f ′(q)t
}

dx ∧ dy.(3.3)

Definition 2.3 and the decomposition (3.3) for equation (3.1) suggest us to con-
sider the following system, which is similar to (2.9) for equation (2.1) in the
general case:











































∂p

∂α
+ λ(q)

∂q

∂α
= 0,

λ(q)
∂x

∂α
+
∂y

∂α
= 0,

∂p

∂β
− λ(q)

∂q

∂β
= 0,

−λ(q)
∂x

∂β
+
∂y

∂β
= 0.

(3.4)

The initial condition corresponding to (3.2) is given by

x(ξ, ξ) = 0, y(ξ, ξ) = ξ, p(ξ, ξ) = z1(ξ), q(ξ, ξ) = z′0(ξ), ξ ∈ R
1.(3.5)

Solving (3.4)-(3.5), we get the following:

Theorem 3.1. The Cauchy problem (3.1)-(3.2) has globally a regular geometric

solution.

Proof. Integrating the first and the third equations of (3.4), we have

p+ Λ(q) = ψ1(β) and p− Λ(q) = ψ2(α)(3.6)

where Λ′(q) = λ(q), ψ1(β) = z1(β) + Λ(z′0(β)) and ψ2(α) = z1(α) − Λ(z′0(α)).

As Λ′(q) > 0, we see that an inverse function of Λ(q) is smooth. Therefore p
and q are obtained as smooth functions of (α, β) defined in the whole space R

2.
On the other hand, x and y are solutions of the following system:











λ(q)
∂x

∂α
+
∂y

∂α
= 0,

−λ(q)
∂x

∂β
+
∂y

∂β
= 0.

(3.7)

As this is equivalent to a system of linear wave equations concerning x and
y, we can get the solutions x = x(α, β) and y = y(α, β) as smooth functions
of (α, β) defined in the whole space R

2 = {(α, β)}. The function z = z(α, β)
is uniquely determined by the contact relation dz = pdx + qdy and the initial
conditions (3.2), that is to say,
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∂z

∂α
= p

∂x

∂α
+ q

∂y

∂α
,

∂z

∂β
= p

∂x

∂β
+ q

∂y

∂β
,

z(ξ, ξ) = z0(ξ), ξ ∈ R
1.

We can easily see that z = z(α, β) is a smooth function defined in the whole
space R

2 = {(α, β)}. For the existence of the regular geometric solution, we must
prove that it is regular, that is to say,

rank

(

∂x/∂α ∂y/∂α ∂z/∂α ∂p/∂α ∂q/∂α

∂x/∂β ∂y/∂β ∂z/∂β ∂p/∂β ∂q/∂β

)

= 2.(3.8)

Taking the derivatives of (3.6) with respect to α and β, we get

2
∂p

∂α
= ψ′

2(α), 2
∂p

∂β
= ψ′

1(β), 2λ(q)
∂q

∂α
= −ψ′

2(α), 2λ(q)
∂q

∂β
= ψ′

1(β).

Therefore, for the proof of (3.8), we must consider whether ψ′

1(β) and ψ′

2(α)
are 0 or not. Concerning this problem, we give the following two lemmas.

Lemma 3.1. Assume that there exists α0 satisfying ψ′

2(α0) = 0. Then (∂x/∂α)(α0 , β) 6=
0 for any β ∈ R

1.

Lemma 3.2. Assume that there exists β0 satisfying ψ′

1(β0) = 0. Then (∂x/∂β)(α, β0) 6=
0 for any α ∈ R

1.

As we will prove the above two lemmas after the proof of Theorem 3.1, we will
now continue it. Lemmas 3.1 and 3.2 suggest us to consider the following four
cases:

(i) In the case where ψ′

2(α0) · ψ
′

1(β0) 6= 0, we get

det

(

∂p/∂α ∂q/∂α
∂p/∂β ∂q/∂β

)

= det

(

ψ′

2(α0)/2 −ψ′

2(α0)/2λ(q)
ψ′

1(β0)/2 ψ′

1(β0)/2λ(q)

)

= ψ′

2(α0)ψ
′

1(β0)/2λ(q) 6= 0.

(ii) In the case where ψ′

2(α0) = 0 and ψ′

1(β0) 6= 0, we get by Lemma 3.1

det

(

∂x/∂α ∂p/∂α
∂x/∂β ∂p/∂β

)

= det

(

∂x/∂α ψ′

2(α0)/2
∂x/∂β ψ′

1(β0)/2

)

=
1

2

∂x

∂α
ψ′

1(β0) 6= 0.

(iii) In the case where ψ′

2(α0) 6= 0 and ψ′

1(β0) = 0, we get by Lemma 3.2

det

(

∂x/∂α ∂p/∂α
∂x/∂β ∂p/∂β

)

= −
1

2

∂x

∂β
ψ′

2(α0) 6= 0.
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(iv) In the case where ψ′

2(α0) = ψ′

1(β0) = 0, we get by (3.7) and Lemmas
3.1-3.2

det

(

∂x/∂α ∂y/∂α
∂x/∂β ∂y/∂β

)

= det

(

∂x/∂α −λ(q)∂x/∂α
∂x/∂β λ(q)∂x/∂β

)

= 2λ(q)
∂x

∂α

∂x

∂β
6= 0.

Hence we see that (3.8) holds at any point (α, β) = (α0, β0).

Proof of Lemmas 3.1 and 3.2. Eliminating y = y(α, β) from the two equa-
tions of (3.7), we get

∂

∂β
(λ(q)

∂x

∂α
) +

∂

∂α
(λ(q)

∂x

∂β
) = 0.

As 2λ(q)(∂q/∂α) = −ψ′

2(α), it follows that (∂q/∂α)(α0, β) = 0. Hence we get

2λ(q)
∂2x

∂α∂β
(α0, β) + λ′(q)

∂q

∂β
(α0, β)

∂x

∂α
(α0, β) = 0.

As this is just a first order linear ordinary differential equation with respect to
(∂x/∂α)(α0, β), we can solve it exactly. As (∂x/∂α)(α0, α0) = −1/2λ(q(α0, α0)) 6=
0, (3.4)-(3.5) implies that (∂x/∂α)(α0, β) is not identically zero. Hence we have
Lemma 3.1. Exchanging α and β in the above, we obtain Lemma 3.2.

In a domain where the Jacobian D(x, y)/D(α, β) does not vanish, we can
uniquely solve x = x(α, β) and y = y(α, β) with respect to (α, β). We write α =
α(x, y) and β = β(x, y). Then z(x, y) = z(α(x, y), β(x, y)) is a classical solution
of (3.1)-(3.2), because (∂z/∂x)(x, y) = p(α(x, y), β(x, y)) and (∂z/∂y)(x, y) =
q(α(x, y), β(x, y)). Next we will prove the explosion of classical solutions at points
where the Jacobian vanishes.

Theorem 3.2. Assume

D(x, y)

D(α, β)
(α0, β0) = 0.

If a point (x, y) goes to (x(α0, β0), y(α0, β0)) along a curve in the existence domain

of the classical solution z = z(x, y), then (r, s, t) tends to ∞.

Proof. In a domain where there exists a classical solution, we have










































∂p

∂α
= r

∂x

∂α
+ s

∂y

∂α
,

∂p

∂β
= r

∂x

∂β
+ s

∂y

∂β
,

∂q

∂α
= s

∂x

∂α
+ t

∂y

∂α
,

∂q

∂β
= s

∂x

∂β
+ t

∂y

∂β
,

(3.9)
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where r, s and t are the second order derivatives of z = z(x, y) introduced
in (2.1). For (3.1)-(3.2), the Jacobian is written down by D(x, y)/D(α, β) =
2λ(q)(∂x/∂α)(∂x/∂β). If the Jacobian does not vanish, then it follows from
(3.9) that















































r =
1

4

{ ψ1
′(β)

∂x

∂β
(α, β)

+
ψ2

′(α)

∂x

∂α
(α, β)

}

,

s =
1

4λ(q)

{ ψ1
′(β)

∂x

∂β
(α, β)

−
ψ2

′(α)

∂x

∂α
(α, β)

}

,

t =
1

λ(q)2
r .

(3.10)

Applying Lemma 3.1 and Lemma 3.2 to (3.10), we can get the above result.

Remark. We explain the meaning of Theorem 3.2. Sometimes, even if the
Jacobian may vanish, there exists a classical solution. This phenomenon happens
even for nonlinear first order partial differential equations (see M. Tsuji [22]).
What Theorem 3.2 insists is that, for the Cauchy problem (3.1)-(3.2), a classical
solution always blows up at a point where the Jacobian vanishes. Therefore we
can exactly determine the life-span of the classical solution by the information
on zeros of the Jacobian. Concerning the life-span of classical solutions, various
kinds of results have been published, for example [30], [14], [26], etc, etc.

As we have stated in the above, our principal interest is to extend a solution
beyond the singularities. Therefore we introduce the notion of “solution with
singularities” which is called “weak solution”, though we do not yet arrive at
the final decision on the definition of weak solutions. Let us introduce the most
typical definition which is corresponding to P. D. Lax’s one [15] introduced for
systems of conservation laws.

Definition 3.1. A function z = z(x, y) is called a weak solution of (3.1)-(3.2) if
the following conditions (i) and (ii) are satisfied:

(i) The function z = z(x, y) is continuous with z(0, y) = z0(y); and its deriva-
tives in the sense of distributions, (∂z/∂x)(x, y) and (∂z/∂y)(x, y), are bounded
and measurable,

(ii) The function z = z(x, y) satisfies the Cauchy problem (3.1)-(3.2) in the
weak sense, that is to say, it holds for any ϕ(x, y) ∈ C∞

0 (R2) that
∫

R
2
+

{∂z

∂x

∂ϕ

∂x
− f

(∂z

∂y

)∂ϕ

∂y

}

dxdy +

∫

R1

z1(y)ϕ(0, y)dy = 0.(3.11)

Let z = z(x, y) be a weak solution of (3.1)-(3.2) in the sense of Definition
3.1. Assume that (∂z/∂x)(x, y) ≡ p(x, y) and (∂z/∂y)(x, y) ≡ q(x, y) have jump
discontinuities along a smooth curve y = γ(x). As z = z(x, y) is continuous, it
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holds that z(x, γ(x) + 0) = z(x, γ(x) − 0). Differentiating this with respect to x,
we get

[p] + [q]γ̇ = 0.(3.12)

where [ ] means the quantity of difference, i.e., [p] = p(x, γ(x)+0)−p(x, γ(x)−0).
Since z = z(x, y) satisfies (3.11), we obtain

[p]γ̇ + [f(q)] = 0.(3.13)

This means that the curve y = γ(x) must satisfy two kinds of differential
equations, (3.12) and (3.13). This suggests us the following:

Theorem 3.3. Assume that f ′(q) > 0 and f ′′(q) 6= 0. Then we can not gen-

erally construct a weak solution of the Cauchy problem (3.1)-(3.2) in the sense

of Definition 3.1 by projecting the above geometric solution to the base space and

cutting off some part of the multi-valued projected solution so that it would become

a single-valued solution of (3.1)-(3.2).

Remark. In this theorem, we have used the word “generally” to state that there
exists the case in which we cannot construct a weak solution by the method
explained in the theorem. Therefore we do not deny the possibility that there
may exist a case where we can do so.

Proof. Supposing that we could construct a weak solution of the Cauchy problem
(3.1)-(3.2) by the geometric method stated in the theorem, we will show that we
would be led to a contradiction. We consider the case where the initial data
satisfy ψ1(β) = 0 or ψ2(α) = 0. Here we assume ψ2(α) = 0. Then it holds that
p− Λ(q) = 0 for all (α, β) ∈ R

2. Moreover, solving (3.6) and (3.7), we get

y = β − λ(q)x, p = z1(β), q = z′0(β), and

x(α, β) =
1

2
√

λ(z′0(β))

β
∫

α

dτ
√

λ(z′0(τ))
.

As z′0 is bounded, x(α, β) tends to ±∞ when β − α goes to ±∞ respectively.
Therefore, when (α, β) moves in the whole space R

2, so does (x(α, β), y(α, β)).
As z = z(α, β) is defined by dz = pdx+qdy, we have ∂z/∂x = p and ∂z/∂y = q in
the domain {(x(α, β), y(α, β)); D(x, y)/D(α, β) 6= 0}. As, by Sard’s theorem, the
measure of the set {(x(α, β), y(α, β)); D(x, y)/D(α, β) = 0} is zero, we define the
values of ∂z/∂x and ∂z/∂y at a point where the Jacobian vanishes by the limits of
p = p(α, β) and q = q(α, β), respectively. Then (∂z/∂x)(x, y) and (∂z/∂y)(x, y)
become multi-valued functions defined in the whole space R

2, and z = z(x, y)
turns out to satisfy the following Cauchy problem:

∂z

∂x
− Λ

(∂z

∂y

)

= 0 in {x > 0, y ∈ R
1} ≡ R

2
+,(3.14)

z(0, y) = z0(y) in {x = 0, y ∈ R
1}.(3.15)
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The characteristic differential equations for (3.14)-(3.15) are written by










dy

dx
= −λ(q),

dz

dx
= p− λ(q)q,

dp

dx
=
dq

dx
= 0,

y(0) = ξ, z(0) = z0(ξ), p(0) = Λ(z′0(ξ)), q(0) = z′0(ξ).

(3.16)

We can immediately solve (3.16). Moreover, in the case where z1(ξ)−Λ(z′0(ξ)) =
0, we can easily show that the surface {(x, y, p, q); y = ξ−λ(z′0(ξ))x, p = z1(ξ), q =
z′0(ξ)}, i.e. the (x, y, p, q)-components of the solution of (3.16), is the same as
the solution surface of (3.4)-(3.5). Here we recall the result of [21, 22]. As
(∂y/∂ξ)(x, ξ) = 1−λ′(z′0(ξ))z

′′

0 (ξ)x does not vanish in a neighbourhood of x = 0,
we can uniquely solve the equation y = y(x, ξ) with respect to ξ and denote it by
ξ = ξ(x, y). Then we can get a classical solution of (3.1)-(3.2) by z = z(x, ξ(x, y))
where z = z(x, ξ) is the z-component of the solution of (3.16). Here we put
h(ξ) = λ′(z′0(ξ))z

′′

0 (ξ) and assume that h = h(ξ) takes its positive maximum at
ξ = ξ0 with h′′(ξ0) > 0. We write M = h(ξ0), x0 = 1/M and y0 = y(x0, ξ0).
Then the function ξ = ξ(x, y) takes three values for x > x0 in a neighbourhood
of (x0, y0), and so does the solution z = z(x, y). In [21] we have proved that we
can choose only one from these three values of z = z(x, y) so that the solution
becomes a single-valued continuous solution of (3.14)-(3.15), and that it auto-
matically satisfies the conditions for generalized solutions introduced in the case
of Hamilton-Jacobi equations. Therefore, if a continuous solution of (3.1)-(3.2)
may be obtained by the geometric method, it must coincide with the continuous
solution of (3.14)-(3.15) constructed as above. In the situation under considera-
tion, its derivatives have jump discontinuity along some smooth curve y = γ(x)
whose starting point is (x0, y0) (see [21]). Combining (3.12) and (3.13), we get

[f(q)]

[p]
=

[p]

[q]
, i.e.,

[f(q)]

[q]
=

(

[Λ(q)]

[q]

)2

.(3.17)

The following Lemma 3.3 assures us that (3.17) does not hold. This is a contra-
diction. Hence we get Theorem 3.3.

Lemma 3.3. Assume that f ′(q) > 0 and f ′′(q) 6= 0. Then, if q1 6= q2 and q2− q1
is sufficiently small, we have

f(q2) − f(q1)

q2 − q1
6=

(Λ(q2) − Λ(q1)

q2 − q1

)2
.

Proof. Keeping q1 fixed, we expand the both sides in the Taylor series with re-
spect to q2 about q2 = q1. Then the coefficient of (q2 − q1)

2 of the left-hand

side is f (3)(q1)/6, while that of the right-hand side is equal to f (3)(q1)/6 −
(f ′′(q1))

2/48f ′(q1). This means the above conclusion.

If we may change the definition of weak solution, we shall be able to get various
results of another type. For example, the following definition of “weak solution”
is also possible.
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Definition 3.2. Let z = z(x, y), (∂z/∂x)(x, y), and (∂z/∂y)(x, y) be bounded
and measurable. Moreover z = z(x, y) is continuous as a function of x with values
in L1

loc(R
1). The function z = z(x, y) is a weak solution of (3.1)-(3.2) if it satisfies

equation (3.1) in the following integral form:

∫

R
2
+

{∂z

∂x

∂ϕ

∂x
− f

(∂z

∂y

)∂ϕ

∂y

}

dxdy +

∫

R1

z1(y)ϕ(0, y) dy = 0

for all ϕ(x, y) ∈ C∞

0 (R2), and z = z(x, y) tends to z0(y) in L1
loc(R

1) when x goes
to +0.

Then we get the following:

Theorem 3.4. In the same situation as Theorem 3.3, we can get a weak solution

of the Cauchy problem (3.1)-(3.2) in the sense of Definition 3.2 by projecting the

above geometric solution to the base space and cutting off appropriate parts of

that projected surface.

Proof. Let us begin our discussion from (3.14)-(3.15). As it holds that p−Λ(q) =
0, p(x, y) = ∂z/∂x satisfies the following Cauchy problem:







∂p

∂x
−

∂

∂y
g(p) = 0,

p(0) = z1(y).
(3.18)

where g(p) = f(Λ−1(p)). We consider this Cauchy problem in the same situation
as in the proof of Theorem 3.2. We can easily show that the family of character-
istic curves of (3.18) is written by {(x, y, p); y = ξ − g′(z1(ξ))x, p = z1(ξ)}. This
is just the (x, y, p)-components of the solution of (3.16). Then we can uniquely
construct a weak solution p = p(x, y) of (3.18) by cutting off some part of this
characteristic surface so that p = p(x, y) becomes single-valued and satisfies (3.18)
in the weak sense (for example, refer to [22]). In this case p = p(x, y) has a jump
discontinuity across a curve y = γ(x) which starts from the point (x0, y0). As
it satisfies (3.18) in the weak sense, the jump condition for p = p(x, y) is the
same as (3.13). Then we can show that z = z(x, y), i.e. the corresponding part
of the z-component of the solution of (3.16), is not continuous across the curve
y = γ(x). In fact, if so, it follows that z(x, γ(x) − 0) = z(x, γ(x) + 0). Hence we
get (3.12). As we have already proved in Lemma 3.3 that the conditions (3.12)
and (3.13) are not compatible, we see that the above solution z = z(x, y) can not
become continuous across the curve y = γ(x). Therefore it is not a weak solution
in the sense of Definition 3.1, but it is so in the sense of Definition 3.2.

Remark. In Definition 3.2, ∂z/∂x and ∂z/∂y are the derivatives of z = z(x, y)
in the classical sense, not in the sense of distribution theory. Hence, even if
z = z(x, y) may have jump discontinuities, Dirac’s measure does not appear in
∂z/∂x and ∂z/∂y. But we insist that equation (3.1) is satisfied in the above
integral form. Therefore we guess that Definition 3.2 would not be accepted by
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many people. But we have shown in [26] that it works well in some case. As an
example in [26], we have considered the well-known equation appeared in N. J.
Zabusky [30].

As we will write in §4, equation (3.1) can be transformed into a system of con-
servation laws (4.1). For systems of conservation laws, P. D. Lax [15] introduced
the notion of weak solutions. Then we can show in Proposition 4.1 that weak
solutions of (3.1) in the sense of Definition 3.1 can be transformed to “weak solu-
tions in the sense of Lax” for systems of conservation laws (4.1). Here we recall
the method used to solve the problem of singularities. The most traditional and
typical method is the “resolution of singularities” whose idea is to lift a surface
with singularities into a space of higher dimension so that the singularities would
disappear. After solving our problems in higher dimensional space, we project it
to the base space. This method has been well developed especially in algebraic
geometry. If we might follow this approach, we would be obliged to change the
definition of weak solution in the sense of Lax. For example, R. Thom [20] origi-
nated “Catastrophe theory”, and he has applied his theory to understand various
kinds of phenomena caused by “singularities”. If we might accept his idea, we
might be led to a definition in which a weak solution would be constructed by
the projection of a geometric solution to the base space.

4. Systems of conservation laws

In this section we will consider a certain hyperbolic system of conservation
laws which is related with equation (3.1). Let z = z(x, y) be a solution of (3.1),
and write p = ∂z/∂x, q = ∂z/∂y, U(x, y) = (p, q), F (U) = (f(q), p) and U0(y) =
(z1(y), z

′

0(y)) ≡ (p0(y), q0(y)). Then we get

∂

∂x
U −

∂

∂y
F (U) = 0 in {x > 0, y ∈ R

1},(4.1)

U(0, y) = U0(y) on {x = 0, y ∈ R
1}.(4.2)

The system of the form (4.1) is called “p-system”. It is well known that, even
if the initial data are sufficiently smooth, singularities generally appear in the
solution of (4.1)-(4.2). Therefore we will construct a “solution with singularities”
called “weak solution”. As we have done for hyperbolic Monge-Ampère equations
in §3, we will introduce a notion of “geometric solution” for (4.1)-(4.2). To do
so, we will rewrite the equations by using differential forms. Then system (4.1)
is represented by

{

dp ∧ dy + df(q) ∧ dx = 0,

dq ∧ dy + dp ∧ dx = 0.
(4.3)

Definition 4.1. A regular geometric solution of (4.1) is a submanifold of dimen-
sion 2 defined in R

4 = {(x, y, p, q)} on which system (4.3) is satisfied.
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For getting a geometric solution in the above sense, we will decompose the
equations of differential forms as a product of one forms just as in §3. Then we
can easily see that system (4.3) is equivalent to the following system:

{

(dp + λ(q)dq) ∧ (λ(q)dx+ dy) = 0,

(dp − λ(q)dq) ∧ (−λ(q)dx+ dy) = 0,
(4.4)

where λ(q) =
√

f ′(q). We will repeat the same discussion as in §3 for solving
system (4.4). Let us represent a geometric solution by

x = x(α, β), y = y(α, β), p = p(α, β), q = q(α, β).

A sufficient condition so that it is a geometric solution of (4.1)-(4.2) is given
by











































∂p

∂α
+ λ(q)

∂q

∂α
= 0,

λ(q)
∂x

∂α
+
∂y

∂α
= 0,

∂p

∂β
− λ(q)

∂q

∂β
= 0,

−λ(q)
∂x

∂β
+
∂y

∂β
= 0.

(4.5)

The above system is just the same as (3.4). The initial condition corresponding
to (4.2) is

x(ξ, ξ) = 0, y(ξ, ξ) = ξ, p(ξ, ξ) = p0(ξ), q(ξ, ξ) = q0(ξ), ξ ∈ R
1.(4.6)

As discussed in §3, we can prove that the Cauchy problem (4.5)-(4.6) has a
unique solution defined for all (α, β) ∈ R

2, and it satisfies

p+ Λ(q) = ψ1(β) and p− Λ(q) = ψ2(α)

where Λ′(q) ≡ λ(q) and ψ1(β) = p0(β)+Λ(q0(β)), and ψ2(α) = p0(α)−Λ(q0(α)).
This solution determines a regular geometric solution of (4.1)-(4.2) in the large.
Let us recall here the definition of weak solutions of (4.1)-(4.2) introduced by P.
D. Lax [15].

Definition 4.2. A bounded and measurable 2-vector function U = U(x, y) is a
weak solution of (4.1)-(4.2) if it satisfies (4.1)-(4.2) in the weak sense, i.e.,

∫

R
2
+

{

U(x, y)
∂Φ

∂x
(x, y) − F (U)

∂Φ

∂y
(x, y)

}

dxdy +

∫

R1

U0(y)Φ(0, y)dy = 0(4.7)

for any 2-vector function Φ(x, y) ∈ C∞

0 (R2).
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Remark. Putting p = ∂z/∂x and q = ∂z/∂y, we arrive at Definition 4.2 from
Definition 3.1. Contrarily, the following shows that we can get Definition 3.1
from Definition 4.2.

Proposition 4.1. Assume U = (p(x, y), q(x, y)) to be a weak solution of (4.1)-
(4.2) in the sense of Definition 4.2. Then the Cauchy problem (3.1)-(3.2) has a

weak solution z = z(x, y) in the sense of Definition 3.1 for which ∂z/∂x = p and

∂z/∂y = q.

Proof. Define a function z = z(x, y) by

z(x, y) = z0(y) +

x
∫

0

p(τ, y)dτ.(4.8)

Then z = z(x, y) is measurable and locally bounded in R
2
+. Moreover, it becomes

then a Lipschitz continuous function of x ∈ (0,∞) for almost all y ∈ R
1, and

admits p = p(x, y) as its derivative with respect to x in the distribution sense
in R

2
+. Next we will show that q = q(x, y) is its derivative with respect to y in

the distribution sense. For this, let ϕ(x, y) ∈ C∞

0 (R2
+) be arbitrarily given. We

extend the definition domain of ϕ(x, y) to R
2 by setting ϕ(−x, y) = −ϕ(x, y),

and let ψ(x, y) =

x
∫

−∞

ϕ(τ, y)dτ . We thus get a new function ψ(x, y) ∈ C∞

0 (R2)

with ∂ψ/∂x = ϕ. In view of (4.8), we see from the integration by parts formula
that

∫

R
2
+

z
∂ϕ

∂y
dxdy(4.9)

=

∞
∫

0

∞
∫

−∞

z0(y)
∂ϕ

∂y
(x, y)dydx +

∞
∫

−∞

∞
∫

0

[
∫ x

0
p(τ, y)dτ

]

∂

∂x

∂ψ

∂y
(x, y)dxdy

= −

∞
∫

0

∞
∫

−∞

z′0(y)ϕ(x, y)dydx −

∞
∫

−∞

∞
∫

0

p(x, y)
∂ψ

∂y
(x, y)dxdy.

But the second identity of (4.7) implies

∫

R
2
+

p(x, y)
∂ψ

∂y
(x, y)dxdy =

∫

R
2
+

q(x, y)
∂ψ

∂x
(x, y)dxdy +

∞
∫

−∞

z′0(y)ψ(0, y)dy

=

∫

R2
+

q(x, y)ϕ(x, y)dxdy −

∞
∫

−∞

z′0(y)

∞
∫

0

ϕ(x, y)dxdy.
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Hence, it follows from (4.9) that
∫

R
2
+

z(x, y)
∂ϕ

∂y
(x, y)dxdy = −

∫

R
2
+

q(x, y)ϕ(x, y)dxdy.

This means that (∂z/∂y)(x, y) = q(x, y) in the sense of distributions in the do-
main R

2
+. Therefore, z = z(x, y) can be regarded as a Lipschitz continuous

function in R
2
+. Finally we extend the definition domain of z = z(x, y) to the

boundary {x = 0} by using (4.8). Then we see that z(0, y) = z0(y), and that
(3.11) is just the first identity of (4.7).

If U = U(x, y) is a weak solution of (4.1) which has jump discontinuity along a
smooth curve y = γ(x), we get jump conditions of Rankine-Hugoniot as follows:

[p]γ̇ + [f(q)] = 0,

[q]γ̇ + [p] = 0.

Therefore the jump discontinuity must satisfy two kinds of differential equa-
tions. Using this property, we can show that Theorem 3.3 is rewritten in the
following form, though we do not write the proof because it is almost similar to
that of Theorem 3.3.

Theorem 4.1. Assume that f ′(q) > 0 and f ′′(q) 6= 0. Then we can not gener-

ally construct a weak solution of the Cauchy problem (4.1)-(4.2) in the sense of

Definition 4.2 by cutting off some part of the above geometric solution so that it

would become a single-valued solution of (4.1)-(4.2).

Remark. For Riemann’s problem to (4.1), the same result has been already
proved in [1]. But, in the case where the initial data are smooth, the above result
has been announced as a conjecture (see p. 59 in [1]). The above result is also
written in [26] which is the Proceeding of a meeting held in September 1996. At
that time we did not know the paper [1]. We thank Y. Machida that he informed
us the existence of [1].

Concerning single first order partial differential equations, we could construct
weak solutions by the above method. For example, see M. Tsuji [21, 22], S.
Nakane [18, 19], S. Izumiya [10], S. Izumiya and G. T. Kossioris [11, 12], etc.

For second order hyperbolic equations or hyperbolic systems of conservation
laws, we could not construct weak solutions by the same method. But, if we
may change the definition of weak solutions, we can show that the above method
would still work well. For example, if we may introduce a new definition of weak
solutions of (4.1)-(4.2) corresponding to Definition 3.2, we can get an affirmative
answer which is corresponding to Theorem 3.4. In a forthcoming paper, we
will discuss more precisely what kind of solutions we can get by projecting the
geometric solutions into the base space.
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