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GENERALIZED TRANSLATION OPERATORS
AND THEIR RELATED MARKOV PROCESSES

CAO VAN NUOI

ABSTRACT. We study properties of generalized translation operators and their
relations with the associated Markov processes. Some relations between a
Levitan family of generalized translation operators and its associated random
convolution (in the sense of Vol’kovich) are established. The generalized dif-
ferential operator introduced by N. V. Thu (1994) is also investigated.

1. PRELIMINARIES

Let P denote the class of all probability measures on Borel subsets of Ry =
[0,00) and C}, the Banach space of all bounded continuous real valued functions
on Ry. A random convolution (in the sense of Vol’kovich) of elements of P is a
binary operation o on P such that

a) (P, o) is a topological semigroup;
b) (ap+bv)oy =a(poy)+b(vo~) for all u,v,y € P,a+b=1,a>0,b>0.
Let 77, © € R4, denote the generalized translation operator defined on Cj by

2 f(y) = / F(w)o, 0 8, (du),

where d, is the Dirac measure and the symbol | denotes the integral over [0, c0).

For p € P, we put

T f(y) = / 7 F(y) p(du),

where y € R4 and f is a continuous function on R .

In the case, when o is a regular generalized convolution in the sense of Urbanik,
we consider the following generalized differential operator

D o) -t W= S@)

y—0+ w(y)
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where f € Cy (Cy is a subspace of Cj, consisting of all functions vanishing at
infinity) and w(-) is defined by

1—Q(y), 0 <y < o,
w(y) =
1 — Q(xo), Y > xo.

with g being a number such that 0 < Q(y) < 1 for 0 < y < x¢ and (z) is the
kernel of the characteristic function.

2. WEAK UNIFORMLY CONTINUITY AND WEAK CONVERGENCE

Definition 2.1. Given S = {y, t € I}, I C R and S C P, a function f in Cj is
called weak uniformly continuous on S if for any € > 0, there exists § > 0 such
that for all y,z € I with |y — 2| < & we have

|/f(U)Hy(dU) —/f(U)uz(du)\ <e

The following proposition is obvious.

Proposition 2.1. For each x € Ry, a function f in Cy is weak uniformly con-
tinuous on Py X 0, if and only if T2 f is bounded uniformly continuous, where P,
is the set of all Dirac measures on [0,00) and Py X 05 = {0z 09, t € Ry }.

It is easily seen that f is weak uniformly continuous on P, if and only if f is
uniformly continuous on R..

Now let p be a set function on a o-field \A. Then the total variation of the set
function p on A is the number

Var (p, A) = sup Z (Al

where sup is taken over all the finite .A-measurable partitions { A} of A.

We have the following theorem.

Theorem 2.1. Let {u, t € I}, I C R be an o-semigroup of probability measures
on Ry. Assume that for every Borel subset A of Ry and e > 0, there exists § > 0
such that for any t,s € I with |t — s| < 0 we have Var (u; — ps, A) < €. Then,
every function f in Cy is weak uniformly continuous on {uoa, t € I, a € P}.

To prove this theorem we use the following result of Vol’kovich:

Lemma 2.1. [8] For any 1, ua € P and f € Cy, we have following relationship

/f x) p o po(dx) // S f(x2)pr (day) pa(des).
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Proof of Theorem 2.1. First, let f be a step function, i.e. f = EaZIA , where
{a1,a9,...,an,} C R and {44, ..., Ay} is a Borel partition of R. Then

‘Zai[ut(/li)— s(A9)]] < sup |ayl. Z‘“t (AZ)‘
i=1

1<j<n

< sup \aj|.Var( pe — ps, Ry).
1<j<n

Since sup |a;| < oo, the hypotheses of the theorem implies that for every e > 0
1<j<n
there exists d > 0 such that for any ¢,s € I with |t — s| < d we have

n
‘ Zai[ut(Ai) - MS(Ai)]‘ <e.

i=1
Hence
21) | [ fhatan) - [ spa(au)] <

Now, we consider the general case, when f is an arbitrary element of C. Then

there exists a sequence {f,,} of step functions that converges to f in norm. This
with (2.1) yields
(22) | [ ) - [ supa(au)] <

On the other hand, since 73 f € Cy, u € Ry (cf. [5]) and /a(du) = 1, we have

(2.3) | [ o atan) - [ fm o o)

= | [[ e s@wdatin) ~ [[ 72 s@nsaatn)

e fapeldn) ~ [ 72 @)

This with (2.2) and (2.3) proves the theorem. O

From the method used in the proof of Theorem 2.1 we easily obtain the fol-
lowing corollary.

Corollary 2.1. Assume that the hypotheses of Theorem 2.1 hold. Then, every
fin Cy is weak uniformly continuous on {u, t € I}.

Theorem 2.2. Assume that 7)'f, uw € Ry are uniformly equicontinuous func-
tions on Ry, i.e. Ve >0, 36 > 0, Va,y € Ry, |z — y| < § we have

sup |75'f(z) = 7' f(y)| <e.
u€ER L

Then, for any u € P, the function 78 f is uniformly continuous and bounded.
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Proof. We have
7 fta) = )| = | [ (728 = )l
< [ 1r = 72w u(aw

< sup |7 f(2) — ()],
u€ER

O

From this inequality with the hypotheses on 7%f, v € R, we deduce the
following theorem.

Theorem 2.3. Assume that the random convolution o has unit element 6y, .
Then pp, S p as n — oo if and only if hm To"f( ) = 18 f(x), for each x € Ry

and all bounded uniformly continuous f on R+

Note that p, Zpu as n — oo denotes the weak convergence of u, to u as
n — o0.

Proof. First, assume that p, 3 p as n — oco. Then by
o fw) =73 f(x), Tf €
We obtain

Jim 72 f @) = i [ 72 (@)
= i [ 72 () = [ 72 fpud)

n—oo
— [ @) = (@)
Hence, for all z € R, and bounded uniformly continuous f on R,

Tim 780 f(x) = 7 ().

Conversely, suppose that hm 5" f(z) = 78 f(z) for all bounded uniformly

continuous f on Ry. Then we have

lim [ () (du) = / 7 (a)a(da).

Therefore
) T [ 7 fentan) = [ 72 fntu)

In particular, substituting = = xg in (*) we obtain

lim £ (w) pn (du) / flu

n—oo
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because 770 is the identity operator. Hence, u, = i as n — oco. Thus, the theorem
is proved. O

The following corollary is immediate.

Corollary 2.2. Assume that the random convolution o has an unit element 6,
and {p, t € Ry} is an o-semigroup. Then, for all bounded uniformly continuous

f on Ry
tlim th f(x) = f(x), Vze R;.

3. RANDOM CONVOLUTION AND ITS TRANSLATION OPERATORS

Proposition 3.1. Assume that o and o are two random convolutions on P.
Then & = 7%, for all x € Ry if and only if o = o'.

Proof. Using Lemma 2.1, we have

ot Vue Ry o / F ) ptov(du) = / Fpor(du), Vi € Cy
S oV = Uorv, Vu,v P
& o=20.

By the proposition, one can easily prove the following

Corollary 3.1. Let o and o' be two random convolutions on P. Then

(a) o = o if and only if 70+ = gf, x € Ry,

(b) o =o' on P, provide o =o' on Py, i.e. 0500, = 0,0y, x,y € Ry.

From now on, we assume o to be a regular generalized convolution in the
sense of Urbanik. Let {p:}:>0 be a semigroup in the generalized convolution
algebra (P,o) and {X;} an o-Lévy process generated by {u:}i>0 (cf. [5]). We
put S = 7. Tt is clear that {Sy} is also a semigroup.

An interesting problem is how to find relations between generalized differen-

tial operator D° and the random convolution o? For this problem we have the
following result.

Theorem 3.1. Let o and o' be two regular random convolutions, {X;} an o-
Lévy process and D° its generalized differential operator. Suppose that the P°-
distribution of X1 is equal to o, and

vl= / "o (dr) < oo,

where k is the characteristic exponent of the convolution o, taken in the sense of
Urbanik and o, the characteristic measure of (P,0). Then D° = D°" if and only
if

Se =5 teR,.
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Proof. First, we prove the “if” part. Let A° be the infinitesimal generator for
the o-Lévy process {X;} such that P°-distribution of X; is equal to o,. By the
regularity of the operator o, it follows from Theorem 3.5 in [5] that

(3.1) Af =D°f, feD(D)

where D(D°) be the domain of D°. Since D° = D° by the hypotheses and (3.1),
we have

A° = A%,
Therefore,

Se=5" t>0.

Conversely, suppose that S; = Sf/ for all ¢ > 0. By taking t = 1 we obtain
CHE

Let 04(0) and o,/ (0") be the characteristic measures of the convolution algebras
(P,o), (P,0), respectively. We have

(3.2) [ @) = [ (@) (o).

Substituting @ = 0 into (3.2) and noticing that 70 = 70 = I (where I is an
identity operator), we get

/ F(@)on(dz) = / F(@)ow(dz), Yf € Cy.
Therefore
0x(0) = 0.0(o).

But if 0,.(0) = 0,(0') then k = &’ and o = o’ (cf. [4]). It follows that D° = D
This completes the proof. ]

By the same method, we get the following corollaries.

Corollary 3.2. Suppose that the operations o and o' are reqular. Then the equal-
ity D° = D° holds if and only if o = o.

Corollary 3.3. The following equalities are equivalent
() o=
(ii) D° = D
(iii) SP =S, Vt>0
(

iv) 7% =715, Vx> 0.
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4. MARKOV PROCESSES

In this section we assume o to be a regular generalized convolution (in the
sense of Urbanik). Let {X;} be an o-Lévy process, i.e. {X;} is generated by an
o-semigroup {u:, t > 0}, (cf. [5]) and A its infinitesimal operator.

In the case the P°-distribution of X; is equal to o, together with N. V. Thu,
we get the following special properties of the generalized differential operator.

Theorem 4.1. Let D° be the generalized differential operator for the Lévy process
{X:} such that P° distribution of X1 is equal to o, and f € D(D®). Suppose that

V1= [ zf0,(dx) < co. Then u(t) = Sif (St d—ef:Sto) is the unique solution of
the following differential equation:
du o
i D®u,
subject to the following conditions
(a) u(t) is continuous differenftiable for ¢t > 0,
(b) |lu(t)]| < c.e™ for some ¢,m < oo,
(c) u(t) = f ast — 0OF.

Proof. Applying Theorem 3.5 in [5] we have
Af=D°f, feDD"),
where A is an infinitesimal operator for o-Lévy process {X;}. So, the differential

u
equation o D°u is equivalent to following equation

du
— = Au.
dt
It is easily seen that u(t) = S;(f) is a solution that satisfies all the above men-
tioned conditions. It remains to show only the uniqueness.

Suppose that u; and ug are two solutions satisfying (a), (b), (c). We put
v(t) = u1(t) — ua(t). Then, v(t) is a solution satisfying a) and b) and v(t) — 0
as t — 0F. Let w(t) = e M.(t), where A > max (m1, mz), (m, ma are the
constants of the condition b) with respect to uy, uz). Since v(t) is a solution of

u
the equation i Au, we have

%w(t) = - w(t) + e MAv(t) = —Ry w(t),
where Ry f(y) = /e_)‘tStf(y)dt.

0
We know that {S;} is a contraction semigroup with generator A. For each
A >0, (M — A) is an one-to-one map of D(A) onto C, and the inverse map
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taking Cj onto D(A) is Ry. Hence

w(t) = —Ry———

Integrating both sides from 0 to s, we have

S S

/ w(t)dt = — Ry, / dlg—it)dt = —Ryw(s).

0 0

When s — 400, the left side tends to the Laplace transform of v and the right
side tends to 0 because of assumption (b) and the choice of A\. Hence

/e_)‘tv(t)dt =0
0
for each A > m. We deduce v(t) = 0. Thus, the theorem is proved. O

Finally, we give an application of the generalized differential operator to the
ordinary differential equation.

Theorem 4.2. The ordinary differential equation of Bessel type

(4.1) P+ 2 @) - Af@) = g(@),

where A > 0, 2(s+1) > 1 and g € C* with g # 0, has a unique solution
f € D(D°) with || f| < |lgll, where D° is the infinitesimal operator in the Kingman
convolution algebra. Moreover, this solution is

o0

f(z) = —/ e MSg(x)dt.

0

Proof. In the case of Kingman convolution % g (8 = 2(s 4+ 1) > 1) we have the
following formula (cf. N. V. Thu [5], p. 166):

(2s+1)

D°f(z) = f"(x) + f(x).
So, the equation (4.1) is equivalent to the following equation
(4.2) D°f(z) - M () = gla).

Let A denote the infinitesimal operator of the o-Lévy process {X;} in Theorem
3.1. By Theorem 3.5 (cf. N. V. Thu [5], p.166) we see that equation (4.2) is
equivalent to

() (because Af = D°f, Vf € D(D°))
(4.3) Af(z) — Af(x) =
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By the theorem of Hille-Yosida, equation (4.3) has a unique solution belonging
to D(D°) such that ||f]| < ||g|| and

(e}
f@) == [ e Msiglaydr
0
Thus, the theorem is proved. ]

5. ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to Prof. Nguyen Van
Thu for helpful discussions and encouragement.

REFERENCES

[1] N. H. Bingham, On a theorem of Klosowska about generalized convolutions, Coll. Math. 48
(1984), 117-125.

[2] M. Klosowska, On the domain of attraction for generalized convolution algebras. Re.
Roumaine Math. Pures Appl. 22 (1977), 669-677.

[3] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), 217-245.

[4] K. Urbanik, Generalized convolution IV, Studia Math. 83 (1986), 57-95.

[5] Nguyen Van Thu, Generalized independent increments processes, Nagoya Math. J. 133
(1994), 155-175.

[6] Tran Hung Thao and K. S. Kuan, On generalized independent increments processes, Journal
of Physical Science 8 (1977), 35-44.

[7] Nguyen Van Thu and Cao Van Nuoi, The generalized differential operation and Markov
processes, International conference on probability and their applications, June 9-11, 1999,
Hanoi, Vietnam.

[8] V. E. Vol’kovich, Quasiregular stochastic convolution, Soviet Math. J. 47 (1980), No 5,
2685-2698.

DEPARTMENT OF MATHEMATICS
PEDAGOGICAL COLLEGE OF DANANG
DananG CiTy, VIETNAM



