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GENERALIZED TRANSLATION OPERATORS

AND THEIR RELATED MARKOV PROCESSES

CAO VAN NUOI

Abstract. We study properties of generalized translation operators and their
relations with the associated Markov processes. Some relations between a
Levitan family of generalized translation operators and its associated random
convolution (in the sense of Vol’kovich) are established. The generalized dif-
ferential operator introduced by N. V. Thu (1994) is also investigated.

1. Preliminaries

Let P denote the class of all probability measures on Borel subsets of R+ =
[0,∞) and Cb the Banach space of all bounded continuous real valued functions
on R+. A random convolution (in the sense of Vol’kovich) of elements of P is a
binary operation ◦ on P such that

a) (P, ◦) is a topological semigroup;

b) (aµ + bν) ◦ γ = a(µ ◦ γ) + b(ν ◦ γ) for all µ, ν, γ ∈ P, a+ b = 1, a ≥ 0, b ≥ 0.

Let τx
◦ , x ∈ R+, denote the generalized translation operator defined on Cb by

τx
◦ f(y) =

∫

f(u)δx ◦ δy(du),

where δx is the Dirac measure and the symbol
∫

denotes the integral over [0,∞).

For µ ∈ P, we put

τµ
◦ f(y) =

∫

τu
◦ f(y)µ(du),

where y ∈ R+ and f is a continuous function on R+.

In the case, when ◦ is a regular generalized convolution in the sense of Urbanik,
we consider the following generalized differential operator

D◦ f(x) = lim
y→0+

τx
◦ f(y) − f(x)

ω(y)
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where f ∈ C0 (C0 is a subspace of Cb consisting of all functions vanishing at
infinity) and ω(·) is defined by

ω(y) =

{

1 − Ω(y), 0 ≤ y ≤ x0,

1 − Ω(x0), y > x0.

with x0 being a number such that 0 < Ω(y) < 1 for 0 < y ≤ x0 and Ω(x) is the
kernel of the characteristic function.

2. Weak uniformly continuity and weak convergence

Definition 2.1. Given S = {µt, t ∈ I}, I ⊂ R and S ⊂ P, a function f in Cb is
called weak uniformly continuous on S if for any ε > 0, there exists δ > 0 such
that for all y, z ∈ I with |y − z| < δ we have

∣

∣

∫

f(u)µy(du) −

∫

f(u)µz(du)
∣

∣ < ε.

The following proposition is obvious.

Proposition 2.1. For each x ∈ R+, a function f in Cb is weak uniformly con-

tinuous on P◦ × δx if and only if τx
◦ f is bounded uniformly continuous, where P◦

is the set of all Dirac measures on [0,∞) and P◦ × δx = {δx ◦ δt, t ∈ R+}.

It is easily seen that f is weak uniformly continuous on P◦ if and only if f is
uniformly continuous on R+.

Now let µ be a set function on a σ-field A. Then the total variation of the set
function µ on A is the number

Var (µ,A) = sup
∑

k

|µ(Ak)|,

where sup is taken over all the finite A-measurable partitions {Ak} of A.

We have the following theorem.

Theorem 2.1. Let {µt, t ∈ I}, I ⊂ R be an ◦-semigroup of probability measures

on R+. Assume that for every Borel subset A of R+ and ε > 0, there exists δ > 0
such that for any t, s ∈ I with |t − s| < δ we have Var (µt − µs, A) ≤ ε. Then,

every function f in Cb is weak uniformly continuous on {µt ◦ α, t ∈ I, α ∈ P}.

To prove this theorem we use the following result of Vol’kovich:

Lemma 2.1. [8] For any µ1, µ2 ∈ P and f ∈ Cb we have following relationship

∫

f(x)µ1 ◦ µ2(dx) =

∫ ∫

τx1

◦ f(x2)µ1(dx1)µ2(dx2).
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Proof of Theorem 2.1. First, let f be a step function, i.e. f =
n
∑

i=1

aiIAi
, where

{a1, a2, ..., an} ⊂ R and {A1, ..., An} is a Borel partition of R+. Then

∣

∣

∣

n
∑

i=1

ai[µt(Ai) − µs(Ai)]
∣

∣

∣
≤ sup

1≤j≤n
|aj|.

n
∑

i=1

∣

∣µt(Ai) − µs(Ai)
∣

∣

≤ sup
1≤j≤n

|aj|.Var (µt − µs, R+).

Since sup
1≤j≤n

|aj | < ∞, the hypotheses of the theorem implies that for every ε > 0

there exists δ > 0 such that for any t, s ∈ I with |t − s| < δ we have

∣

∣

∣

n
∑

i=1

ai[µt(Ai) − µs(Ai)]
∣

∣

∣
< ε.

Hence
∣

∣

∫

f(u)µt(du) −

∫

f(u)µs(du)
∣

∣ < ε.(2.1)

Now, we consider the general case, when f is an arbitrary element of Cb. Then
there exists a sequence {fn} of step functions that converges to f in norm. This
with (2.1) yields

∣

∣

∫

f(u)µt(du) −

∫

f(u)µs(du)
∣

∣ ≤ ε.(2.2)

On the other hand, since τu
◦ f ∈ Cb, u ∈ R+ (cf. [5]) and

∫

α(du) = 1, we have

∣

∣

∣

∫

f(u)µt ◦ α(du) −

∫

f(u)µs ◦ α(du)
∣

∣

∣
(2.3)

=
∣

∣

∣

∫∫

τu
◦ f(x)µt(du)α(dx) −

∫∫

τu
◦ f(x)µs(du)α(dx)

∣

∣

∣

≤ sup
u

∣

∣

∣

∫

τu
◦ f(x)µt(du) −

∫

τu
◦ f(x)µs(du)

∣

∣

∣
.

This with (2.2) and (2.3) proves the theorem.

From the method used in the proof of Theorem 2.1 we easily obtain the fol-
lowing corollary.

Corollary 2.1. Assume that the hypotheses of Theorem 2.1 hold. Then, every

f in Cb is weak uniformly continuous on {µt, t ∈ I}.

Theorem 2.2. Assume that τu
◦ f , u ∈ R+ are uniformly equicontinuous func-

tions on R+, i.e. ∀ε > 0, ∃δ > 0, ∀x, y ∈ R+, |x − y| < δ we have

sup
u∈R+

|τu
◦ f(x) − τu

◦ f(y)| < ε.

Then, for any µ ∈ P, the function τ
µ
◦ f is uniformly continuous and bounded.
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Proof. We have

∣

∣τµ
◦ f(x) − τµ

◦ f(y)
∣

∣ =
∣

∣

∣

∫

(τx
◦ f − τy

◦ f)(u)µ(du)
∣

∣

∣

≤

∫

∣

∣(τx
◦ f − τy

◦ f)(u)
∣

∣µ(du)

≤ sup
u∈R+

∣

∣τu
◦ f(x) − τu

◦ f(y)
∣

∣.

From this inequality with the hypotheses on τu
◦ f , u ∈ R+, we deduce the

following theorem.

Theorem 2.3. Assume that the random convolution ◦ has unit element δx0
.

Then µn
→→µ as n → ∞ if and only if lim

n→∞
τ

µn

◦ f(x) = τ
µ
◦ f(x), for each x ∈ R+

and all bounded uniformly continuous f on R+.

Note that µn
→→µ as n → ∞ denotes the weak convergence of µn to µ as

n → ∞.

Proof. First, assume that µn
→→µ as n → ∞. Then by

τx
◦ f(u) = τu

◦ f(x), τu
◦ f ∈ Cb.

We obtain

lim
n→∞

τµn

◦ f(x) = lim
n→∞

∫

τu
◦ f(x)µn(du)

= lim
n→∞

∫

τx
◦ f(u)µn(du) =

∫

τx
◦ f(u)µ(du)

=

∫

τu
◦ f(x)µ(du) = τµ

◦ f(x).

Hence, for all x ∈ R+ and bounded uniformly continuous f on R+,

lim
n→∞

τµn

◦ f(x) = τµ
◦ f(x).

Conversely, suppose that lim
n→∞

τ
µn

◦ f(x) = τ
µ
◦ f(x) for all bounded uniformly

continuous f on R+. Then we have

lim
n→∞

∫

τu
◦ f(x)µn(du) =

∫

τu
◦ f(x)µ(du).

Therefore

lim
n→∞

∫

τx
◦ f(u)µn(du) =

∫

τx
◦ f(u)µ(du).(*)

In particular, substituting x = x0 in (*) we obtain

lim
n→∞

∫

f(u)µn(du) =

∫

f(u)µ(du),
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because τx0
◦ is the identity operator. Hence, µn

→→µ as n → ∞. Thus, the theorem
is proved.

The following corollary is immediate.

Corollary 2.2. Assume that the random convolution ◦ has an unit element δx0

and {µt, t ∈ R+} is an ◦-semigroup. Then, for all bounded uniformly continuous

f on R+

lim
t→∞

τµt

◦ f(x) = f(x), ∀x ∈ R+.

3. Random convolution and its translation operators

Proposition 3.1. Assume that ◦ and ◦′ are two random convolutions on P.

Then τx
◦ = τx

◦′
, for all x ∈ R+ if and only if ◦ = ◦′.

Proof. Using Lemma 2.1, we have

τu
◦ = τu

◦′ , ∀u ∈ R+ ⇔

∫

f(u)µ◦ν(du) =

∫

f(u)µ◦′ν(du), ∀f ∈ Cb

⇔ µ◦ν = µ◦′ν, ∀µ, ν ∈ P

⇔ ◦ = ◦′.

By the proposition, one can easily prove the following

Corollary 3.1. Let ◦ and ◦′ be two random convolutions on P. Then

(a) ◦ = ◦′ if and only if τ δx

◦ = τ δx

◦′
, x ∈ R+,

(b) ◦ = ◦′ on P, provide ◦ = ◦′ on P0, i.e. δx ◦ δy = δx ◦′ δy, x, y ∈ R+.

From now on, we assume ◦ to be a regular generalized convolution in the
sense of Urbanik. Let {µt}t≥0 be a semigroup in the generalized convolution
algebra (P, ◦) and {Xt} an ◦-Lévy process generated by {µt}t≥0 (cf. [5]). We
put S◦

t = τ
µt

◦ . It is clear that {S◦
t } is also a semigroup.

An interesting problem is how to find relations between generalized differen-
tial operator D◦ and the random convolution ◦? For this problem we have the
following result.

Theorem 3.1. Let ◦ and ◦′ be two regular random convolutions, {Xt} an ◦-
Lévy process and D◦ its generalized differential operator. Suppose that the P◦-

distribution of X1 is equal to σκ and

V −1 =

∫

xκσκ(dx) < ∞,

where κ is the characteristic exponent of the convolution ◦, taken in the sense of

Urbanik and σκ the characteristic measure of (P, ◦). Then D◦ = D◦′ if and only

if

S◦
t = S◦′

t , t ∈ R+.
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Proof. First, we prove the “if” part. Let A◦ be the infinitesimal generator for
the ◦-Lévy process {Xt} such that P◦-distribution of X1 is equal to σκ. By the
regularity of the operator ◦, it follows from Theorem 3.5 in [5] that

A◦f = D◦f, f ∈ D(D◦)(3.1)

where D(D◦) be the domain of D◦. Since D◦ = D◦′ by the hypotheses and (3.1),
we have

A◦ = A◦′ .

Therefore,

S◦
t = S◦′

t , t ≥ 0.

Conversely, suppose that S◦
t = S◦′

t for all t ≥ 0. By taking t = 1 we obtain

S◦
1 = S◦′

1 .

Let σκ(◦) and σκ′(◦′) be the characteristic measures of the convolution algebras
(P, ◦), (P, ◦′), respectively. We have

∫

τa
◦ f(x)σκ(dx) =

∫

τa
◦′f(x)σκ′(dx).(3.2)

Substituting a = 0 into (3.2) and noticing that τ0
◦ = τ0

◦′
= I (where I is an

identity operator), we get
∫

f(x)σκ(dx) =

∫

f(x)σκ′(dx), ∀f ∈ Cb.

Therefore

σκ(◦) = σκ′(◦′).

But if σκ(◦) = σκ′(◦′) then κ = κ′ and ◦ = ◦′ (cf. [4]). It follows that D◦ = D◦′ .
This completes the proof.

By the same method, we get the following corollaries.

Corollary 3.2. Suppose that the operations ◦ and ◦′ are regular. Then the equal-

ity D◦ = D◦′ holds if and only if ◦ = ◦′.

Corollary 3.3. The following equalities are equivalent

(i) ◦ = ◦′

(ii) D◦ = D◦′

(iii) S◦
t = S◦′

t , ∀t ≥ 0

(iv) τx
◦ = τx

◦′
, ∀x ≥ 0.
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4. Markov processes

In this section we assume ◦ to be a regular generalized convolution (in the
sense of Urbanik). Let {Xt} be an ◦-Lévy process, i.e. {Xt} is generated by an
◦-semigroup {µt, t ≥ 0}, (cf. [5]) and A its infinitesimal operator.

In the case the P◦-distribution of X1 is equal to σκ, together with N. V. Thu,
we get the following special properties of the generalized differential operator.

Theorem 4.1. Let D◦ be the generalized differential operator for the Lévy process

{Xt} such that P◦ distribution of X1 is equal to σκ and f ∈ D(D◦). Suppose that

V −1 =
∫

xκσκ(dx) < ∞. Then u(t) = Stf (St
def
→ =S◦

t ) is the unique solution of

the following differential equation:

du

dt
= D◦u,

subject to the following conditions

(a) u(t) is continuous differenftiable for t > 0,

(b) ‖u(t)‖ ≤ c.emt for some c,m < ∞,

(c) u(t) → f as t → 0+.

Proof. Applying Theorem 3.5 in [5] we have

Af = D◦f, f ∈ D(D◦),

where A is an infinitesimal operator for ◦-Lévy process {Xt}. So, the differential

equation
du

dt
= D◦u is equivalent to following equation

du

dt
= Au.

It is easily seen that u(t) = St(f) is a solution that satisfies all the above men-
tioned conditions. It remains to show only the uniqueness.

Suppose that u1 and u2 are two solutions satisfying (a), (b), (c). We put
v(t) = u1(t) − u2(t). Then, v(t) is a solution satisfying a) and b) and v(t) → 0
as t → 0+. Let w(t) = e−λt.v(t), where λ > max (m1,m2), (m1,m2 are the
constants of the condition b) with respect to u1, u2). Since v(t) is a solution of

the equation
du

dt
= Au, we have

d

dt
w(t) = −λw(t) + e−λtAv(t) = −R−1

λ w(t),

where Rλf(y) =

∞
∫

0

e−λtStf(y)dt.

We know that {St} is a contraction semigroup with generator A. For each
λ > 0, (λI − A) is an one-to-one map of D(A) onto Cb and the inverse map
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taking Cb onto D(A) is Rλ. Hence

w(t) = −Rλ
dw(t)

dt
.

Integrating both sides from 0 to s, we have

s
∫

0

w(t)dt = −Rλ

s
∫

0

dw(t)

dt
dt = −Rλw(s).

When s → +∞, the left side tends to the Laplace transform of v and the right
side tends to 0 because of assumption (b) and the choice of λ. Hence

∞
∫

0

e−λtv(t)dt = 0

for each λ > m. We deduce v(t) = 0. Thus, the theorem is proved.

Finally, we give an application of the generalized differential operator to the
ordinary differential equation.

Theorem 4.2. The ordinary differential equation of Bessel type

f ′′(x) +
2s + 1

x
f ′(x) − λf(x) = g(x),(4.1)

where λ > 0, 2(s + 1) > 1 and g ∈ C1 with g 6= 0, has a unique solution

f ∈ D(D◦) with ‖f‖ ≤ ‖g‖, where D◦ is the infinitesimal operator in the Kingman

convolution algebra. Moreover, this solution is

f(x) = −

∞
∫

0

e−λtStg(x)dt.

Proof. In the case of Kingman convolution ∗1,β (β = 2(s + 1) > 1) we have the
following formula (cf. N. V. Thu [5], p. 166):

D◦f(x) = f ′′(x) +
(2s + 1)

x
f ′(x).

So, the equation (4.1) is equivalent to the following equation

D◦f(x) − λf(x) = g(x).(4.2)

Let A denote the infinitesimal operator of the ◦-Lévy process {Xt} in Theorem
3.1. By Theorem 3.5 (cf. N. V. Thu [5], p. 166) we see that equation (4.2) is
equivalent to

Af(x) − λf(x) = g(x) (because Af = D◦f, ∀f ∈ D(D◦))

λf(x) − Af(x) = g(x).(4.3)
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By the theorem of Hille-Yosida, equation (4.3) has a unique solution belonging
to D(D◦) such that ‖f‖ ≤ ‖g‖ and

f(x) = −

∞
∫

0

e−λtStg(x)dt.

Thus, the theorem is proved.

5. Acknowledgement

The author would like to express his sincere gratitude to Prof. Nguyen Van
Thu for helpful discussions and encouragement.

References

[1] N. H. Bingham, On a theorem of Klosowska about generalized convolutions, Coll. Math. 48

(1984), 117-125.
[2] M. Klosowska, On the domain of attraction for generalized convolution algebras. Re.

Roumaine Math. Pures Appl. 22 (1977), 669-677.
[3] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), 217-245.
[4] K. Urbanik, Generalized convolution IV, Studia Math. 83 (1986), 57-95.
[5] Nguyen Van Thu, Generalized independent increments processes, Nagoya Math. J. 133

(1994), 155-175.
[6] Tran Hung Thao and K. S. Kuan, On generalized independent increments processes, Journal

of Physical Science 8 (1977), 35-44.
[7] Nguyen Van Thu and Cao Van Nuoi, The generalized differential operation and Markov

processes, International conference on probability and their applications, June 9-11, 1999,
Hanoi, Vietnam.

[8] V. E. Vol’kovich, Quasiregular stochastic convolution, Soviet Math. J. 47 (1980), No 5,
2685-2698.

Department of Mathematics

Pedagogical College of Danang

Danang City, Vietnam


