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A NON-HOMOGENEOUS P -LAPLACE EQUATION

IN BORDER CASE

PHAM XUAN DU AND DUONG MINH DUC

Abstract. Searching minimizers of functions on the convenient level set of
the constraint function we obtain generalized solutions of a non-homogeneous
p-Laplace equation in border case without using the regularity results of linear
elliptic equations.

1. Introduction

Let Ω be a bounded domain in R
n having C2-boundary ∂Ω. Denote byW 1,n(Ω)

the usual Sobolev space. In the present paper we study the existence of general-
ized solution of the following boundary equation.

{

∇(|∇u|n−2∇u) + keu = h in Ω,

u|
∂Ω

= constant.
(P)

If n = 2, the equation (P ) is extensively studied (see [5] for references) and is
related to the problem of constructing a metric γ with prescribed scalar curvature
function k, which is conformal to γ0, that is γ = euγ0 for some function u on Ω.
The Laplacian and the scalar curvature of γ0 are denoted by ∆ and h respectively,

where we adopt the sign convention that ∆ =
2
∑

j=1

∂2

∂x2
j

for the flat metric on R
2.

For the case n = 2, Kazdan and Warner [6, 7] studied (P ), where k and h

belong to Ls(Ω) for some s > 2. If k ≥ 0, using a generalized mountain pass
theorem, we have solved (P ) in [4] for non-integrable functions k and h. But the
method in [4] could not be applied to the case in which k changes the sign. Vy
and Schmitt in [8] have solved (P ) if k is in C(Ω) and h is in L2(Ω). In [1] we
use the variational methods of [8] and a generalized Ljusternik theorem to get
solutions of (P ) with conditions on h and k in Remark 1.

For the case n ≥ 3, Le and Schmitt [8] have announced the existence of gener-
alized solutions to (P ) for k is in C(Ω) and h is in L2(Ω) without proofs.

We could not applied the methods of [1, 8] due to degeneracy and strong
nonlinearity of (P ). Our main idea to overcome the difficulties is as follows:
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we search minimizers of functions on the convenient level set of the constraint
function and we obtain desired generalized solutions without using the regularity
results of linear elliptic equations.

First we introduce following notations:

‖u‖ =
(

∫

Ω

(|u |n + |∇u |n) dx
)1/n

∀ u ∈ W 1,n(Ω),

‖u‖∗ =
(

∫

Ω

|∇u |n dx
)1/n

∀ u ∈ W 1,n(Ω),

H =
{

u ∈ W 1,n(Ω) : u |∂Ω= 0
}

,

V =
{

u ∈ W 1,n(Ω) : u |∂Ω is constant
}

.

We consider H as a Banach space with the norm ‖.‖∗ . Let p be in (1 , ∞). De-
note by Fp(Ω) the family of all measurable functions φ on Ω having the following
properties:

(F ) For any sequence {um} weakly converging to u in H,

lim
m→∞

∫

Ω

|um − u|p|φ|dx = 0.

Denote by G(Ω) the family of all measurable function φ on Ω such that

(G) There is an increasing function Φ on [0,∞) such that
∫

Ω

|φ|eudx ≤ Φ(‖u‖) ∀u ∈ H.

Our main result is the following theorem.

Theorem 1.1. Let p be in (1 , ∞), k in G(Ω) ∩ Fp(Ω) and h an integrable

function in Fp(Ω). Assume that the set B =
{

∫

Ω

kewdx : w ∈ H
}

is

unbounded from above in R. Then there exists a generalized solution u of (P ) in

V .

2. Proof of Theorem 1.1

We need the following notations and definitions.

Definition 2.1. Denote by G the space C∞

c (Ω). Let ν be a function from H

into R. We say ν is weakly continuously differentiable with respect to G on H if
the following two conditions are satisfied

(i) For any x ∈ H there exists a linear mapping Dν(x) from G into R such
that

lim
t→0

ν(x+ th) − ν(x)

t
= Dν(x)(h), ∀h ∈ G.
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(ii) For any h ∈ G, the map x 7→ Dν(x)(h) is continuous on H.

For any u in H we put

ϕ(u) =
1

n

∫

Ω

|∇u |n dx,

j(u) =

∫

Ω

hudx,

ψ(u) =

∫

Ω

keudx,

F (u) = ϕ(u) + j(u).

Under the conditions of Theorem 1.1 we have the following lemmas.

Lemma 2.1. (i) ϕ and j are weakly lower-semi continuous on H.

(ii) ψ is weakly continuous on H and ψ, F are weakly continuously differ-

entiable with respect to G on H, and for any u in H and v in G,

Dψ(u)(v) =

∫

Ω

kveudx,

DF (u)(v) =

∫

Ω

|∇u |n−2 ∇u∇vdx+

∫

Ω

hvdx.

Proof. (i) It is clear that ϕ is weakly lower-semi continuous on H. Now
we prove that j is weakly continuous on H. Let {um} be a sequence weakly
converging to u in H. By the Hölder’s inequality, we get

∣

∣

∣

∫

Ω

humdx−

∫

Ω

hudx
∣

∣

∣
≤

(

∫

Ω

|h | dx
)

1
q
(

∫

Ω

|um − u |p|h | dx
)

1
p
.(2.1)

Thus j is weakly continuous on H by the condition (F ).

(ii) Let {um} be a sequence weakly converging to u in H. Let q be
p

p− 1
.

Using the Hölder’s inequality we have
∣

∣

∣

∫

Ω

(eum − eu)kdx
∣

∣

∣
≤

∫

Ω

|eum − eu ||k | dx

=

∫

Ω

eu |eum − u − 1 ||k | dx ≤

∫

Ω

eue|um − u| |um − u ||k | dx

≤
(

∫

Ω

e2qu |k | dx
)

1
2q

(

∫

Ω

e2q|um − u| |k | dx
)

1
2q

(

∫

Ω

|um − u |p|k | dx
)

1
p
.

Since {||um − u||}m is bounded in R and k is in G(Ω), we see that

sup
m∈N

(

∫

Ω

e2qu |k | dx
)

1
2q

(

∫

Ω

e2q|um − u| |k | dx
)

1
2q
<∞.
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Thus, ψ is weakly continuous on H by (F ).

Let u be in H, v be in G and t be in R \ {0}. We have

ψ(u + tv) − ψ(u)

t
=

∫

Ω

k.eu
etv − 1

t
dx.

Note that

lim
t→ 0

keu
etv − 1

t
= keuv and |k.eu

etv − 1

t
|≤ |k|eu|v|e|t||v| ≤ C|k|eu

for all |t| sufficiently small, where C is a constant depending only on v. On the
other hand, since k is in G(Ω), keu is integrable on Ω. Thus, by the Lebesgue
dominated convergence theorem we have

Dψ(u)(v) = lim
t→ ∞

ψ(u+ tv) − ψ(u)

t
=

∫

Ω

kveudx, ∀u ∈ H, v ∈ G.(2.2)

Now fix a v in G. Note that v is in L∞(Ω). Arguing as above with kv instead of
k, we see that the map u 7→ Dψ(u)(v) is continuous on H for any v in G. It is
easy to see that

DF (u)(v) =

∫

Ω

|∇u |n−2 ∇u∇vdx+

∫

Ω

hvdx ∀ u ∈ H, v ∈ G.

Now let {um} ⊂ H such that um → u in H. Since

1

n
+
n− 2 − i

n
+
i

n
+

1

n
= 1,

using Hölder’s inequality we have

|DF (um) (v) −DF (u) (v) |

≤

∫

Ω

| |∇um |n−2 ∇um− |∇u |n−2 ∇u | . |∇v | dx

≤

∫

Ω

(

|∇um|n−2|∇um −∇u| +
∣

∣ |∇um|n−2 − |∇u|n−2
∣

∣ |∇u|
)

|∇v|dx

≤

n−2
∑

i=0

∫

Ω

|∇um −∇u||∇um|n−2−i|∇u|i|∇v|dx

≤
(

n−2
∑

i=0

‖um‖n−2−i
∗ ‖u‖i

∗‖v‖∗

)

‖um − u‖∗ .

Thus the map u 7→ DF (u) (v) is continuous on H for any v in G and we get the
lemma.

Lemma 2.2. Denote by A the family of all function u in H such that
∫

Ω

|∇u |n−2 ∇u∇vdx+

∫

Ω

hvdx = 0 ∀v ∈ H.(Q)
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Then there exist u1 in H and a real number α1 such that
∫

Ω

keu1dx = α1 >

∫

Ω

keudx ∀ u ∈ A.

Proof. By (F ) we see that j is a continuous linear function on Lp(Ω). Thus, by
the embedding Sobolev theorem there is a positive real number C

h, p
such that

∣

∣

∣

∫

Ω

hudx
∣

∣

∣
≤ C

h, p

(

∫

Ω

|∇u |n dx
)

1
n

∀ u ∈ H.(2.3)

Let u be in A. Choosing v = u in (Q) and using (2.3), we get

∫

Ω

|∇u |n dx =
∣

∣

∣

∫

Ω

hudx
∣

∣

∣
≤ C

h, p

(

∫

Ω

|∇u |n dx
)

1
n
.

Consequently there is a real number M such that ‖u‖
H

≤ M for any u in A.

Therefore, by (G) we see that for any u in A
∫

Ω

|k | eudx ≤ Φ(M).

Since the set B is unbounded from above in R, we get the lemma.

Lemma 2.3. Denote by S the set {u ∈ H : ψ(u) ≥ α1}, where α1 is in Lemma

2.2. Then there exists u2 ∈ S such that

F (u2) = minF (S).

Proof. By (2.3) we see that F is coercive. Thus we get the lemma by applying
Theorem 1.2 of [9].

Lemma 2.4. Let u2 be as in Lemma 2.3. Then there is a non-negative real

number λ such that

DF (u2)(v) − λDψ(u2)(v) = 0, ∀v ∈ G.

Proof. Using the Ljusternik theorem of [1] or [2] we can find a real number λ
such that

DF (u2)(v) − λDψ(u2)(v) = 0, ∀v ∈ G.

Put N = {u ∈ H : ψ(u) ≥ β}, where β = ψ(u2). We have F (u2) = minF (N)
and

ψ(u2) ≥ α1(2.4)

Since B is unbounded, we see that k 6≡ 0 and there is a v in G such that

Dψ(u2)(v) =

∫

Ω

keu2vdx > 0.
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Because ψ is weakly continuously differentiable respect to G at u2, there is a
sufficiently small positive real number t1 such that

ψ(u2 + tv) > ψ(u2) ≡ β ∀ t ∈ (0, t1) or

u2 + tv ∈ N ∀ t ∈ (0, t1)

Put ϕ(t) =
F (u2 + tv) − F (u2)

t
− DF (u2)(v) for any t in (0, t1). We have

lim
t→0

ϕ(t) = 0 and for any t in (0, t1) we have

0 ≤ F (u2 + tv) − F (u2) = tDF (u2)(v) + tϕ(t) = tλDψ(u2)(v) + tϕ(t).

Thus λ should be nonnegative.

Proof of Theorem 1.1. Let u2 and λ be as in Lemma 2.4. We have
∫

Ω

(|∇u2 |
n−2 ∇u2∇v + hv)dx = λ

∫

Ω

keu0vdx ∀v ∈ G.(2.5)

Let {vm} be a sequence in G which converges to v in H. We have

lim
m→∞

(

∫

Ω

|∇u2 |
n−2 ∇u2∇vmdx+

∫

Ω

hvmdx)

=

∫

Ω

|∇u2 |
n−2 ∇u2∇vdx+

∫

Ω

hvdx,(2.6)

lim
m→∞

λ

∫

Ω

keu2vmdx = λ

∫

Ω

keu2vdx.(2.7)

Combining (2.5), (2.6) and (2.7) we obtain
∫

Ω

(|∇u2 |
n−2 ∇u2∇v + hv)dx = λ

∫

Ω

keu2vdx ∀v ∈ H.

We will prove that λ > 0. In fact, suppose by contradiction that λ = 0. Then we
get

∫

Ω

(|∇u2 |
n−2 ∇u2∇v + hv)dx = 0 ∀v ∈ H.

Thus u2 is in A and ψ(u2) < α1 by Lemma 2.2, which contradicts to (2.4).
Therefore λ is positive.

Put u0 = u2 + lnλ. It is obvious that u0 is in V and
∫

Ω

(|∇(u0 − lnλ) |n−2 ∇(u0 − lnλ))∇vdx+

∫

Ω

hvdx = λ

∫

Ω

keu0 − lnλvdx

∀v ∈ G.

Therefore
∫

Ω

(|∇u0 |
n−2 ∇u0)∇vdx+

∫

Ω

hvdx =

∫

Ω

keu0vdx ∀v ∈ G
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and u0 is a generalized solution of (P ) in V .

Remark 1. Put dΩ(x) = inf{|x− y | : y ∈ ∂Ω} for any x ∈ R
n. Let s1 and s2

be in (1,∞], γ1 and γ2 be in ( 1
si

− 2 , 0], i = 1, 2, and φ1 and φ2 be nonnegative

measurable functions on Ω such that d−γi

Ω
φi ∈ Lsi(Ω) for i = 1, 2. Let k and h

be functions on Ω having the following properties:

(C1) h, k are integrable on Ω such that
{

∫

Ω

kewdx : w ∈ H
}

is

unbounded from above,

(C2) |h | ≤ φ1 and |k | ≤ φ2.

Using the results in [4] we can prove that h, k satisfy the conditions of Theorem
1.1 with p = 2.

Remark 2. If k is in C(Ω) and h is in L
p

p−1 with p ∈ [n,∞), Theorem 1.1 is
proved in [8].

Remark 3. If n = 2 Theorem 1.1 was proved in [1].
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