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THE NORMALIZED DUALITY MAPPING AND

TWO RELATED CHARACTERISTIC PROPERTIES

OF A UNIFORMLY CONVEX BANACH SPACE

BUI TRONG KIEN

Abstract. This paper is devoted to the study of some properties of the nor-
malized duality mapping and two related characteristic properties of a uni-
formly convex Banach space. In particular, a theorem due to J. Prüß is ex-
tended. Based on this extention of the theorem of Prüß, some new results on
the continuity of the metric projection onto a family of closed convex sets in
uniformly convex Banach spaces are obtained.

1. Introduction

The concept of duality mapping was introduced by Beurling and Livingston
[4, p. 407] in a geometric form. A slightly extended version of the concept was
proposed by Asplund [1] who showed how the duality mappings can be char-
acterized via the subdifferential of convex functions. It is well known that the
geometric properties of a Banach space X correspond to the analytic properties
of the duality mapping J : X → 2X∗

(see Definition 2.1 below). For instance, X
is strictly convex if and only if J is strictly monotone; X∗ is uniformly convex if
and only if J is single-valued and uniformly continuous on any bounded subset
of X.

The duality mapping has many other applications. For example, in some
recent papers (see, for instance, [6], [11], [12]), it has been used as the main tool
for studying the continuity of the metric projection.

J. Prüß [14] proved that X is uniformly convex if and only if J is, in some
sense, uniformly strictly monotone. Thanks to this property of J , the author
obtained several interesting results on accretive operators in a uniformly convex
space.

Together with J , the normalized duality mapping Jp, 1 < p < +∞, is also
considered (see [12]). In several cases where we have to work with problems in
uniformly convex Banach spaces, like Lp(Ω) and Wp

m(Ω) (with p 6= 2), Jp is
more suitable than J . This is because in the spaces we often have to deal with
functions which are expressed via certain exponents of degree p. On the other
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hand, the metric projection in such spaces can be defined via Jp, hence analytical
properties of Jp lead us to a better understanding of the behavior of the metric
projection. So it is of interest to study various analytical properties of Jp.

It is worthy noting that the uniform convexity of a Banach space can be char-
acterized fully via the normalized duality mapping Jp, in a similar way as it was
characterized via the duality mapping J .

The aim of this paper is to obtain such characterizations and apply them to
study the continuity of the metric projection onto a family of closed convex sets
in a uniformly convex Banach space.

In Section 2, after recalling the definition of the normalized duality mapping
Jp, we derive from [1] a formula for computing the map (Proposition 2.1) and
show how the metric projection can be characterized via Jp (Proposition 2.2). We
also obtain the first characteristic property of uniformly convex Banach spaces
by using Jp (Proposition 2.3). In Section 3 we establish an extended version of
a theorem due to J. Prüß [14], which gives another characteristic property of
uniformly convex Banach spaces. Section 4 is devoted to the study of the metric
projection onto a family of closed convex sets in a uniformly convex Banach space.
In particular, it is shown that Lemma 1.1 from [15] on the continuity of the metric
projection in Hilbert spaces can be extended to the case of the functions spaces
Lp(Ω, µ), p > 1.

2. Normalized duality mapping Jp

Throughout, X denotes a normed space or a Banach space with the dual X∗.
Symbol B(0, 1) stands for the closed unit ball in X. Let K be closed convex
set in X and y ∈ X. We denote by PK(y) the projection of y onto K, that is
PK(y) ∈ K and

‖y − PK(y)‖ = d(y,K) := inf
z∈K

‖y − z‖.

The set

NK(x) =

{

{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ K} if x ∈ K

∅ if x /∈ K

is called the normal cone to K at x. For a convex function ϕ : X → R ∪ {+∞},
the set

∂ϕ(x) := {x∗ ∈ X : ϕ(z) − ϕ(x) ≥ 〈x∗, z − x〉 ∀z ∈ X}

is called the subdifferential of ϕ at x. For each p > 1, we set

ϕp(x) =
1

p
‖x‖p.

Definition 2.1. [12] The set-valued map Jp : X → 2X∗

defined by setting
Jp(x) = ∂ϕp(x) for all x ∈ X, is called the normalized duality mapping of X. In
the special case where p = 2, the map J2 is denoted by J .
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Remark 2.1. For every x ∈ X we have Jp(x) 6= ∅ because ϕp(x) is a continuous
convex function on X. In particular, the effective domain

D(Jp) := {x : Jp(x) 6= ∅}

coincides with X (see [8]). Moreover, for every x ∈ X, Jp(x) is a nonempty,
convex, weakly* compact set.

For computing the set Jp(x) one can use the following fact.

Proposition 2.1. (See [1, Theorem 1]) For each x ∈ X, it holds

Jp(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1}.(2.1)

Setting φ(t) := tp−1 (t ≥ 0), we see at once that

Φ(t) :=

t
∫

0

φ(s)ds =
1

p
tp (t ≥ 0)

is the primitive function of φ. Hence, using the arguments for proving Theorem
1 from [1] we can establish formula (2.1). It is worth pointing out that duality
mappings in the sense of [4] and [1] are single-valued functions while, in general,
Jp is a set-valued mapping.

For the convenience of the reader, we provide here a direct proof of formula
(2.1).

Proof of Proposition 2.1. For any x ∈ X we set

A(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1}.(2.2)

We have to show that Jp(x) = A(x). We first consider the case x = 0. From the
inequality p > 1 it follows that

Jp(0) = ∂ϕp(0) = {x∗ : 〈x∗, y〉 ≤
1

p
‖y‖p ∀y ∈ X} = {0}.

Besides, it is obvious that A(0) = {0}. Hence Jp(0) = A(0).

Next, we consider the case x 6= 0. Taking any x∗ ∈ Jp(x) we have

1

p
‖y‖p −

1

p
‖x‖p ≥ 〈x∗, y − x〉(2.3)

for all y ∈ X. Substituting y = λx, λ > 1, into (2.3) yields

1

p

λp − 1

λ − 1
‖x‖p ≥ 〈x∗, x〉.

Letting λ → 1 and noting that lim
λ→1

(λp − 1

λ − 1

)

= p, we obtain

‖x‖p ≥ 〈x∗, x〉.(2.4)

Similarly, substituting y = (1 − λ)x, λ > 0, into (2.3) and letting λ → 0 we get

‖x‖p ≤ 〈x∗, x〉.(2.5)
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Combining (2.4) with (2.5) yields ‖x‖p = 〈x∗, x〉 and hence ‖x∗‖ ≥ ‖x‖p−1. On
the other hand, for any y satisfying ‖y‖ ≤ ‖x‖, by (2.3) we have 0 ≥ 〈x∗, y − x〉.
Therefore 〈x∗, x〉 ≥ 〈x∗, y〉. Consequently, ‖x‖p ≥ 〈x∗, y〉. This implies

‖x‖p−1 ≥ 〈x∗,
y

‖x‖
〉.

Hence ‖x‖p−1 ≥ 〈x∗, z〉 for all z satisfying ‖z‖ ≤ 1. It follows that ‖x‖p−1 ≥ ‖x∗‖.
From what has already been said, we deduce that ‖x‖p−1 = ‖x∗‖. We have thus
proved that Jp(x) ⊂ A(x). To prove the reverse inclusion, we fix any x∗ ∈ A(x).

Consider the function f(t) = -lnt, t > 0. Since f ′′(t) =
1

t2
> 0 for all t > 0, f(t)

is a convex function. Therefore

-ln(
1

p
‖y‖p +

p − 1

p
‖x‖p) ≤ −

1

p
ln(‖y‖p) −

p − 1

p
ln(‖x‖p)

for all y ∈ X\{0}. This implies

1

p
‖y‖p +

p − 1

p
‖x‖p ≥ ‖y‖‖x‖p−1

for all y ∈ X\{0}. Hence

1

p
‖y‖p −

1

p
‖x‖p ≥ ‖y‖‖x‖p−1 − ‖x‖p

≥ ‖y‖‖x∗‖ − 〈x∗, x〉

≥ 〈x∗, y − x〉

for all y ∈ X. Thus ϕp(y) − ϕp(x) ≥ 〈x∗, y − x〉 for all y ∈ X. This shows that
x∗ ∈ Jp(x). The inclusion A(x) ⊂ Jp(x) has been established, and the proof is
complete.

Remark 2.2. From (2.1) it follows that Jp(tx) = tp−1Jp(x) for every p > 1, x ∈
X and t > 0. From (2.1) it also follows that Jp(x) = ‖x‖p−2J(x) for every p > 1
and x ∈ X.

Remark 2.3. The formulation and the proof of the Asplund theorem [1, The-
orem 1] given in [9, p. 249, Theorem 8.1.12] are inaccurate. The inaccuracy
happens because the necessary use of a primitive function in [1, pp. 200-201] was
omitted in [9].

The metric projection in Banach spaces can be characterized by using the
normalized duality mapping Jp.

Proposition 2.2. Suppose that X is a Banach space, K is a nonempty closed

convex set in X, and y ∈ X. Then x = PK(y) if and only if

0 ∈ Jp(x − y) + NK(x).(2.6)
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Proof. It is clear that x = PK(y) if and only if x is a solution of the problem
{

f(z) := 1
p
‖z − y‖p + iK(z) → inf

subject to z ∈ X,
(2.7)

where iK(z) is the indicator function of K, i.e.,

iK(z) =

{

0 if z ∈ K

+∞ if z /∈ K.

Since f(z) is a convex function, x is a solution of (2.7) if and only if 0 ∈ ∂f(x).
By the Moreau-Rockafellar theorem (see [8, p. 200, Theorem 1]), the inclusion
0 ∈ ∂f(x) is equivalent to the following one:

0 ∈ Jp(x − y) + NK(x).

The proof is complete.

Definition 2.2. [16, p. 256] A Banach space X is called strictly convex if
for all x, y ∈ X, ‖x‖ = ‖y‖ = 1 and x 6= y, and for all λ ∈ (0, 1) it holds
‖λx + (1 − λ)y‖ < 1. A Banach space X is called uniformly convex if for every
ε, 0 < ε ≤ 2, there exists a δ > 0 for which ‖x‖ = 1, ‖y‖ = 1 and ‖x − y‖ ≥ ε
imply ‖x + y‖ ≤ 2(1 − δ).

Lemma 2.1. [3, p. 42, Proposition 2.13] A Banach space X is strictly convex if

and only if the following equivalent properties hold:

(a) If ‖x + y‖ = ‖x‖ + ‖y‖ and x 6= 0, there exists t ≥ 0 such that y = tx.

(b) If ‖x‖ = ‖y‖ = 1 and x 6= y then

∥

∥

∥

x + y

2

∥

∥

∥
< 1.

Proposition 2.3. (See [9, p. 251, Theorem 8.1.18]) Let X be a Banach space

such that the dual X∗ is a strictly convex Banach space. Then, for every p > 1,
Jp is a single-valued map.

Proof. Taking any x ∈ X and consider the set Jp(x). If x = 0 then Jp(0) = {0}.
Suppose that x 6= 0 and x∗

1, x∗

2 ∈ Jp(x). Then ‖x∗

1‖ = ‖x∗

2‖ = ‖x‖p−1 and

2‖x∗

1‖‖x‖ = 2‖x‖p = 〈x∗

1 + x∗

2, x〉

≤ ‖x∗

1 + x∗

2‖‖x‖.

Hence 2‖x∗

1‖ ≤ ‖x∗

1 + x∗

2‖. From this it follows that ‖x∗

1‖ + ‖x∗

2‖ ≤ ‖x∗

1 + x∗

2‖.
This implies that ‖x∗

1‖ + ‖x∗

2‖ = ‖x∗

1 + x∗

2‖. By the strict convexity of X∗ and
the first assertion of Lemma 2.1 we get x∗

1 = x∗

2, as desired.

It turns out that the uniform convexity of X∗ can be characterized via the
uniform continuity of the map Jp(·).

Theorem 2.1. The dual space X∗ of a Banach space X is uniformly convex

if and only if Jp is a single-valued map which is uniformly continuous on each

bounded subset of X.
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To prove this result we shall need the following

Lemma 2.2. [5, p. 36, Theorem 1] Let X be a Banach space. Then X∗ is

uniformly convex if and only if the norm of X is uniformly Fréchet differentiable,

i.e., the limit lim
λ→0

‖x + λy‖ − ‖x‖

λ
exists uniformly for all x, y ∈ S(X), where

S(X) = {x ∈ X : ‖x‖ = 1}.

Proof of the Theorem 2.1. (This proof is based on some arguments similar to
those of the proof of Theorem 1 in [5, p. 36]).

Necessity. Assume that X∗ is uniformly convex. Then X∗ is strictly convex. By
Proposition 2.3, Jp is a single-valued map. It remains to show that Jp is uniformly
continuous on each bounded subset of X. According to Remark 2.2, we have

Jp(x) = ‖x‖p−2J(x) for every x ∈ X.

By Proposition 32.22 of [17, p. 861], J is uniformly continuous on bounded subset
of X. Hence Jp is uniformly continuous on each bounded subset that lies outside
some neighborhood of x = 0. On the other hand, ‖Jp(x)‖ = ‖x‖p−1. So Jp(0) = 0
and Jp is continuous at x = 0. Combining these arguments we can conclude that
Jp is uniformly continuous on each bounded subset of X.

Sufficiency. For any x, y ∈ S(X) and λ > 0, using Proposition 2.1 one has

〈Jp(x), y〉

‖x‖p−1
=

〈Jp(x), λy〉

λ‖x‖p−1

=
〈Jp(x), x〉 − ‖x‖p + 〈Jpx, λy〉

λ‖x‖p−1

=
〈Jp(x), x + λy〉 − ‖x‖p

λ‖x‖p−1

≤
‖x‖p−1‖x + λy‖ − ‖x‖p

λ‖x‖p−1

=
‖x + λy‖ − ‖x‖

λ

=
‖x + λy‖p − ‖x‖‖x + λy‖p−1

λ‖x + λy‖p−1

≤
〈Jp(x + λy), x + λy〉 − |〈Jp(x + λy), x〉|

λ‖x + λy‖p−1

=
λ〈Jp(x + λy), y〉 + 〈Jp(x + λy), x〉 − |〈Jp(x + λy), x〉|

λ‖x + λy‖p−1

≤
〈Jp(x + λy), y〉

‖x + λy‖p−1
.

Hence, for all x, y ∈ S(X) and λ > 0 it holds

〈Jpx, y〉

‖x‖p−1
≤

‖x + λy‖ − ‖x‖

λ
≤

〈Jp(x + λy), y〉

‖x + λy‖p−1
·
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Using the uniform continuity of Jp on each bounded subset of X, from the last
property one can obtain that

lim
λ→0

‖x + λy‖ − ‖x‖

λ
=

〈Jpx, y〉

‖x‖p−1
·

According to Lemma 2.2, X∗ is uniformly convex. The proof is complete.

3. Generalization of a theorem of J. Prüß

Our aim in this section is to establish a generalized version of Theorem 1 of
[14].

Definition 3.1. [2, p. 708] A function ω : [0,+∞) → [0,+∞) is said to be firm
if ω(0) = 0 and ω(ρ) > 0 for all ρ > 0. If ω is nondecreasing and firm then it is
called a gauge. The set of gauges ω : [0,+∞) → [0,+∞) is denoted by G.

Theorem 3.1. (Theorem of Prüß, see [14, Theorem 1]) A Banach space X is

uniformly convex if and only if for every γ > 0 there is a function ωγ ∈ G such

that

〈x∗ − y∗, x − y〉 ≥ ωγ(‖x − y‖)‖x − y‖(3.1)

for all x, y ∈ B(0, γ), x∗ ∈ J(x) and y∗ ∈ J(y).

One may ask whether the conclusion of the above theorem is still true if instead
of J(·) one considers the normalized duality mapping Jp(·).

Our main result in this section can be formulated as follows.

Theorem 3.2. If a Banach space X is uniformly convex then, for every p ≥ 2
and for every γ > 0, there is a function ωp,γ ∈ G such that

〈x∗ − y∗, x − y〉 ≥ ωp,γ(‖x − y‖)‖x − y‖(3.2)

for all x, y ∈ B(0, γ), x∗ ∈ Jp(x) and y∗ ∈ Jp(y). Conversely, if for a fixed p ≥ 2
and for all γ > 0 there exists an ωp,γ ∈ G satisfying the property (3.2) then X is

a uniformly convex Banach space.

Remark 3.1. Theorem 3.1 follows from Theorem 3.2 if we choose p = 2.

To prove Theorem 3.2 we shall need the following lemmas.

Lemma 3.1. (Bishop-Phelps Theorem, [5, p. 3]) Let A be a closed bounded con-

vex set in a Banach space X. Then the collection of functionals from X∗ that

achieve their maximum on A is dense in X∗.

Lemma 3.2. (James Theorem, [5, p. 12]) A Banach space X is reflexive if and

only if for every f ∈ X∗, there exists x ∈ X such that f(x) = ‖f‖.

Lemma 3.3. For all a ≥ 0, b ≥ 0 and p ≥ 2 one has

ap + bp − abp−1 − bap−1 ≥ |a − b|p.(3.3)
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Proof. If a = 0 or b = 0 then (3.3) is trivial. We consider the case a > 0 and
b > 0. By the symmetry we can assume that a > b. Dividing two sides of (3.3)
by ap we obtain the following equivalent inequality

1 +
( b

a

)p

−
( b

a

)p−1
−

b

a
≥

(

1 −
b

a

)p

.(3.4)

For x :=
b

a
, x ∈ (0, 1), (3.4) is equivalent to

1 + xp − x1−p − x ≥ (1 − x)p

⇔ (1 − x)(1 − xp−1) ≥ (1 − x)p

⇔ 1 − xp−1 ≥ (1 − x)p−1

⇔ 1 ≥ xp−1 + (1 − x)p−1.(3.5)

Noting that 1 = (x + (1 − x))p−1 and using the fact that (u + v)α ≥ uα + vα for
all u, v ≥ 0, α ≥ 1 (see [7, p. 32]), we can assert that (3.5) is true. The proof is
complete.

Proof of Theorem 3.2. (The proof scheme is similar to that of Theorem 1 of [14])

Necessity. Let X be a uniformly convex Banach space and let p ≥ 2. For each
γ > 0 we consider the function ωp,γ defined by

ωp,γ(0) = 0, ωp,γ(ρ) = ωp,γ(2γ)

for all ρ ≥ 2γ and

ωp,γ(ρ) = inf
{〈x∗ − y∗, x − y〉

‖x − y‖
: x, y ∈ B(0, γ), ‖x − y‖ ≥ ρ,

x∗ ∈ Jp(x), y∗ ∈ Jp(y)
}

for all 0 < ρ ≤ 2γ. Since ωp,γ is nondecreasing, in order to prove that ωp,γ(ρ) ∈ G
we have only to show that ωp,γ(ρ) > 0 for all ρ ∈ (0, 2γ). Suppose on the contrary
that ωp,γ(ρ) = 0 for some ρ ∈ (0, 2γ). Then there are sequences (xn), (yn) of

vectors from B(0, γ), x∗

n ∈ Jp(xn), y∗n ∈ Jp(yn), such that ‖xn − yn‖ ≥ ρ and

〈x∗

n − y∗n, xn − yn〉

‖xn − yn‖
→ 0.

This forces 〈x∗

n − y∗n, xn − yn〉 → 0. On the other hand, from the inclusions
x∗

n ∈ Jp(xn), y∗n ∈ Jp(yn) and Lemma 3.3 it follows that

〈x∗

n − y∗n, xn − yn〉 = ‖xn‖
p + ‖yn‖

p − 〈x∗

n, yn〉 − 〈y∗n, xn〉

≥ ‖xn‖
p + ‖yn‖

p − ‖x∗

n‖‖yn‖ − ‖y∗n‖‖xn‖

= ‖xn‖
p + ‖yn‖

p − ‖xn‖
p−1‖yn‖ − ‖yn‖

p−1‖xn‖

≥ |‖xn‖ − ‖yn‖|
p.

This implies |‖xn‖ − ‖yn‖| → 0. Since ‖xn‖ ≤ γ and ‖yn‖ ≤ γ, without loss of
generality we may assume that lim

n→∞

‖xn‖ = lim
n→∞

‖yn‖ = a for some a ≥ 0. Since
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‖xn‖+‖yn‖ ≥ ‖xn−yn‖ ≥ ρ for every n, the case a = 0 cannot occur, so we have
a > 0. Hence there is no loss of generality in assuming that ‖xn‖ > 0, ‖yn‖ > 0
for all n. We have

∥

∥

∥

xn

‖xn‖
−

yn

‖yn‖

∥

∥

∥
=

∥

∥

∥

xn

‖xn‖
−

yn

‖xn‖
+

yn

‖xn‖
−

yn

‖yn‖

∥

∥

∥

≥
∥

∥

∥

xn

‖xn‖
−

yn

‖xn‖

∥

∥

∥
−

∥

∥

∥

yn

‖yn‖
−

yn

‖xn‖

∥

∥

∥
.

Therefore
∥

∥

∥

xn

‖xn‖
−

yn

‖xn‖

∥

∥

∥
+

∥

∥

∥

yn

‖yn‖
−

yn

‖xn‖

∥

∥

∥
≥

∥

∥

∥

xn

‖xn‖
−

yn

‖xn‖

∥

∥

∥

⇒
∥

∥

∥

xn

‖xn‖
−

yn

‖yn‖

∥

∥

∥
+ ‖yn‖

∣

∣

∣

1

‖yn‖
−

1

‖xn‖

∣

∣

∣
≥

1

‖xn‖
‖xn − yn‖

⇒ lim inf
n→∞

(

∥

∥

∥

xn

‖xn‖
−

yn

‖yn‖

∥

∥

∥
+ ‖yn‖

∣

∣

∣

1

‖yn‖
−

1

‖xn‖

∣

∣

∣

)

≥ lim inf
n→∞

( 1

‖xn‖
‖xn − yn‖

)

⇒ lim inf
n→∞

∥

∥

∥

xn

‖xn‖
−

yn

‖yn‖

∥

∥

∥
≥

ρ

a
.(3.6)

Choose ε1 ∈
(

0,
ρ

a

)

and put ε =
ρ

a
− ε1. By (3.6), there exists n0 such that

∥

∥

∥

xn

‖xn‖
−

yn

‖yn‖

∥

∥

∥
> ε(3.7)

for all n ≥ n0. Since

‖xn + yn‖ = ‖xn‖
∥

∥

∥

xn

‖xn‖
+

yn

‖xn‖

∥

∥

∥

= ‖xn‖
∥

∥

∥

xn

‖xn‖
+

yn

‖xn‖
+

yn

‖yn‖
−

yn

‖yn‖

∥

∥

∥

≤ ‖xn‖
∥

∥

∥

xn

‖xn‖
+

yn

‖yn‖

∥

∥

∥
+ ‖xn‖

∥

∥

∥

yn

‖xn‖
−

yn

‖yn‖

∥

∥

∥

= ‖xn‖
∥

∥

∥

xn

‖xn‖
+

yn

‖yn‖

∥

∥

∥
+ ‖xn‖‖yn‖

∣

∣

∣

1

‖xn‖
−

1

‖yn‖

∣

∣

∣
,

by (3.7) and by the uniform convexity of X there exists δ = δ(ε) > 0 such that

lim sup
n→∞

‖xn + yn‖ ≤ lim sup
n→∞

(

‖xn‖
∥

∥

∥

xn

‖xn‖
+

yn

‖yn‖

∥

∥

∥
+ ‖xn‖‖yn‖

∣

∣

∣

1

‖xn‖
−

1

‖yn‖

∣

∣

∣

)

≤ lim sup
n→∞

a
∥

∥

∥

xn

‖xn‖
+

yn

‖yn‖

∥

∥

∥

≤ a.2(1 − δ).(3.8)

Since ‖xn‖
p + ‖yn‖

p − 〈y∗n, xn〉 − 〈x∗

n, yn〉 = 〈x∗

n − y∗n, xn − yn〉 → 0,

lim
n→∞

(〈y∗n, xn〉 + 〈x∗

n, yn〉) = 2ap.
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Combining this with (3.8), we have

2ap = lim
n→∞

(〈y∗n, xn〉 + 〈x∗

n, yn〉)

= lim sup
n→∞

(〈y∗n, xn〉 + 〈x∗

n, yn〉 + 〈x∗

n, xn〉 − 〈x∗

n, xn〉)

= lim sup
n→∞

(〈y∗n − x∗

n, xn〉 + 〈x∗

n, xn + yn〉)

≤ lim sup
n→∞

(‖y∗n‖‖xn‖ − ‖xn‖
p) + lim sup

n→∞

‖x∗

n‖‖xn + yn‖

≤ lim sup
n→∞

(‖yn‖
p−1‖xn‖ − ‖xn‖

p) + lim sup
n→∞

‖xn‖
p−1‖xn + yn‖

= lim sup
n→∞

‖xn‖
p−1‖xn + yn‖

≤ ap−12a(1 − δ) = 2ap(1 − δ),

a contradiction.

Sufficiency. Using Proposition 2.1 we can show that Jp(X) := ∪x∈XJp(x) is the

collection of functionals from X∗ that achieve their maximum on BX . By Lemma
3.1, Jp(X) = X∗, where Jp(X) denotes the closure of Jp(X). We shall show that
the range Jp(X) of Jp is closed. Let (x∗

n) ⊂ Jp(X) and x∗

n → x∗. Then for each
n there exists xn ∈ X such that x∗

n ∈ Jp(xn). Since (x∗

n) is bounded, so is (xn).
Let γ > 0 be such that ‖xn‖ ≤ γ for every n. By our hypothesis, there exists
ωp,γ ∈ G such that

ωp,γ(‖xn − xm‖)‖xn − xm‖ ≤ 〈x∗

n − x∗

m, xn − xm〉

≤ ‖x∗

n − x∗

m‖‖xn − xm‖

for all m, n. Taking account of this fact, we deduce from the convergence of
the sequence (x∗

n) that (xn) is a Cauchy sequence. Therefore xn → x for some

x ∈ X. Since x∗

n ∈ Jp(xn) it follows that x∗ ∈ Jp(x). Thus Jp(X) = Jp(X) = X∗.
Consequently, for every x∗ ∈ X∗\{0} there exists x ∈ X\{0} such that x∗ ∈
Jp(x). This implies that

〈

x∗,
x

‖x‖

〉

=
‖x‖p

‖x‖
= ‖x‖p−1 = ‖x∗‖.

By Lemma 3.2 we conclude that X is reflexive. In this case we get x∗ ∈ Jp(x)

if and only if x ∈ J∗

q (x∗), where q > 0 satisfies the relation
1

p
+

1

q
= 1 and J∗

q

denotes the normalized mapping of X∗. Hence J−1
p = J∗

q . Fix any % > 0. Fix

any x∗, y∗ ∈ B
∗

(0, %), x ∈ J∗

q (x∗), y ∈ J∗

q (y∗). Choose γ so that γp−1 = %. Then

x∗ ∈ Jp(x), y∗ ∈ Jp(y), and x, y ∈ B(0, γ). By (3.2),

ωp,γ(‖x − y‖) ≤ ‖x∗ − y∗‖.

This implies that the map J∗

q is single-valued and uniformly continuous on each

bounded subset of X∗. By Theorem 2.1, X =
(

X∗
)

∗
is uniformly convex. The

proof is complete.



THE NORMALIZED DUALITY MAPPING 63

In the forthcoming section, Theorem 3.2 will serve us as a tool for studying the
continuity of a Hölder type of the metric projection in uniformly Banach spaces.

4. Continuity of the metric projection onto

a family of closed convex sets

From now on, (Λ, d) is a metric space and K : Λ → 2X is a set-valued map
with nonempty closed convex values. Let (λ̄, x̄) ∈ Λ × X be a point satisfying
x̄ ∈ K(λ̄). For each y ∈ X, the projection of y onto K(λ) is denoted by PK(λ)(y).

Definition 4.1. A set-valued map K : Λ → 2X is said to be pseudo-Lipschitz
around (λ̄, x̄) if there exist a positive constant l and neighborhoods U , V of x̄
and λ̄, respectively, such that

K(λ) ∩ U ⊂ K(λ′) + ld(λ, λ′)B(0, 1)(4.1)

for all λ, λ′ ∈ U .

Theorem 4.1. Let X be a uniformly convex Banach space, and p ≥ 2. Let

K : Λ → 2X be a set-valued map, which is pseudo-Lipschitz around (λ̄, x̄). Then

there exist positive constant l1, a neighborhood U1 of x̄, a neighborhood V1 of λ̄
and a function ωp,γ ∈ G such that

ωp,γ(‖PK(λ)(y) − PK(λ′)(y)‖)‖PK(λ)(y) − PK(λ′)(y)‖ ≤ l1d(λ, λ′)

for all λ, λ′ ∈ V1 and y ∈ U1.

Proof. The proof runs similarly as the proof of Theorem 3.1 in [10], where ωγ and
J are replaced by ωp,γ and Jp, respectively. Instead of using Theorem 3.1, which
is due to J. Prüß, we use Theorem 3.2 proved in the preceding section.

From Theorem 3.2 it follows that the function ωp,γ can be computed by the
formula

ωp,γ(t) =



























0 for t = 0,

inf
{〈x∗

1 − x∗

2, x1 − x2〉

‖x1 − x2‖
: x1, x2 ∈ B(0, γ),

‖x1 − x2‖ ≥ t, x∗

1 ∈ Jp(x1), x
∗

2 ∈ Jp(x2)
}

for t ∈ (0, 2γ],

ωp,γ(2γ) for t > 2γ.

(4.2)

In many situations, in order to apply Theorem 4.1 it is enough to have a lower
estimate for the function ωp,γ. Such an estimate in the case X = Lp(Ω, µ),
1 < p ≤ 2, has been obtained in [10]. Here and in the sequel, X = Lp(Ω, µ)
denotes the space of all the measurable functions x(·) defined on an open set
Ω ⊂ Rn for which

∫

Ω |x(s)|pdµ < ∞, where µ stands for the Lebesgue measure
in Rn. It is well known that for every 1 < p < +∞, this space and its dual

X∗ = Lq(Ω, µ), q =
p

p − 1
, are uniformly convex Banach spaces. We now want

to use the normalized duality mapping Jp to obtain an estimate for ωp,γ in the
case X = Lp(Ω, µ) with p ≥ 2.
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Lemma 4.1. ([13, Corollary 2.1]) Suppose that x, y ∈ Lp(Ω, µ) and 1 < p < +∞.

Then for every t ∈ (0, 1) one has

(a) ‖tx+(1−t)y‖2 ≤ t‖x‖2 +(1−t)‖y‖2−
p − 1

64
t(1−t)‖x−y‖2 for all 1 < p < 2.

(b) ‖tx + (1 − t)y‖p ≤ t‖x‖p + (1 − t)‖y‖p −
1

p2p
(t(1 − t)p + tp(1 − t))‖x − y‖p

for all p ≥ 2.

Theorem 4.2. Suppose that X = Lp(Ω, µ), 1 < p < +∞. Then the following

properties hold:

(a) If 1 < p ≤ 2 then

〈Jp(x1) − Jp(x2), x1 − x2〉 ≥
p − 1

64
‖x1 − x2‖

2

for all x1, x2 ∈ X. Besides, for each γ > 0 there is a function ω2,γ such that

ω2,γ(t) ≥
p − 1

64
t for all t ∈ [0, 2γ].

(b) If p ≥ 2 then

〈Jp(x1) − Jp(x2), x1 − x2〉 ≥
1

p22p−1
‖x1 − x2‖

p

for all x1, x2 ∈ X. Besides, for each γ > 0 there exists a function ωp,γ such that

ωp,γ(t) ≥
1

p22p−1
tp−1 for every t ∈ [0, 2γ].

Proof. The proof of (a) runs similarly as the proof of Proposition 4.1 in [10]. It

remains to prove (b). Let ϕp(x) =
1

p
‖x‖p, p ≥ 2 Since X = Lp(Ω, µ) and its

dual X∗ = Lq(Ω, µ), where q =
p

p − 1
, are uniformly convex Banach spaces. By

Theorem 2.1, we have ∂ϕp(x) = {Jp(x)}. By Lemma 4.1 (b),

ϕp(y + t(x − y)) − ϕp(y) ≤ t(ϕp(x) − ϕp(y)) −
1

p22p
(t(1 − t)p

+ tp(1 − t))‖x − y‖p.

Hence
1

t
(ϕp(y + t(x − y)) − ϕp(y)) ≤ ϕp(x) − ϕp(y) −

1

p22p
((1 − t)p

+ tp−1(1 − t))‖x − y‖p.

Letting t → 0 we obtain

ϕ′

p(y;x − y) ≤ ϕp(x) − ϕp(y) −
1

p22p
‖x − y‖p

for all x, y ∈ X. Here ϕ′

p(y;x− y) denotes the directional derivative of ϕp at y in

direction x − y. Since 〈Jp(y), x − y〉 = ϕ′

p(y;x − y), we have

〈Jp(y), x − y〉 ≤ ϕp(x) − ϕp(y) −
1

p22p
‖x − y‖p
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for all x, y ∈ X. Consequently, for all x1, x2 ∈ X we have

〈Jp(x2), x1 − x2〉 ≤ ϕp(x1) − ϕp(x2) −
1

p22p
‖x1 − x2‖

p,

〈Jp(x1), x2 − x1〉 ≤ ϕp(x2) − ϕp(x1) −
1

p22p
‖x2 − x1‖

p.

Combining these inequalities we obtain

〈Jp(x2) − Jp(x1), x2 − x1〉 ≥
2

p22p
‖x1 − x2‖

p.

For each γ > 0 and t ∈ (0, 2γ), using (4.2) we have

ωp,γ(t) = inf
{〈x∗ − y∗, x − y〉

‖x − y‖

∣

∣x, y ∈ B(0, γ), ‖x − y‖ ≥ t,

x∗ ∈ Jp(x), y∗ ∈ Jp(y)
}

≥ inf
{ 2

p22p
‖x − y‖p−1

∣

∣x1, x2 ∈ B(0, γ), ‖x − y‖ ≥ t
}

≥
2

p22p
tp−1.

The proof of property (b) is complete.

The following theorem describes a Hölder continuity property of the metric
projection onto a family of closed convex sets in the space Lp(Ω, µ). This result
shows that Lemma 1.1 from [15], which was obtained for the case of the metric
projection onto closed convex sets in Hilbert spaces, can be extended to the case
of the functions spaces Lp(Ω, µ), 1 < p < +∞.

Theorem 4.3. Suppose that X = Lp(Ω, µ), 1 < p < +∞, and K : Λ → 2X is

a set-valued map, which is pseudo-Lipschitz around (λ̄, x̄). Then the following

assertions hold:

(a) If 1 < p ≤ 2 then there exist a positive constant l0, a neighborhood U1 of x̄, a

neighborhood V1 of λ̄ such that

‖PK(λ)(y) − PK(λ′)(y)‖ ≤ l0d(λ, λ′)
1

2

for all λ, λ′ ∈ V1 and y ∈ U1.

(b) If p ≥ 2 then there exist a positive constant l1, a neighborhood U ′

1 of x̄, a

neighborhood V ′

1 of λ̄ such that

‖PK(λ)(y) − PK(λ′)(y)‖ ≤ l1d(λ, λ′)
1

p

for all λ, λ′ ∈ V ′

1 and y ∈ U ′

1.
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Proof. Assertion (a) is just the content of Proposition 4.2 in [10], so it remains
to prove (b). By Theorems 4.1 and 4.2, there exist a constant l̄ > 0 and neigh-
borhoods U ′

1 and V ′

1 of x̄ and λ̄, respectively, such that

1

p22p−1
‖PK(λ)(y) − PK(λ′)(y)‖p ≤ l̄d(λ, λ′)

for all λ, λ′ ∈ V ′

1 and y ∈ U ′

1. Hence

‖PK(λ)(y) − PK(λ′)(y)‖ ≤ (l̄p22p−1)
1

p d(λ, λ′)
1

p .

Setting l1 = (l̄p22p−1)
1

p we obtain the desired conclusion.

Remark 4.1. The referee of this paper observed that using Lemma 2.3 of a
recent paper by D. N. Bessis, Yu. S. Ledyaev and R. B. Vinter (“Dualization
of the Euler and Hamiltonian inclusions”, Nonlinear Analysis Vol. 43, 2001, pp.
861–882) one can replace the pseudo-Lipschitz property in Theorems 4.1 and 4.3
by a Lipschitz property. The lemma is stated as follows:

Suppose that K : Rm → 2Rn

is a set-valued map with convex values. Here the

norms in Rm and Rn are not necessarily Euclidean. Let K be pseudo-Lipschitz

around a point (λ̄, x̄) ∈ Rm × Rn satisfying x̄ ∈ K(λ̄), i.e. there exist k > 0,
ε0 > 0 and β0 > 0 such that

K(λ) ∩ (x̄ + ε0B̄Rn) ⊂ K(λ′) + k‖λ − λ′‖B̄Rn

for all λ, λ′ in λ̄ + β0BRm , where BRm and B̄Rn denote the open unit ball in Rm

and the closed unit ball in Rn, respectively. Then for any ε ∈ (0, ε0] and for any

β ∈
(

0,
ε

4k

)

, the set-valued map

Kε(λ) := K(λ) ∩ (x̄ + εB̄Rn)

is Lipschitz continuous with constant 5k on the ball λ̄ + βBRm , that is

Kε(λ) ⊂ Kε(λ
′) + 5k‖λ − λ′‖B̄Rn

for all λ, λ′ in λ̄ + βBRm .”

We don’t know whether the statement is still valid if one replaces Rm by
a metric space Λ and Rn by a Banach space X. However, it is likely that the
results in Theorems 4.1 and 4.3 can be established under a local Lipschitz property
similar to the one stated in the above lemma.

Acknowledgments

The author wishes to thank Prof. Nguyen Dong Yen for his guidance and the
anonymous referee for many helpful comments and suggestions.



THE NORMALIZED DUALITY MAPPING 67

References

[1] E. Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc. Vol. 73 (1967), 200–203.
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