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AUTOMATA WITH A TIME-VARIANT STRUCTURE
AND SUPPLY-DEMAND THEOREMS

PHAM TRA AN

ABSTRACT. We consider automata with a time-variant structure. In these
automata not only the function of state transition may be time-variant, but
the set of states itself may be also time-variant. We show that there are a
lot of supply-demand theorems for the automata. Some applications of these
theorems for different processing systems are investigated.

1. INTRODUCTION

A natural way to generalize the notion of a finite automaton is to allow the
structure of the automaton to be time-variant. The automata with a time-variant
structure have been investigated by some authors, for example, by Agasand-
jan and Salomaa for finite automata with a time-variant structure [1, 2, 3], by
Turakainen for probabilistic automata with a time-variant structure controlled
by finite automata [4], by P. D. Dieu and P. T. An for probabilistic automata
with a time-variant structure [6, 7].

In this work a concept of automata with a time-variant structure in a rather
general sense is developed. In these automata, not only the function of state
transition and the set of final states may be time-variant, but the set of states
itself may be also time-variant, the number of states may increase along with
the time. An idea of this automata was appeared in [6]. The new model has
more flexible possibilities in simulating processing systems such as adaptive and
learning systems.

This paper is concentrated on the investigation of the capacity of automata
with a time-variant structure and its special subclasses. In order to study the au-
tomata with a time-variant structure we propose a new tool: the supply-demand
theorems. They describe the relation between state growth speed of an automa-
ton (a supply) and (non-equivalent) word growth speed of the language which is
accepted by this automaton (a demand). Applying the supply-demand theorems
for different processing systems: finite automaton (FA), finite automaton with
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a time-variant structure (FTVA), ¢(t)-automaton with a time-variant structure
(p-TVA), Petri net (PN), Petri net with a time-variant structure (TVPN), we get
the necessary conditions for the classes of the languges accepted by these systems
but on an united point of view.

The definitions of automaton with a time-variant structure and of acceptable
language are introduced in Section 2. Section 3 deals with the notion of represen-
tative complexity of a language. Section 4 is devoted to supply-demand theorems
of automata with a time-variant structure. Finally, in Section 5 some applications
of these theorems for different processing systems are considered.

2. NOTATIONS AND DEFINITIONS

For a finite alphabet 3, ¥* (resp. X7, ©<") denotes the set of all words (resp.
of all words of length 7, of length at most r) on the alphabet ¥. The empty word
is denoted by A. For any word w € ¥* l(w) denotes the length of w. Every
subset L C ¥* is called a language over the alphabet . Let N be the set of all
non-negative integers and N* = N\{0}.

Definition 1. An automaton with a time-variant structure (abbreviated TVA)
is given by a list
A = (1,50, St, 6, ),

where

I is a non-empty finite alphabet of inputs;

Vit € N, S; is a finite set of states at time ¢;

so € Sy, sg is the initial state;

Yt € N, 6 : Sy x I — Spyq is the function of state transition at time ¢;

Vi € N, F; C S;, F; is a set of final states at time t.

We can extend the function &; : Sy x I'* — S, where S = US;, t € N, by
induction as follows.

Let s € S;, x € I*, a € I, then
o(s,A) =s,
ot(s,wa) = 6i14(2)(6e(s, ), a).

The language acceptable by an automaton with a time-variant structure A is the
set

L(A) = {l‘ el” | 50(80,.%) S E(x)}
Now we consider some important special cases of TVAs.

Definition 2. Let A = (I, so, St, 6, F}), be an automaton with a time-variant
structure. If A has the following properties:

(1) The map § = Udy, t € N is deterministic, i.e., if s € Sy, NSy, t1 # to, then
0t,(s,a) = 0, (s,a), Ya € I;
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(2) Fy=F,Vte N;
then A is said to be an automaton with a deterministic time-variant structure

(abbreviated DTVA).

Definition 3. Let A = (I, so, St, 0, F1), be an automaton with a time-variant
structure. If A has the following properties Vt € N:

(1) Si=S,
(2) & =9,
(3) Fr=F,

then A is called an automaton with a non time-variant structure, or shortly, a
finite automaton (abbreviated FA) and A is also given by A = (I, s0, 5,6, F).

3. REPRESENTATIVE COMPLEXITIES OF A LANGUAGE
Let L C ¥*. We define three relations E,(modL) in X", E<,(modL) in <"
and F.(modL) in ¥* as follows:
21 Eyxo(modl) & Vw € ¥ i mqw € L wow € L, Vi, m9 € X7
r1E<;zo(modl) & Vw € ¥* i qw € L > xow € L, Vry,29 € »Er
21 Fcxoro(modl) & Vw € ¥ : 2w € L — xow € L, Vxp,29 € 7.

It is easy to show that the relations E,(modL), F<,(modL), EF.s(modL) are
reflexive, symmetric and transitive. Therefore, they are equivalence relations.

We define
Hp(r) = Rank E,(modL),
Gr(r) = Rank E<,(modL),
K, = Rank F. o (modL).

They are considered to be the representative complexity characteristics of the
language L over X7, over =" and over X*, respectively.

First we give some of their simple properties:
(1) Hp(r) < Gp(r) < Kz, VreN,
(2) 1 < Hi(r) < Gr(r) < Exp(r),
where Exp(r) denotes some exponential function of r.
Now we estimate Hp(r), Gr(r), K1 for some languages.
Example 1. Let ¥ = {a,b} and
Li={a""|ne N}
Denote W = {aLaQ,~~ ,a",---}. We have W C ¥*, for any C' = const we get
|[W| > C and a'FE -0’ (modLy) with i # j. Therefore K, > |W| > C.
Example 2. Let |X| =k > 2, ¢c¢ ¥ and
Ly = {zcx |z € T}
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It can verify that if x1, 20 € =", 21 # 5 then $1E§T$2 (mod Ls). Therefore
(k™ —1)
G =S =2
L) = 12 = S
Example 3. Let ¥ = {0,1} , c¢ ¥ , k> 2 and
Ly ={zcx |z € X", |z)) = k},
where |z|; denotes the number of occurences of 1 in z.
Denote

Wik = {:L‘ |z € ¥%51(z) =r;|z)h = k},
It is easy to verify that

|
|Wr,k‘| = Cf = =

r —mzpk(T%

where Py (r) denotes a polynominal of degree k.
For any z1,29 € W, with x1 # x2, by choosing w = cx; we have r1w =

xicxy € Lzj whereas xow = xocxy ¢ L3y, that is x1E,xo (mod L3 ;). This
means that

Hp,, (r) = [Wek| = Bi(r).

4. SUPPLY-DEMAND THEOREMS FOR TVA

First we introduce the notion of growth functions of an automaton with a
time-variant structure.

Definition 4. Let A = (I, sq,St, 0, Ft) be an automaton with a time-variant
structure. Set S<, = US;, t <r. The growth functions of A are defined by:
hA(’I”) = ‘ST‘|7
ga(r) = [S<r|.
In particular, if A is a finite automaton A = (I, sq, 5,9, F'), then the growth
function of A is defined by:
ka = |S| = const.

Remark that k4 is a constant. Nervetheless, we call it a function because in
this case, ha(r) = ga(r) = ka.

There are nice relations between the growth functions of an automaton with a
time-variant structure and the representative complexities of the language which
is accepted by this automaton. These relations are said to be the supply-demand
theorems.
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Theorem 1. (The supply-demand theorem for TVA). Let A be an automaton
with a time-variant structure and L = L(A). Then for anyr € N T,

Hp(r) < ha(r).

Proof. Let A = (1,sq,S¢,0t, F;) and L = L(A). We shall prove that

Hp(r) < ha(r) VreNT.
To prove this, we assume the contrary, i.e., Ir € NT :Hp(r) > ha(r). Therefore,
there are x,y € I" such that zFE,y(mod L) and d¢(sg,z) = dp(so,y). Since
l(x) =l(y) = r, it follows that Yw € I*:

5l(x) (50(507 l’), w) = 5l(y) (50(507 y)7 W),
and
Fia)1iw) = Fiy)+iw)-
We obtain
Tw€ L - yw e L.

It means that 2 E,y(modL). This conflicts with hypothesis 2 F,.y (mod L). There-
fore,

Hp(r) < ha(r) VreNT.

O

Theorem 2. (The supply-demand theorem for DTVA). Let A be an automaton
with a deterministic time-variant structure and L = L(A). Then for anyr € N7,

(1) Hp(r) < ha(r),
(2)  Grlr) < galr).
Proof. Since each DTVA is an TVA, (1) is immediate. Now we prove (2).
Let A = (I, sg,St, d¢, Ft) be an DTVA where 0y : Sy x I — S1. We extend
8o : So x IS" — S<, as follows:
do(s,A) =s, VseSy,
do(s,za) = dy(z)(do(s,7),a), Vs€ Sy, Vz € IS Vael.
Assume to the contrary that 3r € Nt : GL(r) > ga(r). Then there exist z,y €
I=" such that xE <,y (mod L) but §y(so, =) = o(s0,y). Since A is deterministic,
it follows that Vw € I*:
S1(z) (00(80, ), w) = 0y(y)(d0(80,),w),
d1(z)(d0(80,7),w) € F « &1, (00(50,¥),w) € F,
zw € L < yw e L.
It means that xE<,y (mod L) which contradicts the hypothesis xE <,y (mod L).
Therefore,
Gr(r) < ga(r) YreNT. O
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Theorem 3. (The supply-demand theorem for FA). Let A be an finite automa-
ton and L = L(A). Then for anyr € N7,

(1) Hp(r ha(r), VreNT,
(2) Gr(r ga(r), VYreNT,
(3) K < ka.

) <
) <

Proof. Since each FA is an DTV A, (1) and (2) are obvious. Now we prove (3).

Let A= (1,50,S5,d,F) bean FA where§ : SxI — S. Weextend § : SxI* — S
as follows:

i(s,A) =s, VseSb,
d(s,za) =6(0(s,x),a), Vse€S, Vexel*, Yacl.

Assume to the contrary that K > ka = [S|. Then there exist z,y € I* such
that E <oy (mod L) but d(sg,x) = (so,y). It follows that Yw € I*:

3(d(s0,x),w) = d(6(s0,y),w),
d(6(s0,x),w) € F < §(6(s0,y),w) € F,
zw € L« yw € L.

We obtain 2 E ..y (mod L) which contradicts the initial hypothesis 2 F .y (mod L).
Therefore, K;, < k4. |

5. SOMES APPLICATIONS OF SUPPLY-DEMAND THEOREMS FOR
DIFFERENT PROCESSING SYSTEMS

We consider alternately the following processing systems:
Finite automaton (FA) (See Section 2)

The language acceptable by an FA is called an FA-language. The set of all
FA-languages is denoted by L(F'A).

Corollary 1. Let L € L(FA). Then there exists a constant C such that
Ky <C.
Proof. Let L = L(A) where A = (I,s0,5,0,F) is an FA. In this case we have
ka = |S| = C = const. Applying Theorem 3, we obtain
Ky <ka=C.
It follows that Ky < C. O

Example 4. Let ¥ = {a,b} and:
Li={a"b"|ne NT}.

In Example 1, we have proved that Ky, > C for all C' = const. According to
Corollary 1, Ly ¢ L(FA).
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Remark 1. Myhill had proved that the condition in Corollary 1 is also sufficient,
ie.,

Le L(FA)« 3C =const : K <C.
(See [15, 16]).
Finite automaton with a time-variant structure (FTVA) (See [1, 2, 3])

A finite automaton with a time-variant structureis an TVA A = (I, sq, Sy, 0, F})
with Vit € N, Sy = 5, |S| = C = const.

The language acceptable by an FTVA is called an FTVA-language. The set of
all FTVA-languages is denoted by L(FTV A).

Corollary 2. Let L € L(FTV A). Then there exists a contant C' such that
Hp(r)<C, VreNT.
Proof. Let L = L(A) with A = (1,50, 5,0, Fi). Since ha(r) = |S;| = |S| = C,
using Theorem 1, we have Vr € N T
Hp(r) < ha(r)=C.
It follows that Hp(r) < C, Vre NT. O

Example 5. Let |X| =k > 2 and
Ls = {:L‘:CR |z € £*},
where 2% is the inverse image of x. It is easy to show that if 1,29 € X7, 21 # 9

then x1 E,z5 (mod Ls). Therefore, Hy.(r) = |[X"| = k". According to Corollary
2, it follows that Ls ¢ L(FTV A).

Remark 2. Agasandjan and Salomaa had proved that the condition in Corollary
2 is also sufficient, i.e.,
Le L(FTVA) «~ Hp(r)<C, VreNTt
(See [1, 3)).
p-automaton with a time-variant structure (¢ — TV A) (See [6])

Let o(t) be a function from N into N. An p-automaton with a time-variant
structure is an TVA A = (I, sg, S, 0, Fi), with |S¢| = ¢(t), Vt € N.

The language acceptable by an @-TVA is called an ¢-TVA language. The set
of all p-TVA languages is denoted by L(p — TV A).

Corollary 3. Let L € L(p — TV A). Then
Hp(r) <p(r), ¥reNT.
Proof. Let L = L(A) where A = (I, so, St, 0¢, F) with |S¢| = (). In this case,
we have ha(r) = |S,| = ¢(r). According to Theorem 1, we obtain Vr € N*
Hy(r) < ha(r) = ¢(r).
It follows that Hy(r) < ¢(r), Vr € NT. O
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Example 6. Let ¥ = {0,1} , c¢ ¥ , k> 2 and
L3y = {zcx |z € ¥, |z = k},

where |z|; denotes the number of occurences of 1 in z. In Example 3, we have
proved that

HLS,k(T) > Pk‘(r)7

where P(r) is a polynominal of degree k. Now if we choose ¢(r) such that
o(r) = O(P_1(r)), then 3Ir € NT : Hy,,(r) > ¢(r). According to Corollary
3, we obtain Hy,, (1) & L(p — TV A) with p(r) = O(Px_1(r)).
Remark 3. P. D. Dieu and P. T. An had proved that the condition in Corollary
3 is also sufficient, i.e.,
LeL(p—TVA) « Hp(r)<o(r), ¥YreNT.

(See [6]).

(Free-labeled) Petri net (PN). (See [8, 9, 12, 13, 14])

A (free-labeled) Petri net N is given by a list

N = (P, T, 1,0, uo, My),

where

P ={p1,...,pn} is a finite set of places;

T ={m,...,7m} is a finite set of transitions, PNT = ()

I: P xT — N is the input function;

O :T x P — N is the output function,

o : P — N is the initial marking;

My =A{pp,...,1yp} is a finite set of final marking.

A marking p (global configuration) of a Petri net N is a function

w:P — N.

The marking x4 can also be defined as an n-vector p = (1, . . ., pin) With p; = pu(p;)
and |P| = n.

A transition 7 € T is said to be firable at the marking p if

Vp € P:u(p) > I(p, 7).
Let 7 be firable at p and if 7 fires, then the Petri net A/ shall change its state
from marking p to a new marking p/ which is defined as follows:
Vp € Pyl (p) = pp) — I(p,7) + O(7,p).
We set d(p, 7) = i/ and the function § is said to be the function of state transition
of the net.

A firing sequence can be defined as a sequence of transitions such that the
firing of each its prefix will be led to a marking at which the following transition
will be firable. By Fxr we denote the set of all firing sequences of the net N.
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We extend the function ¢ for a firing sequence by induction as follows:

Let x € T*,7 € T, u be a marking, at which z7 is a firing sequence, then
6(u,A) = p,
6(p, 1) = 0(0(p, ), 7).
The language acceptable by the Petri net N is the set
LN)={eT"|(z € Fyx) A (3(no,x) € My)}.

The language acceptable by a Petri net is called an PN-language. The set of all
PN-languages is denoted by L(PN).

Corollary 4. Let L € L(PN). Then, there exist k € N and a polynominal Py
of degree k such that

Gr(r) < Py(r), VreNT,
Proof. Let L = L(N') with N' = (P, T,1,0, jio, My). We denote M, (resp. M<,)
the set of all reachable markings of N by firing r transitions (resp. at most r
transitions) and k = min{|P|,|T|}. The following result had been established in
[10]:
Let N be a Petri net. Then,there exists a polynominal P, of degree k such
that

|M<,| < Py(r), VreNt.
Now from the Petri net A, we contruct an TVA A as follows:
A= (T7 HO, Mta 5t> Mf)7

with &; : My x T — My, is the function of marking transition of N after firing
t transitions. Now d; becomes the function of state transition of TVA A at the
time ¢. Since d = Ud;, t € N is the function of marking transition of net N,
therefore, ¢ is deterministic. It follows that A is an DTVA.

It is easy to verify that L = L(N) = L(A), so L € L(DTV A) and
ga(r) = [M<r| < Py(r).
Applying Theorem 2 for DTVA A, we obtain
Gr(r) < ga(r) < Py(r) VreNT.
It follows that G (r) < Pi(r) Vr e N*. O

Example 7. Let || =k > 2, ¢ ¢ ¥ and
Ly = {zcx |z € X}
In Example 2, we have shown that

Gry(r) = [ =

According to Corollary 4, it follows that Ly ¢ L(PN).
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Remark 4. P. T. An and P. V. Thao had proved that the condition in Corollary
4 is not sufficient

We consider the following languages:
L'={a""|n > 1},
L= (L))"
In [11] we have shown that G1(r) < Gr/(r) < Ps(r), but L ¢ L(PN).
(Free-labeled) Petri net with a time-variant structure (TVPN)
In this part we introduce a notion of Petri net with a time-variant structure.
A (free-labeled) Petri net with a time-variant structure N is given by a list
N = (P, T, 1, Oy, pio, My ),
where
P ={pi1,...,pn} is a finite set of places;
T ={7,...,7m} is a finite set of transitions, PNT = ();
Vte N, I;: PxT — N is the input function at the time t;
YVt e N, O : Tx P — N is the output function at the time t, with the condition

sup (maX | Ot(Tj7pi) - It(pth) | ) < I = const,
teN 3Y)

where 0 < i < n; 0 <35 <m.
o : P — N is the initial marking;
Vte N, My, is a finite set of final marking at the time t.
For any t € N a marking p; of a Petri net A at the time ¢ is a function

pe P — N.
A transition 7 € T is said to be firable at the marking p; if

Vp € P u(p) > L(p, 7).

Let 7 be firable at p; and if 7 fires, then the Petri net N shall change its state
from marking p; to a new marking g1 which is defined as follows:

Vp € P piy1(p) = pe(p) — L(p, 7) + O(7,p).

We set 0 (11, 7) = pe+1 and the function d; is said to be function of state transition
of the net at the time t.

We extend the function §; for a firing sequence by induction as follows:

Let x € T*, 7 € T, iy be a marking, at which z7 is a firing sequence, then
ot(pe, A) = pu,
Ot (pe, xm) = 5t+l(a:) (0¢(pae, ), 7).
The language acceptable by a Petri net with a time-variant structure N is the set:

L) ={zeT"|(x€Fn)A(Bolpo x) € Mpyz) },
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The language acceptable by an TVPN is called an TVPN-language. The set of
all TVPN-languages is denoted by L(T'VPN).

Corollary 5. Let L € L(TVPN). Then, there exist k € N and a polynominal
Py of degree k such that
HL(T) SP]C(T), Vre NT.

Proof. Let L = L(N) with N' = (P, T, I, O, 10, My4). We denote M, the set
of all reachable markings of A/ by firing r transitions and k¥ = min{|P|, |T|}.
Similarly as in [10] we can prove the following: Let N be a Petri net with a
time-variant structure. Then, there exists a polynominal P of degree k such
that
|M,| < Py(r), VreNT.
From the Petri net A/, we contruct an TVA A as follows:
A= (T’ Ko, My, (5t7 Mf,t)-
We remark that A is in general not deterministic.
It is easy to verify that L = L(N) = L(A), so L € L(TVA) and ha(r) =
| M| < Py(r).
Applying Theorem 1 we obtain
Hr(r) < ha(r) < Pp(r), VreNt.

Therefore, Hy(r) < Py(r), Vre NT. O

Example 8. Let |X| =k > 2 and:
Ly = {za® |z € ¥*},

where 2!t is the inverse image of z. In Example 5 we have shown that Hy (r) =
|27 = k". According to Corollary 5, it follows that Ls ¢ L(TV PN).

Remark 5. It is an open problem whether the condition in Corollary 5 is suffi-
cient or not. There are reasons to believe that the answer could be negative.
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