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AUTOMATA WITH A TIME-VARIANT STRUCTURE

AND SUPPLY-DEMAND THEOREMS

PHAM TRA AN

Abstract. We consider automata with a time-variant structure. In these
automata not only the function of state transition may be time-variant, but
the set of states itself may be also time-variant. We show that there are a
lot of supply-demand theorems for the automata. Some applications of these
theorems for different processing systems are investigated.

1. Introduction

A natural way to generalize the notion of a finite automaton is to allow the
structure of the automaton to be time-variant. The automata with a time-variant
structure have been investigated by some authors, for example, by Agasand-
jan and Salomaa for finite automata with a time-variant structure [1, 2, 3], by
Turakainen for probabilistic automata with a time-variant structure controlled
by finite automata [4], by P. D. Dieu and P. T. An for probabilistic automata
with a time-variant structure [6, 7].

In this work a concept of automata with a time-variant structure in a rather
general sense is developed. In these automata, not only the function of state
transition and the set of final states may be time-variant, but the set of states
itself may be also time-variant, the number of states may increase along with
the time. An idea of this automata was appeared in [6]. The new model has
more flexible possibilities in simulating processing systems such as adaptive and
learning systems.

This paper is concentrated on the investigation of the capacity of automata
with a time-variant structure and its special subclasses. In order to study the au-
tomata with a time-variant structure we propose a new tool: the supply-demand
theorems. They describe the relation between state growth speed of an automa-
ton (a supply) and (non-equivalent) word growth speed of the language which is
accepted by this automaton (a demand). Applying the supply-demand theorems
for different processing systems: finite automaton (FA), finite automaton with
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a time-variant structure (FTVA), ϕ(t)-automaton with a time-variant structure
(ϕ-TVA), Petri net (PN), Petri net with a time-variant structure (TVPN), we get
the necessary conditions for the classes of the languges accepted by these systems
but on an united point of view.

The definitions of automaton with a time-variant structure and of acceptable
language are introduced in Section 2. Section 3 deals with the notion of represen-
tative complexity of a language. Section 4 is devoted to supply-demand theorems
of automata with a time-variant structure. Finally, in Section 5 some applications
of these theorems for different processing systems are considered.

2. Notations and definitions

For a finite alphabet Σ, Σ∗ (resp. Σr, Σ≤r) denotes the set of all words (resp.
of all words of length r, of length at most r) on the alphabet Σ. The empty word
is denoted by Λ. For any word ω ∈ Σ∗, l(ω) denotes the length of ω. Every
subset L ⊆ Σ∗ is called a language over the alphabet Σ. Let N be the set of all
non-negative integers and N+ = N\{0}.

Definition 1. An automaton with a time-variant structure (abbreviated TVA)
is given by a list

A = (I, s0, St, δt, Ft),

where

I is a non-empty finite alphabet of inputs;

∀t ∈ N , St is a finite set of states at time t;

s0 ∈ S0, s0 is the initial state;

∀t ∈ N , δt : St × I → St+1 is the function of state transition at time t;

∀t ∈ N , Ft ⊆ St, Ft is a set of final states at time t.

We can extend the function δt : St × I∗ → S, where S = ∪St, t ∈ N , by
induction as follows.

Let s ∈ St, x ∈ I∗, a ∈ I, then
{

δt(s,Λ) = s,

δt(s, xa) = δt+l(x)(δt(s, x), a).

The language acceptable by an automaton with a time-variant structure A is the
set

L(A) =
{

x ∈ I∗ | δ0(s0, x) ∈ Fl(x)

}

.

Now we consider some important special cases of TVAs.

Definition 2. Let A = (I, s0, St, δt, Ft), be an automaton with a time-variant
structure. If A has the following properties:

(1) The map δ = ∪δt, t ∈ N is deterministic, i.e., if s ∈ St1 ∩St2, t1 6= t2, then
δt1(s, a) = δt2(s, a), ∀a ∈ I;
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(2) Ft = F , ∀t ∈ N ;

then A is said to be an automaton with a deterministic time-variant structure
(abbreviated DTVA).

Definition 3. Let A = (I, s0, St, δt, Ft), be an automaton with a time-variant
structure. If A has the following properties ∀t ∈ N :

(1) St = S,

(2) δt = δ,

(3) Ft = F ,

then A is called an automaton with a non time-variant structure, or shortly, a
finite automaton (abbreviated FA) and A is also given by A = (I, s0, S, δ, F ).

3. Representative complexities of a language

Let L ⊆ Σ∗. We define three relations Er(modL) in Σr, E≤r(modL) in Σ≤r

and E<∞(modL) in Σ∗ as follows:

x1Erx2(modL) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L, ∀x1, x2 ∈ Σr.

x1E≤rx2(modL) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L, ∀x1, x2 ∈ Σ≤r.

x1E<∞x2(modL) ⇔ ∀ω ∈ Σ∗ : x1ω ∈ L ↔ x2ω ∈ L, ∀x1, x2 ∈ Σ∗.

It is easy to show that the relations Er(modL), E≤r(modL), E<∞(modL) are
reflexive, symmetric and transitive. Therefore, they are equivalence relations.

We define

HL(r) = Rank Er(modL),

GL(r) = Rank E≤r(modL),

KL = Rank E<∞(modL).

They are considered to be the representative complexity characteristics of the
language L over Σr, over Σ≤r and over Σ∗, respectively.

First we give some of their simple properties:

(1) HL(r) ≤ GL(r) ≤ KL, ∀r ∈ N ,

(2) 1 ≤ HL(r) ≤ GL(r) ≤ Exp(r),

where Exp(r) denotes some exponential function of r.

Now we estimate HL(r), GL(r), KL for some languages.

Example 1. Let Σ = {a, b} and

L1 = {anbn | n ∈ N+}.

Denote W = {a, a2, · · · , an, · · · }. We have W ⊂ Σ∗, for any C = const we get
|W | > C and aiE<∞aj(modL1) with i 6= j. Therefore KL1

≥ |W | > C.

Example 2. Let |Σ| = k ≥ 2, c /∈ Σ and

L2 = {xcx | x ∈ Σ+}.
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It can verify that if x1, x2 ∈ Σ≤r, x1 6= x2 then x1E≤rx2 (modL2). Therefore

GL2
(r) = |Σ≤r| =

k(kr − 1)

(k − 1)
·

Example 3. Let Σ = {0, 1} , c /∈ Σ , k ≥ 2 and

L3,k = {xcx | x ∈ Σ∗ , |x|1 = k},

where |x|1 denotes the number of occurences of 1 in x.

Denote

Wr,k =
{

x | x ∈ Σ∗; l(x) = r; |x|1 = k
}

,

It is easy to verify that

|Wr,k| = Ck
r =

r!

k!(r − k)!
= Pk(r),

where Pk(r) denotes a polynominal of degree k.

For any x1, x2 ∈ Wr,k with x1 6= x2, by choosing ω = cx1 we have x1ω =

x1cx1 ∈ L3,k whereas x2ω = x2cx1 /∈ L3,k, that is x1Erx2 (mod L3,k). This
means that

HL3,k
(r) ≥ |Wr,k| = Pk(r).

4. Supply-demand theorems for tva

First we introduce the notion of growth functions of an automaton with a
time-variant structure.

Definition 4. Let A = (I, s0, St, δt, Ft) be an automaton with a time-variant
structure. Set S≤r = ∪St, t ≤ r. The growth functions of A are defined by:

hA(r) = |Sr|,

gA(r) = |S≤r|.

In particular, if A is a finite automaton A = (I, s0, S, δ, F ), then the growth
function of A is defined by:

kA = |S| = const.

Remark that kA is a constant. Nervetheless, we call it a function because in
this case, hA(r) = gA(r) = kA.

There are nice relations between the growth functions of an automaton with a
time-variant structure and the representative complexities of the language which
is accepted by this automaton. These relations are said to be the supply-demand
theorems.
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Theorem 1. (The supply-demand theorem for TVA). Let A be an automaton
with a time-variant structure and L = L(A). Then for any r ∈ N+,

HL(r) ≤ hA(r).

Proof. Let A = (I, s0, St, δt, Ft) and L = L(A). We shall prove that

HL(r) ≤ hA(r) ∀r ∈ N+.

To prove this, we assume the contrary, i.e., ∃r ∈ N+ : HL(r) > hA(r). Therefore,
there are x, y ∈ Ir such that xEry (modL) and δ0(s0, x) = δ0(s0, y). Since
l(x) = l(y) = r, it follows that ∀ω ∈ I∗:

δl(x)(δ0(s0, x), ω) = δl(y)(δ0(s0, y), ω),

and

Fl(x)+l(ω) = Fl(y)+l(ω).

We obtain

xω ∈ L ↔ yω ∈ L.

It means that xEry(modL). This conflicts with hypothesis xEry (mod L). There-
fore,

HL(r) ≤ hA(r) ∀r ∈ N+.

Theorem 2. (The supply-demand theorem for DTVA). Let A be an automaton
with a deterministic time-variant structure and L = L(A). Then for any r ∈ N+,

(1) HL(r) ≤ hA(r),

(2) GL(r) ≤ gA(r).

Proof. Since each DTVA is an TVA, (1) is immediate. Now we prove (2).

Let A = (I, s0, St, δt, Ft) be an DTVA where δ0 : S0 × I → S1. We extend
δ0 : S0 × I≤r → S≤r as follows:

{

δ0(s,Λ) = s, ∀s ∈ S0,

δ0(s, xa) = δl(x)(δ0(s, x), a), ∀s ∈ S0, ∀x ∈ I≤r−1, ∀a ∈ I.

Assume to the contrary that ∃r ∈ N+ : GL(r) > gA(r). Then there exist x, y ∈
I≤r such that xE≤ry (mod L) but δ0(s0, x) = δ0(s0, y). Since A is deterministic,
it follows that ∀ω ∈ I∗:

δl(x)(δ0(s0, x), ω) = δl(y)(δ0(s0, y), ω),

δl(x)(δ0(s0, x), ω) ∈ F ↔ δl(y)(δ0(s0, y), ω) ∈ F,

xω ∈ L ↔ yω ∈ L.

It means that xE≤ry (modL) which contradicts the hypothesis xE≤ry (mod L).
Therefore,

GL(r) ≤ gA(r) ∀r ∈ N+.
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Theorem 3. (The supply-demand theorem for FA). Let A be an finite automa-
ton and L = L(A). Then for any r ∈ N+,

(1) HL(r) ≤ hA(r), ∀r ∈ N+,

(2) GL(r) ≤ gA(r), ∀r ∈ N+,

(3) KL ≤ kA.

Proof. Since each FA is an DTV A, (1) and (2) are obvious. Now we prove (3).

Let A = (I, s0, S, δ, F ) be an FA where δ : S×I → S. We extend δ : S×I∗ → S
as follows:

{

δ(s,Λ) = s, ∀s ∈ S,

δ(s, xa) = δ(δ(s, x), a), ∀s ∈ S, ∀x ∈ I∗, ∀a ∈ I.

Assume to the contrary that KL > kA = |S|. Then there exist x, y ∈ I∗ such
that xE<∞y (mod L) but δ(s0, x) = δ(s0, y). It follows that ∀ω ∈ I∗:

δ(δ(s0, x), ω) = δ(δ(s0, y), ω),

δ(δ(s0, x), ω) ∈ F ↔ δ(δ(s0, y), ω) ∈ F,

xω ∈ L ↔ yω ∈ L.

We obtain xE<∞y (mod L) which contradicts the initial hypothesis xE<∞y (mod L).
Therefore, KL ≤ kA.

5. Somes applications of supply-demand theorems for

different processing systems

We consider alternately the following processing systems:

Finite automaton (FA) (See Section 2)

The language acceptable by an FA is called an FA-language. The set of all
FA-languages is denoted by L(FA).

Corollary 1. Let L ∈ L(FA). Then there exists a constant C such that

KL ≤ C.

Proof. Let L = L(A) where A = (I, s0, S, δ, F ) is an FA. In this case we have
kA = |S| = C = const. Applying Theorem 3, we obtain

KL ≤ kA = C.

It follows that KL ≤ C.

Example 4. Let Σ = {a, b} and:

L1 = {anbn | n ∈ N+}.

In Example 1, we have proved that KL1
> C for all C = const. According to

Corollary 1, L1 /∈ L(FA).
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Remark 1. Myhill had proved that the condition in Corollary 1 is also sufficient,
i.e.,

L ∈ L(FA) ↔ ∃C = const : KL ≤ C.

(See [15, 16]).

Finite automaton with a time-variant structure (FTVA) (See [1, 2, 3])

A finite automaton with a time-variant structure is an TVA A = (I, s0, St, δt, Ft)
with ∀t ∈ N , St = S, |S| = C = const.

The language acceptable by an FTVA is called an FTVA-language. The set of
all FTVA-languages is denoted by L(FTV A).

Corollary 2. Let L ∈ L(FTV A). Then there exists a contant C such that

HL(r) ≤ C, ∀r ∈ N+.

Proof. Let L = L(A) with A = (I, s0, S, δt, Ft). Since hA(r) = |Sr| = |S| = C,
using Theorem 1, we have ∀r ∈ N+

HL(r) ≤ hA(r) = C.

It follows that HL(r) ≤ C, ∀r ∈ N+.

Example 5. Let |Σ| = k ≥ 2 and

L5 =
{

xxR | x ∈ Σ∗
}

,

where xR is the inverse image of x. It is easy to show that if x1, x2 ∈ Σr, x1 6= x2

then x1Erx2 (mod L5). Therefore, HL5
(r) = |Σr| = kr. According to Corollary

2, it follows that L5 /∈ L(FTV A).

Remark 2. Agasandjan and Salomaa had proved that the condition in Corollary
2 is also sufficient, i.e.,

L ∈ L(FTV A) ↔ HL(r) ≤ C, ∀r ∈ N+

(See [1, 3]).

ϕ-automaton with a time-variant structure (ϕ − TV A) (See [6])

Let ϕ(t) be a function from N into N . An ϕ-automaton with a time-variant
structure is an TVA A = (I, s0, St, δt, Ft), with |St| = ϕ(t), ∀t ∈ N .

The language acceptable by an ϕ-TVA is called an ϕ-TVA language. The set
of all ϕ-TVA languages is denoted by L(ϕ − TV A).

Corollary 3. Let L ∈ L(ϕ − TV A). Then

HL(r) ≤ ϕ(r), ∀r ∈ N+.

Proof. Let L = L(A) where A = (I, s0, St, δt, Ft) with |St| = ϕ(t). In this case,
we have hA(r) = |Sr| = ϕ(r). According to Theorem 1, we obtain ∀r ∈ N+

HL(r) ≤ hA(r) = ϕ(r).

It follows that HL(r) ≤ ϕ(r), ∀r ∈ N+.
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Example 6. Let Σ = {0, 1} , c /∈ Σ , k ≥ 2 and

L3,k = {xcx | x ∈ Σ∗ , |x|1 = k},

where |x|1 denotes the number of occurences of 1 in x. In Example 3, we have
proved that

HL3,k
(r) ≥ Pk(r),

where Pk(r) is a polynominal of degree k. Now if we choose ϕ(r) such that
ϕ(r) = O(Pk−1(r)), then ∃r ∈ N+ : HL3,k

(r) > ϕ(r). According to Corollary
3, we obtain HL3,k

(r) /∈ L(ϕ − TV A) with ϕ(r) = O(Pk−1(r)).

Remark 3. P. D. Dieu and P. T. An had proved that the condition in Corollary
3 is also sufficient, i.e.,

L ∈ L(ϕ − TV A) ↔ HL(r) ≤ ϕ(r), ∀r ∈ N+.

(See [6]).

(Free-labeled) Petri net (PN). (See [8, 9, 12, 13, 14])

A (free-labeled) Petri net N is given by a list

N = (P, T, I,O, µ0,Mf ),

where

P = {p1, . . . , pn} is a finite set of places;

T = {τ1, . . . , τm} is a finite set of transitions, P ∩ T = ∅;

I : P × T → N is the input function;

O : T × P → N is the output function;

µ0 : P → N is the initial marking;

Mf = {µf1
, . . . , µfk

} is a finite set of final marking.

A marking µ (global configuration) of a Petri net N is a function

µ : P → N.

The marking µ can also be defined as an n-vector µ = (µ1, . . . , µn) with µi = µ(pi)
and |P | = n.

A transition τ ∈ T is said to be firable at the marking µ if

∀p ∈ P : µ(p) ≥ I(p, τ).

Let τ be firable at µ and if τ fires, then the Petri net N shall change its state
from marking µ to a new marking µ′ which is defined as follows:

∀p ∈ P : µ′(p) = µ(p) − I(p, τ) + O(τ, p).

We set δ(µ, τ) = µ′ and the function δ is said to be the function of state transition
of the net.

A firing sequence can be defined as a sequence of transitions such that the
firing of each its prefix will be led to a marking at which the following transition
will be firable. By FN we denote the set of all firing sequences of the net N .
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We extend the function δ for a firing sequence by induction as follows:

Let x ∈ T ∗, τ ∈ T, µ be a marking, at which xτ is a firing sequence, then
{

δ(µ,Λ) = µ,

δ(µ, xτ) = δ(δ(µ, x), τ).

The language acceptable by the Petri net N is the set

L(N ) =
{

∈ T ∗ | (x ∈ FN ) ∧ (δ(µ0, x) ∈ Mf )
}

.

The language acceptable by a Petri net is called an PN-language. The set of all
PN-languages is denoted by L(PN).

Corollary 4. Let L ∈ L(PN). Then, there exist k ∈ N and a polynominal Pk

of degree k such that

GL(r) ≤ Pk(r), ∀r ∈ N+.

Proof. Let L = L(N ) with N = (P, T, I,O, µ0,Mf ). We denote Mr (resp. M≤r)
the set of all reachable markings of N by firing r transitions (resp. at most r
transitions) and k = min{|P |, |T |}. The following result had been established in
[10]:

Let N be a Petri net. Then,there exists a polynominal Pk of degree k such
that

|M≤r| ≤ Pk(r), ∀r ∈ N+.

Now from the Petri net N , we contruct an TVA A as follows:

A = (T, µ0,Mt, δt,Mf ),

with δt : Mt × T → Mt+1 is the function of marking transition of N after firing
t transitions. Now δt becomes the function of state transition of TVA A at the
time t. Since δ = ∪δt, t ∈ N is the function of marking transition of net N ,
therefore, δ is deterministic. It follows that A is an DTVA.

It is easy to verify that L = L(N ) = L(A), so L ∈ L(DTV A) and

gA(r) = |M≤r| ≤ Pk(r).

Applying Theorem 2 for DTVA A, we obtain

GL(r) ≤ gA(r) ≤ Pk(r) ∀r ∈ N+.

It follows that GL(r) ≤ Pk(r) ∀r ∈ N+.

Example 7. Let |Σ| = k ≥ 2, c /∈ Σ and

L2 = {xcx | x ∈ Σ+}.

In Example 2, we have shown that

GL2
(r) = |Σ≤r| =

k(kr − 1)

(k − 1)
·

According to Corollary 4, it follows that L2 /∈ L(PN).
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Remark 4. P. T. An and P. V. Thao had proved that the condition in Corollary
4 is not sufficient

We consider the following languages:

L′ = {anbn | n > 1},

L = (L′)+.

In [11] we have shown that GL(r) ≤ GL′(r) ≤ P5(r), but L /∈ L(PN).

(Free-labeled) Petri net with a time-variant structure (TVPN)

In this part we introduce a notion of Petri net with a time-variant structure.

A (free-labeled) Petri net with a time-variant structure N is given by a list

N = (P, T, It, Ot, µ0,Mf,t),

where

P = {p1, . . . , pn} is a finite set of places;

T = {τ1, . . . , τm} is a finite set of transitions, P ∩ T = ∅;

∀t ∈ N , It : P × T → N is the input function at the time t;

∀t ∈ N , Ot : T×P → N is the output function at the time t, with the condition

sup
t∈N

(

max
i,j

| Ot(τj , pi) − It(pi, τj) |
)

≤ l = const,

where 0 ≤ i ≤ n; 0 ≤ j ≤ m.

µ0 : P → N is the initial marking;

∀t ∈ N , Mf,t is a finite set of final marking at the time t.

For any t ∈ N a marking µt of a Petri net N at the time t is a function

µt : P → N.

A transition τ ∈ T is said to be firable at the marking µt if

∀p ∈ P : µt(p) ≥ It(p, τ).

Let τ be firable at µt and if τ fires, then the Petri net N shall change its state
from marking µt to a new marking µt+1 which is defined as follows:

∀p ∈ P : µt+1(p) = µt(p) − It(p, τ) + Ot(τ, p).

We set δt(µ, τ) = µt+1 and the function δt is said to be function of state transition
of the net at the time t.

We extend the function δt for a firing sequence by induction as follows:

Let x ∈ T ∗, τ ∈ T , µt be a marking, at which xτ is a firing sequence, then
{

δt(µt,Λ) = µt,

δt(µt, xτ) = δt+l(x)(δt(µt, x), τ).

The language acceptable by a Petri net with a time-variant structure N is the set:

L(N ) =
{

x ∈ T ∗ | (x ∈ FN ) ∧ (δ0(µ0, x) ∈ Mf,l(x))
}

,
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The language acceptable by an TVPN is called an TVPN-language. The set of
all TVPN-languages is denoted by L(TV PN).

Corollary 5. Let L ∈ L(TV PN). Then, there exist k ∈ N and a polynominal
Pk of degree k such that

HL(r) ≤ Pk(r), ∀r ∈ N+.

Proof. Let L = L(N ) with N = (P, T, It, Ot, µ0,Mf,t). We denote Mr the set
of all reachable markings of N by firing r transitions and k = min{|P |, |T |}.
Similarly as in [10] we can prove the following: Let N be a Petri net with a
time-variant structure. Then, there exists a polynominal Pk of degree k such
that

|Mr| ≤ Pk(r), ∀r ∈ N+.

From the Petri net N , we contruct an TVA A as follows:

A = (T, µ0,Mt, δt,Mf,t).

We remark that A is in general not deterministic.

It is easy to verify that L = L(N ) = L(A), so L ∈ L(TV A) and hA(r) =
|Mr| ≤ Pk(r).

Applying Theorem 1 we obtain

HL(r) ≤ hA(r) ≤ Pk(r), ∀r ∈ N+.

Therefore, HL(r) ≤ Pk(r), ∀r ∈ N+.

Example 8. Let |Σ| = k ≥ 2 and:

L5 = {xxR | x ∈ Σ∗},

where xR is the inverse image of x. In Example 5 we have shown that HL5
(r) =

|Σr| = kr. According to Corollary 5, it follows that L5 /∈ L(TV PN).

Remark 5. It is an open problem whether the condition in Corollary 5 is suffi-
cient or not. There are reasons to believe that the answer could be negative.
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