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APPROXIMATING SOLUTIONS OF THE EQUATION x = T (x, x)

W. A. KIRK

Abstract. Let D be a bounded closed convex subset of a Banach space, and
let T : D×D → D be a continuous mapping which satisfies for all x, y, z, t ∈ D,

‖T (x, y) − T (z, t)‖ ≤ max {‖x − z‖ , ‖y − t‖}

with strict inequality holding when ‖x − z‖ 6= ‖y − t‖. Suppose T condensing
in the sense that

γ (T (U, V )) < max {γ (U) , γ (V )}

for subsets U , V of D for which γ (U\V ) > 0 (where γ denotes the usual
Kuratowski set-measure of noncompactness). A projection-iteration method
is shown to converge to a solution of x = T (x, x). The significance of this
result is that it holds in arbitrary spaces.

The following is a Banach space version of an inequality proved in [6]. (The
original version is proved in the more general context of a convex metric space
of so-called ‘hyperbolic type’, but the following will be adequate for our purpose
here.)

Proposition 1. Let K be a convex subset of a Banach space and let {αn} be a

sequence of real numbers satisfying 0 ≤ αn < 1. Suppose {xn}, {yn} ⊂ K satisfy

for all n ≥ 0,
(i) xn+1 = (1 − αn) xn + αnyn;

(ii) ‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖.
Then

(

1 +

i+n−1
∑

s=i

αs

)

‖xi − yi‖

≤ ‖yi+n − xi‖ +

(

i+n−1
∏

s=i

1

1 − αs

)

[‖xi − yi‖ − ‖xi+n − yi+n‖]

If, in addition, K is bounded, αn ≤ b < 1 for all n ≥ 0, and
∞
∑

n=1

αn = +∞, then

lim
n

‖xn − yn‖ = 0.
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In this note we use the final conclusion of the above result to generalize the
following theorem of [2] (Theorem 3). In this theorem γ denotes the usual Kura-
towski set-measure of noncompactness.

Theorem 1. Let D be a closed bounded convex subset of a uniformly convex

Banach space X. Suppose T : D × D → D is a continuous operator satisfying

the conditions

‖T (x, y) − T (z, t)‖

{

< max {‖x − z‖ , ‖y − t‖} , if ‖x − z‖ 6= ‖y − t‖

≤ ‖x − z‖ = ‖y − t‖

for all x, y, z, t ∈ D, and

γ (T (U, V )) < max {γ (U) , γ (V )}

for subsets U , V of D such that γ (U\V ) > 0. Then there exist numbers λn,

0 < a < λn < b < 1, n ≥ 1, where a, b are constants, such that the sequence {xn}
defined by

xn = λnxn−1 + (1 − λn) x̄n,

where x̄n = T (x̄n, xn−1), converges to a solution of x = T (x, x) for any initial

x0 ∈ D.

Using Proposition 1 we show that the above theorem holds in an arbitrary
Banach space.

Theorem 2. Let D be a closed bounded convex subset of a Banach space X.

Suppose T : D × D → D is continuous and satisfies the conditions

‖T (x, y) − T (z, t)‖

{

< max {‖x − z‖ , ‖y − t‖} , if ‖x − z‖ 6= ‖y − t‖
≤ ‖x − z‖ = ‖y − t‖

(*)

for all x, y, z, t ∈ D, and suppose

γ (T (U, V )) < max {γ (U) , γ (V )}

for subsets U , V of D such that γ (U\V ) > 0. Let x0 ∈ D and b ∈ (0, 1), and

choose {λn} ⊂ (b, 1) such that
∞
∑

n=1

(1 − λn) = +∞. Then the sequence {xn} given

by

xn = λnxn−1 + (1 − λn) x̄n, n = 1, 2, . . . ,

where x̄n = T (x̄n, xn−1), is well defined and converges to a solution of x =
T (x, x).

Our point of departure is the following fact which is essentially proved in [9].

Proposition 2. Let (M,d) be a metric space and K a bounded closed convex

subset of a Banach space X. Let {Tα}α∈M be a family of mappings of K into K
which has the property that for some A > 0,

‖Tαx − Tβy‖ ≤ max {Ad (α, β) , ‖x − y‖}(**)
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for all α, β ∈ M , x, y ∈ K. Suppose also that Tα is condensing for each α ∈ M .

Then there exists a mapping f : M → K for which Tαf (α) = f (α) and for which

‖f (α) − f (β)‖ ≤ Ad (α, β) for all α, β ∈ M .

Proof. This result is proved in [9] under the assumption Tα (K) is precompact
for each α ∈ M . We need only modify a portion of that argument. Following [9]
for each α ∈ M define the mapping fα by setting for each x ∈ K,

fα (x) = (1/2) (x + Tαx) .

Then by a result of Ishikawa [7] (or by Proposition 1), for each x0 ∈ K,
∥

∥fn+1
α (x0) − fn

α (x0)
∥

∥→ 0 as n → ∞.

Also, by well-known properties of γ, (for example, see [1], p. 19)

γ
({

fn+1
α (x0)

})

= γ ({(1/2) (fn
α (x0) + Tαfn

α (x0)})

= (1/2) γ ({(fn
α (x0) + Tαfn

α (x0)})

≤ (1/2) (γ ({fn
α (x0)} + γ ({Tαfn

α (x0)})))

from which follows (since γ
({

fn+1
α (x0)

})

= γ ({fn
α (x0)})),

γ ({fn
α (x0)}) ≤ γ ({Tαfn

α (x0)}) .

Since Tα is condensing γ ({fn
α (x0)}) = 0, so {fn

α (x0)} has a subsequence which
converges (by continuity) to a fixed point f (α) offα. The fixed points of fα and
Tα coincide, so Tαf (α) = f (α).

The proof is now completed precisely as in [9]. For convenience we include the
details.

Notice in particular that condition (**) implies that the mapping Tα, hence
fα, is nonexpansive, so fn

α (x0) → f (α) as n → ∞.

Now fixe α, β ∈ M . Then

‖fα (x0) − fβ (x0)‖ = (1/2) ‖Tα (x0) − Tβ (x0)‖ ≤ (1/2) Ad (α, β) .

Moreover, if
∥

∥

∥
fn

α (x0) − fn
β (x0)

∥

∥

∥
≤ Ad (α, β), then

∥

∥

∥
fn+1

α (x0) − fn+1
β (x0)

∥

∥

∥

=
∥

∥fα (fn
α (x0)) − fβ

(

fn
β (x0)

)
∥

∥

= (1/2)
∥

∥fn
α (x0) + Tα (fn

α (x0)) −
(

fn
β (x0) + Tβ

(

fn
β (x0)

))
∥

∥

≤ (1/2)
∥

∥fn
α (x0) − fn

β (x0)
∥

∥+ (1/2)
∥

∥Tα (fn
α (x0)) − Tβ

(

fn
β (x0)

)
∥

∥

≤ (1/2) Ad (α, β) + (1/2) max
{

Ad (α, β) ,
∥

∥fn
α (x0) − fn

β (x0)
∥

∥

}

= Ad (α, β) .

So by induction
∥

∥

∥
fn

α (x0) − fn
β (x0)

∥

∥

∥
≤ Ad (α, β) for all n ≥ 1. Therefore

‖f (α) − f (β)‖ = lim
n

∥

∥fn
α (x0) − fn

β (x0)
∥

∥ ≤ Ad (α, β) .
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Proof of Theorem 2. By taking M = K = D and defining Tα = T (·, α) for
α ∈ D, we see immediately that

‖Tαx − Tβy‖ ≤ max {d (α, β) , ‖x − y‖} .

By Proposition 2 we know that there exists a mapping f : D → D such that
Tαf (α) = f (α) and ‖f (α) − f (β)‖ ≤ ‖α − β‖ for all α, β ∈ D. Select x0 ∈ D,
let x̄1 = f (x0), and define x̄n = f (xn−1), n ≥ 1. This assures that the sequence
{x̄n} is well defined. Clearly

x̄n = f (xn−1) = Txn−1
f (xn−1) = T (x̄n, xn−1) .

The convergence part of the theorem (which in this instance also proves existence)
is now a direct consequence of Proposition 1 upon taking αn = 1 − λn and
yn = x̄n+1. Thus lim

n→∞

‖xn − x̄n+1‖ = 0. Also, as in [2], γ ({x̄n}) = γ ({xn}) = 0.

Thus xni
→ u ∈ D as i → ∞ for some subsequence {xni

} of {xn}. By Proposition
1 x̄ni+1 → u. Since T is continuous we conclude that u = T (u, u). Also

‖u − x̄n‖ = ‖T (u, u) − T (x̄n, xn−1)‖

≤ max {‖u − x̄n‖ , ‖u − xn−1‖} .

The alternatives of condition (*) require that either ‖u − x̄n‖ = ‖u − xn−1‖ or
‖u − x̄n‖ < ‖u − xn−1‖. In either case we have for n ≥ 1,

‖u − xn‖ ≤ λn ‖u − xn−1‖ + (1 − λn) ‖u − x̄n‖

≤ ‖u − xn−1‖ .

This implies that {‖u − xn‖} is monotone decreasing and, since lim
i
‖u − xni

‖ = 0,

lim
n

‖u − xn‖ = 0.

Remark. The case αn = λn ≡ 1/2 would appear to be of more practical interest.
This case of Proposition 1 is dealt with in more detail in the forthcoming paper
[8]. Also see [4].

Several other conditions are listed in [9] under which the conclusion of Propo-
sition 2 holds. These should lead in fairly direct ways to additional extensions of
the existence part of Theorem 2.

Other applications of the inequality of Proposition 1 are found in [3].
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