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APPROXIMATING SOLUTIONS OF THE EQUATION z =T(z,z)

W. A. KIRK

ABSTRACT. Let D be a bounded closed convex subset of a Banach space, and
let T : DxD — D be a continuous mapping which satisfies for all z,y, z,t € D,

1T (z,y) =T (2, 8)]| < max{||z — 2|, [ly — |}

with strict inequality holding when ||z — z|| # ||y — t||. Suppose T' condensing
in the sense that

v (T'(U,V)) <max{y(U),7(V)}

for subsets U, V of D for which v (U\V) > 0 (where v denotes the usual
Kuratowski set-measure of noncompactness). A projection-iteration method
is shown to converge to a solution of x = T (z,z). The significance of this
result is that it holds in arbitrary spaces.

The following is a Banach space version of an inequality proved in [6]. (The
original version is proved in the more general context of a convex metric space
of so-called ‘hyperbolic type’, but the following will be adequate for our purpose
here.)

Proposition 1. Let K be a convex subset of a Banach space and let {a,} be a
sequence of real numbers satisfying 0 < a,, < 1. Suppose {z,}, {yn} C K satisfy
for allm >0,

(1) Znr1 = (1 — an) Tn + anyn;

(i) yn+1 — ynll < l[2nt1 — 24l

Then
i+n—1
1+ > o | o —wil
s=1
iHnol
< lyisn —xill + | ] T | i = will = lzisn = yisall
. S
S=1

If, in addition, K is bounded, o, < b <1 for alln >0, and > o, = 400, then

n=1

lim ||z, — yn|| = 0.
n
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In this note we use the final conclusion of the above result to generalize the
following theorem of [2] (Theorem 3). In this theorem 7 denotes the usual Kura-
towski set-measure of noncompactness.

Theorem 1. Let D be a closed bounded convexr subset of a uniformly convex
Banach space X. Suppose T : D x D — D is a continuous operator satisfying
the conditions

IT (2,y) = T (2,1)]| <max {||z — z||, |y — tlI}, if ||z —z|| # |ly — ¢
<z —z[ = lly =
fOT Clll 1’7?/72’7t€D, and
~(T (U, V)) <max{y((U),y(V)}

for subsets U, V of D such that v(U\V) > 0. Then there exist numbers Ay,
0<a<A <b<1,n>1, wherea,b are constants, such that the sequence {x,}
defined by

Tp = ApTn—1+ (1 - )\n) T,
where Ty, = T (Tp,Tn—1), converges to a solution of x = T (x,x) for any initial

xg € D.

Using Proposition 1 we show that the above theorem holds in an arbitrary
Banach space.

Theorem 2. Let D be a closed bounded convexr subset of a Banach space X.
Suppose T : D x D — D is continuous and satisfies the conditions

() HT<w>y>—T<z,t>||{ gﬁai{zli‘f:—@\l a_||3||—t||}, if llw— 2l # lly — tl

for all x,y,z,t € D, and suppose
V(T (U, V) <max{y(U),y(V)}
for subsets U, V' of D such that v(U\V) > 0. Let xg € D and b € (0,1), and
o0
choose {\p,} C (b,1) such that > (1 — \,) = +o0o. Then the sequence {x,} given

n=1
by
xn:)\nxn—l—i_(l_)‘n)i‘n’ n=12...,
where Ty, = T (Tp,xn—1), is well defined and converges to a solution of x =
T (z,z).

Our point of departure is the following fact which is essentially proved in [9].

Proposition 2. Let (M,d) be a metric space and K a bounded closed convex
subset of a Banach space X. Let {To} e be a family of mappings of K into K
which has the property that for some A > 0,

(**) [Tax — Tay|| < max{Ad(«, 8), [l — yll}
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foralla,B € M, z,y € K. Suppose also that T, is condensing for each o € M.
Then there exists a mapping f : M — K for which T, f (o)) = f () and for which
1f (@) = f(B)I| < Ad(a, 8) for all o, 3 € M.

Proof. This result is proved in [9] under the assumption T, (K) is precompact
for each oo € M. We need only modify a portion of that argument. Following [9]
for each o € M define the mapping f, by setting for each z € K|,

Ja(x) = (1/2) (z + Tow) .
Then by a result of Ishikawa [7] (or by Proposition 1), for each xg € K,
|| S o (o) — 2 (zo)|| — 0 as n — .
Also, by well-known properties of 7, (for example, see [1], p.19)

v ({fat (o) }) = v ({(1/2) (£2 (x0) + Tafo(z0)})
= (1/2)y {(f& (wo) + Tofa (20)})
< (1/2) (v ({f& (z0)} + 7 ({Tafa (20)})))
from which follows (since v ({ f2%! (z0)}) = v ({fZ (z0)})),
{2 (@0)}) < 7 (T fh o))

Since T, is condensing vy ({ f¥ (zo)}) = 0, so {fZ (x0)} has a subsequence which
converges (by continuity) to a fixed point f («) off,. The fixed points of f, and
T,, coincide, so T, f () = f («).

The proof is now completed precisely as in [9]. For convenience we include the
details.

Notice in particular that condition (**) implies that the mapping T, hence
fas 18 nonexpansive, so f2 (xg) — f («) as n — oc.

Now fixe o, 3 € M. Then
[ fo (o) — f5 (o)l = (1/2) | Ta (z0) — T3 (o) || < (1/2) Ad (v, B) .
2 (w0) — f3 (xo)H < Ad(a, B), then

n+1 (xO) _ n-l—l( )

Moreover, if

|5

_Hfa(fg 0)) — f5 (/5 (x0))]

(1/2) || £ (w0) + T (f2 (w0)) — (f5 (z0) + T (fg (x0))) ||
< (1/2) [ £ (o) = 15 (xo)|| + (1/2) || Ta (£& (20)) — T (£ (o)) |
< (1/2) Ad(a, ) (1/2) max { Ad (v, B) , || £} (z0) — f5 (w0)]| }
= Ad(a, ).

So by induction ‘ o (o) — f§ (a:o)H < Ad (o, B) for all n > 1. Therefore

1 () = f (B = Yim [| £2 (o) = f5 (wo)|| < Ad (e B).
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Proof of Theorem 2. By taking M = K = D and defining T,, = T (-,«) for
a € D, we see immediately that

[Tax — Tay|| < max{d(e,5),[lz —yl}

By Proposition 2 we know that there exists a mapping f : D — D such that
Tof (o) = f(a) and ||f (o) — f(B)]| < || — B for all o, € D. Select zp € D,
let #1 = f (xg), and define z,, = f (z,—1), n > 1. This assures that the sequence
{Z,} is well defined. Clearly

Ty = f (l‘nfl) = Txn_lf(xnfl) = T(jnuxnfl) .

The convergence part of the theorem (which in this instance also proves existence)
is now a direct consequence of Proposition 1 upon taking a,, = 1 — A, and
Yn = Tp41. Thus nlLIgo |z, — Tnt1]] = 0. Also, as in [2], v {Zn}) = v {zn}) = 0.
Thus z,, — u € D as i — oo for some subsequence {zy, } of {z,}. By Proposition
1 Zp,+1 — u. Since T is continuous we conclude that u = T (u,u). Also

lu = &all = IT () = T (@, 20|
< max {[lu — 2], u — 21 [}

The alternatives of condition (*) require that either ||u — Z,|| = ||lu — xp—1|| or
lu — Zn|| < ||u — zp_1]]. In either case we have for n > 1,

[u = @nl| < Anllu=znal[ + (1= An) llu = 2
< lu = zn -
This implies that {||u — x,||} is monotone decreasing and, since lim ||u — x| = 0,
(2

lim ||u — x| = 0. O
n

Remark. The case a,, = A\, = 1/2 would appear to be of more practical interest.
This case of Proposition 1 is dealt with in more detail in the forthcoming paper
[8]. Also see [4].

Several other conditions are listed in [9] under which the conclusion of Propo-
sition 2 holds. These should lead in fairly direct ways to additional extensions of
the existence part of Theorem 2.

Other applications of the inequality of Proposition 1 are found in [3].
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