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ON THE CONTINUITY OF VECTOR CONVEX

MULTIVALUED FUNCTIONS

NGUYEN BA MINH AND NGUYEN XUAN TAN

Abstract. The well-known Banach Steinhaus Theorem is extended to the
case of convex and concave functions and its applications are shown to find
necessary and sufficient conditions for the C-continuity of vector convex func-
tions. Relations between upper and lower C-continuities are also obtained.

1. Introduction

Let X and Y be topological Hausdorff spaces and f : X → Y a given single
valued function. As usually, we say that f is continuous at a point x0 ∈ X if for
any open subset V in Y containing f(x0) there is an open subset U containing
x0 such that f(U) ⊂ V . In the case when F : X → 2Y is a multivalued function
(in this paper we also say that F is a multivalued mapping), one defines the
continuity of F in the sense of Berge [4]: F is said to be upper semicontinuous
at x0 if for any open subset V with F (x0) ⊂ V one can find an open subset U of
X containing x0 such that F (x) ⊂ V holds for all x ∈ U . And, F is said to be
lower semicontinuous at x0 if for any open subset V with F (x0)∩ V 6= ∅ there is
an open subset U containing x0 with F (x) ∩ V 6= ∅ for all x ∈ U .

In the case Y = R, the space of real numbers, and f : X → R, one says that
f is upper (lower) semicontinuous at x0 if for any ε > 0 there is a neighborhood
U of x0 with f(x) ≤ f(x0) + ε (f(x) ≥ f(x0) − ε, respectively) for all x ∈ U .
These notions can be also formulated for vector (singlevalued and multivalued)
mappings in the case when Y is a topological locally convex space with a cone C.

Convex functions have been studied for some time by Hölder [5], Jensen [6],
Minkowski [8] and many others. They play very important roles in convex analy-
sis, one of the most beautiful and most developed branches of mathematics, and
are used much in optimization, operation research, economics, engineering, etc.
Some nice properties of convex functions have been investigated in the books of
Rockafellar [10], Aubin and Ekeland [1], Aubin and Frankowska [2]. These con-
cepts of functions and their properties are also extended to vector (singlevalued
and multivalued) mappings (see, for example, [7]) and they also play important
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role in the theory of vector optimization, vector equilibrium problems etc, (see,
for example, [2], [7], [11]).

The purpose of this paper is to study some other interesting properties of
lower (upper) C-convex, C-concave, lower (upper) C-continuous mappings and
some relations between them. The paper is organized as follows. In Section 2
we introduce the notions of C-continuities, C-convexity of vector mappings. In
Section 3 we extend the well-known Banach-Steinhaus Theorem [3] to the family
of convex, lower semicontinuous (concave upper semicontinuous) functions. As
a corollary we can show that if X is a barrel space and f : X → R is convex
lower semicontinuous on some neighborhood U0 of x0 ∈ X and f(x) < +∞ for
all x ∈ X, then f is continuous at x0.

Section 4 is devoted to the C-continuities of vector multivalued mappings. We
give necessary and sufficient conditions for the upper (lower) C-continuity, suffi-
cient conditions for an upper (lower) C-convex and upper (lower) C- continuous
mapping to become weak upper (lower) C-continuous. Further, we show some
relations between the upper C-continuity and lower C-continuity of multivalued
mappings.

2. Preliminaries

Let X be a topological locally convex space, D ⊂ X be a convex set. By R we
denote the space of real numbers with the usual topology and R = R ∪ {±∞}.
We recall the following definitions.

Definition 2.1. (a) A function f : D → R is called a convex function if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)

holds for all x, y ∈ dom f = {x ∈ D / f(x) < +∞} and α ∈ [0, 1].

(b) A function f : D → R is called a concave function if −f is convex.

Throughout this paper, without loss of generality, any neighborhood of the
origin in a topological convex space is supposed to be convex open symmetric.
We introduce the following definitions.

Definition 2.2. Let {fα, α ∈ I} be a family of functions on D, where I is a
nonempty parameter set. We say that this family is upper equisemicontinuous
at x0 ∈ D if for every ε > 0, there is a neighborhood U of x0 in X such that

fα(x) ≤ fα(x0) + ε

for all x ∈ U ∩ D and α ∈ I. Analogically, we say that this family is lower equi-
semicontinuous at x0 ∈ D if the family {−fα, α ∈ I} is upper equisemicontinuous
at x0.

Further, let Y be another topological locally convex space with a cone C and
F a multivalued mapping from D to Y (denoted by F : D → 2Y ) which means
that F (x) is a set in Y for each x ∈ D. We denote the set of all x ∈ D such that
F (x) 6= ∅ by domF .
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Definition 2.3. (a) F is upper C-continuous (lower C-continuous) at x0 ∈ D if
for each neighborhood V of the origin in Y , there is a neighborhood U of x0 in
X such that

F (x) ⊂ F (x0) + V + C

(F (x0) ⊂ F (x) + V − C, respectively)

holds for all x ∈ U ∩ dom F .

(b) F is C-continuous at x0 if it is upper and lower C-continuous at that
point; and F is upper (respectively, lower,...) C-continuous on D if it is upper
(respectively, lower...) C-continuous at every point of D.

(c) We say that F is weak upper (lower) C-continuous at x0 if the neighborhood
U of x0 as above is in the weak topology of X.

Proposition 2.1. (a) If F (x0) is a compact set in Y , then F is upper C-continu-
ous at x0 if and only if for any open set G with F (x0) ⊂ G + C there is a
neighborhood U of x0 such that

F (x) ⊂ G + C,

holds for all x ∈ U domF .

(b) If F (x0) is a compact set in Y , then F is lower C-continuous at x0 if
and only if for any y ∈ F (x0) and neighborhood V of the origin in Y there is a
neighborhood U of x0 such that

F (x) ∩ (y + V + C) 6= ∅

holds for all x ∈ U domF .

It is also equivalent to: For any open set G with F (x0) ∩ (G + C) 6= ∅, there
is a neighborhood U of x0 such that

F (x) ∩ (G + C) 6= ∅

holds for all x ∈ U ∩ dom F .

Proof. (a) Assume that F is upper C-continuous at x0 and G is an open set with
F (x0) ⊂ G + C. Since F (x0) is a compact set, there exists a neighborhood V0 of
the origin in Y such that F (x0) + V0 ⊂ G + C. For a given neighborhood V of
the origin in Y there is a neighborhood U of x0 such that.

F (x) ⊂ F (x0) + V0 ∩ V + C for all x ∈ U ∩ dom F.

It follows that

F (x) ⊂ G + C for all x ∈ U ∩ dom F.

Suppose now that for any open set G with F (x0) ⊂ G+C there is a neighborhood
U of x0 such that

F (x) ⊂ G + C for all x ∈ U ∩ dom F.
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Let V be an arbitrary neighborhood of the origin in Y . It is clear that G =
F (x0) + V is also a open set and F (x0) ⊂ G + C. One can find a neighborhood
U of x0 such that

F (x) ⊂ G + C for all x ∈ U ∩ dom F.

It follows that

F (x) ⊂ F (x0) + V + C for all x ∈ U ∩ dom F.

This means that F is upper C-continuous at x0.

(b) Assume first that F is lower C-continuous at x0. For given neighborhood
V of the origin in Y one can find a neighborhood U of x0 in X such that

F (x0) ⊂ F (x) + V − C for all x ∈ U ∩ dom F.

This implies that for any y ∈ F (x0) and neighborhood V of the origin in Y

F (x) ∩ (y + V + C) 6= ∅ for all x ∈ U ∩ dom F.

Suppose now that for any y ∈ F (x0) and neighborhood V of the origin in Y there
is a neighborhood Uy of x0 such that

F (x) ∩ (y + V + C) 6= ∅ for all x ∈ Uy ∩ dom F.

It is clear that

F (x0) ⊂
⋃

{

y +
V

2

∣

∣ y ∈ F (x0)
}

.

Since F (x0) is compact, we conclude that F (x0) ⊂
n
⋃

i=1

{

yi+
V

2

}

for some y1, . . . , yn ∈

F (x0). Therefore, one can find neighborhoods Uyi
of x0, i = 1, . . . , n, such that

F (x) ∩
(

yi +
V

2
+ C

)

6= ∅ for all x ∈ Uyi
∩ dom F.

Putting U =
n
⋂

i=1
Uyi

, we claim that

F (x0) ⊂ F (x) + V − C for all x ∈ U ∩ dom F.

Indeed, let y ∈ F (x0). We have y ∈ yi +
V

2
for some i = 1, 2, ..., n and

F (x) ∩
(

yi +
V

2
+ C

)

6= ∅ for all x ∈ U.

It follows that

y ∈ F (x) + V − C,

and hence,

F (x0) ⊂ F (x) + V − C for all x ∈ U ∩ dom F.

This means that F is lower C-continuous at x0.

Now, let G be an open set with F (x0)∩(G+C) 6= ∅. Take y ∈ F (x0)∩(G+C),
y = y1 + C with y1 ∈ G and c ∈ C, we conclude that there is a neighborhood V
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of the origin in Y such that y ∈ y1 + c + V ⊂ G + C. Therefore, there exists a
neighborbood U of x0 such that

F (x) ∩ (y + V + C) 6= ∅ for all x ∈ U ∩ dom F.

Consequently,

F (x) ∩ (G + C) 6= ∅ for all x ∈ U ∩ dom F.

Let y ∈ F (x0) and V be a neighborhood of the origin in Y . Then

F (x0) ∩ (y + V + C) 6= ∅

with y + V open. Hence, there exists a neighborhood U of x0 in Y such that.

F (x) ∩ (y + V + C) 6= ∅ for all x ∈ U ∩ dom F.

This completes the proof.

Remark 1. (a) If C = {0} and F (x0) is compact, the upper {0}-continuity
and the lower {0}-continuity of F at x0 in Definition 2.3 coincide with the ones
introduced by Berge in [4]. Moreover, if F is upper {0}-continuous and lower {0}-
continuous at x0 simultaneously, then it is continuous in the Hausdorff distance
at x0 provided that Y is a norm space.

(b) If F is single-valued, then the upper C-continuity and the lower C- conti-
nuity of F at x0 coincide and we say that F is C-continuous at x0.

(c) If Y = R and C = R+ = {x ∈ R / x ≥ 0} (or C = R− = {x ∈
R /x ≤ 0} and F is C-continuous at x0, then F is lower semicontinuous (upper
semicontinuous, respectively) at x0 in the usual sense.

Definition 2.4. (a) F is said to be upper (lower) C-convex if

αF (x) + (1 − α)F (y) ⊂ F (αx + (1 − α)y) + C

(F (αx + (1 − α)y) ⊂ αF (x) + (1 − α)F (y) − C, respectively)

holds for all x, y ∈ dom F and α ∈ [0, 1].

(b) F is said to be upper (lower) C-concave if −F is upper(lower, respectively)
C-convex.

Remark 2. (a) If C = {0}, then the lower {0}-convexity and the lower {0}-
concavity (the upper {0}-convexity and the upper {0}- concavity) of F coincide
and F is said to be lower sublinear (upper sublinear, respectively).

(b) If F is single-valued, then the lower C-convexity and the upper C- convexity
(the lower C-concavity and the upper C-concavity) of F coincide and it is said
to be C-convex (C-concave, respectively).

Let Y ′ denote the topological dual space of Y and

C ′ =
{

ξ ∈ Y ′|〈ξ, y〉 ≥ 0, for all y ∈ C
}

.
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It is called the polar cone of the cone C. For given F : D → 2Y and ξ ∈ C ′ we
define functions gξ, Gξ : D → R by

gξ(x) = inf
y∈F (x)

〈ξ, y〉 , x ∈ D

and

Gξ(x) = sup
y∈F (x)

〈ξ, y〉 , x ∈ D.

We have

Proposition 2.2. (a) If F is an upper (a lower) C-convex mapping, then the
function gξ (Gξ, respectively) is convex.

(b) If F is an upper (a lower) C-concave mapping then the function Gξ (gξ,
respectively) is concave.

Proof. The proofs of these assertions follow immediately from the definitions of
the functions gξ, Gξ and the upper, lower C-convexities of F .

In the following proposition we assume that Y is a Banach space.

Proposition 2.3. (a) If F is upper (lower) C-continuous at x0 ∈ domF , then
gξ (Gξ, respectively) is lower semicontinuous at x0.

(b) If F is upper (lower) (−C)-continuous at x0 ∈ dom F , then gξ (Gξ, re-
spectively) is upper semicontinuous at x0.

Proof. We only prove the lower semicontinuity of gξ in the part a). (the proof of
the other assertions proceeds similarly). Let ε > 0 be given. Since ξ ∈ C ′, there
is a neighborhood V of the origin in Y such that ξ(V ) ⊂ (−ε, ε). For F is upper
C-continuous at x0, it follows that there is a neighborhood U of x0 in X such
that

F (x) ⊂ F (x0) + V + C for all x ∈ U ∩ D.

This implies

gξ(x) = inf
y∈F (x)

〈ξ, y〉 ≥ inf
y∈F (x0)

〈ξ, y〉 − ε = gξ(x0) − ε

and hence, gξ is lower semicontinuous at x0.

This completes the proof of the proposition.

3. The equisemicontinuity of convex and concave functions

In this section we prove some theorems on the equisemicontinuities of a fam-
ilies of functions. We recall that a barrel space is a topological locally convex
space, in which any nonempty closed symmetric, convex and absorbing set is a
neighborhood of the origin (see, for example [10]). We extend the well-known
Banach-Steinhaus Theorem to families of convex and concave functions by the
following theorems:
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Theorem 3.1. Assume that X is a barrel space, I is an index set and fα :
X → R, α ∈ I, is convex and lower semicontinuous on some neighborhood U0

of x0 ∈ X. In addition, suppose that for any x ∈ X there is a constant γ > 0
such that fα(x) ≤ γ, for all α ∈ I. Then the family {fα, α ∈ I} is upper
equisemicontinuous at x0.

Proof. By setting f̄α(x) = fα(x + x0) − fα(x0) if necessary, we may assume that
x0 = 0 and fα(0) = 0 for all α ∈ I. For given ε > 0 we put

Aα =
{

x ∈ X | fα(x) ≤ ε
}

.

For 0 ∈ Aα we conclude Aα 6= ∅. Without loss of generality we may assume that
U0 is a closed convex symmetric neighborhood of the origin in X. Since Aα is a
level set of the convex lower semicontinuous fα, then U0 ∩Aα is a closed convex.

Further, we put U =
⋂

α∈I

U0 ∩ Aα ∩ (−Aα). It follows that U is a nonempty

closed, symmetric and convex set. We claim that U is absorbing. Indeed, let
x ∈ X. By the hypotheses of the theorem there is a constant γ > 0 such that

fα(x) ≤ γ

and

fα(−x) ≤ γ for all α ∈ I.

We may assume γ > ε. Since

fα

( ε

γ
x
)

= fα

( ε

γ
x + (1 −

ε

γ

)

0
)

≤
ε

γ
fα(x) + (1 −

ε

γ
)f(0) =

ε

γ
f(x) ≤ ε.

This shows
ε

γ
x ∈ Aα. Since U0 is absorbing, there is a constant ρ > 0 such that

x

ρ
, −

x

ρ
∈ U0. For γ0 = max{γ, ρ}, we conclude

ε

γ0
x ∈ Aα ∩ U0. By a similar

argument one obtains
−ε

γ0
x ∈ Aα ∩U0 for all α ∈ I, and then

ε

γ0
x ∈ U . It means

that U is absorbing. Remarking that X is a barrel space, we deduce that U is a
neighborhood of the origin in X. For x ∈ U we have

fα(x) ≤ ε = fα(0) + ε for all α ∈ I.

Consequently, the family {fα, α ∈ I} is upper equisemicontinuous at the origin.

This completes the proof of the theorem.

Corollary 3.1. Assume that X is a barrel space, f : X → R is convex and lower
semicontinuous on some neighborhood U0 of x0 dom f = X. Then f is continuous
at x0.

Proof. It follows immediately from Theorem 2.1 with I = {1}.
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Theorem 3.2. Assume that X is a barrel space, I is an index set and fα : X →
R, α ∈ I, is concave and upper semicontinuous on some neighborhood U0 of
x0 ∈ X. In addition, suppose that for any x ∈ X there is a constant γ > 0
such that fα(x) ≥ −γ for all α ∈ I. Then the family {fα | α ∈ I} is lower
equisemicontinuous at x0.

Proof. The proof follows immediately from Theorem 2.1 with fα replaced by
−fα.

4. The continuity of vector multivalued mappings

Throughout this section we assume that X is a topological locally convex space
and Y is a Banach space, D ⊂ X is a nonempty closed convex set and C ⊂ Y
is a convex cone with the polar cone C ′. For ξ ∈ C ′ let gξ, Gξ be defined as in
Section 3.

Theorem 4.1. Let F : D → 2Y and x0 ∈ domF with F (x0) + C convex. Then
F is upper C-continuous at x0 if and only is the family {gξ | ξ ∈ C ′, ‖ξ‖ = 1} is
lower equisemicontinuous at x0.

Proof. We first assume that F is upper C-continuous at x0. Let ε > 0 be given.
By Banach-Steinhaus Theorem the family {ξ ∈ C ′ | ‖ξ‖ = 1} is equicontinuous.
Therefore there is a neighborhood V of the origin in Y such that ξ(y) ∈ (−ε, ε)
holds for all y ∈ V and ξ ∈ C ′, ‖ξ‖ = 1. Without loss of generality, we may
assume that V is bounded. From the upper C-continuity of F at x0 there exists
a neighborhood U of x0 in X such that.

F (x) ⊂ F (x0) + V + C for all x ∈ U ∩ D.

It follows that

gξ(x) = inf
y∈F (x)

〈ξ, y〉 ≥ inf
y∈F (x0)

〈ξ, y〉 + inf
y∈V

〈ξ, y〉 + inf
y∈C

〈ξ, y〉

≥ inf
y∈F (x0)

〈ξ, y〉 − ε

= gξ(x0) − ε

holds for all x ∈ U ∩ D and ξ ∈ C ′, ‖ξ‖ = 1. This means that the family
{gξ | ξ ∈ C ′, ‖ξ‖ = 1} is lower equisemicontinuous at x0.

Now, assume that this family is lower equisemicontinuous at x0 . But, F is
not upper C-continuous at x0. This implies that there exists a neighborhood V
of the origin in Y such that one can find a net {xα} in X with lim xα = x0 and

F (xα) 6⊆ F (x0) + V + C.

Then, we take yα ∈ F (xα) with

yα 6∈ F (x0) + V + C.
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Since the set cl(F (x0)+
V

2
+C) is closed convex, applying a separation theorem,

one can find some ξα from the topological dual of Y with unit norm such that

ξα(yα) < ξα(y)

for all y ∈ F (x0) +
V

2
+ C. This clearly implies ξα ∈ C ′ for all α.

It is clear that inf
y∈F (x0)

〈ξα, y〉 > −∞. Therefore, for arbitrary δ > 0 there exist

ȳα ∈ F (x0), v̄α ∈
V

2
and c̄α ∈ C such that

〈ξα, ȳα〉 ≤ inf
y∈F (x0)

〈ξα, y〉 +
δ

3

〈ξα, v̄α〉 ≤ inf
v∈V

2

〈ξα, v〉 +
δ

3

〈ξα, c̄α〉 ≤ inf
c∈C

〈ξα, c〉 +
δ

3
·

Hence, for zα = ȳα + v̄α + c̄α ∈ F (x0) +
V

2
+ C, we have

ξα(yα) < ξα(zα) ≤ inf
y∈F (x0)

〈ξa, y〉 + inf
v∈V

2

〈ξα, v〉 + inf
c∈C

〈ξα, c〉 + δ.

Consequently,

gξα
(xα) < gξα

(x0) + inf
v∈V

2

〈ξα, v〉 + δ.(1)

Since the family {ξα | ξα ∈ C ′, ‖ξα‖ = 1} is equisemicontinuous, we conclude
that

sup
α

inf
v∈V

2

〈ξα, v〉 = δ0 < 0.

Consequently, (1) implies

gξα
(xα) < gξα

(x0) + δ0 + δ, for all α.

Since δ is arbitrary, we conclude

gξα
(xα) ≤ gξα

(x0) + δ0.

Taking ε = −
δ0

2
, we obtain

gξα
(xα) < gξα

(x0) − ε for all α.(1)

It contradicts the lower equisemicontinuity of the family {gξ | ξ ∈ C ′, ‖ξ‖ = 1}.
This completes the proof of the theorem.

Theorem 4.2. Let F : D → 2Y be a multivalued mapping with F (x)−C convex
for all x ∈ D. Then F is lower C-continuous at x0 if and only if the family
{Gξ | ξ ∈ C ′, ‖ξ‖ = 1} is lower equisemicontinuous at x0.
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Proof. The proof of this theorem proceeds exactly as the one of Theorem 4.1 with
gξ, inf, ≥, −ε replaced by Gξ, sup,≤ and +ε everywhere.

The following theorems can be also proved by the same arguments of the proofs
of Theorems 4.1 and 4.2.

Theorem 4.3. Let F : D → 2Y and x0 ∈ domF with F (x0) − C convex. Then
F is upper (−C)-continuous at x0 if and only if the family {Gξ | ξ ∈ C ′, ‖ξ‖ = 1}
is upper equisemicontinuous at x0.

Theorem 4.4. Let F : D → 2Y be such that F (x) + C is convex for all x ∈
D. Then F is lower (−C)-continuous at x0 ∈ domF if and only if the family
{gξ | ξ ∈ C ′, ‖ξ‖ = 1} is upper equisemicontinuous at x0.

Next, we recall that a set B ⊂ Y generates the cone C and write C = cone(B)
if C = {tb| b ∈ B, t ≥ 0}. If in addition, B does not contain the origin and for
each c ∈ C, c 6= 0, there are unique b ∈ B, t > 0 such that c = tb, then we say that
B is a base of C. Moreover, if B is a polyhedron, i.e. B = conv{y1, y2, . . . , yn}
for some y1, y2, . . . , yn ∈ Y , we say that C is a polyhedral cone.

Theorem 4.5. Let D, X, Y be as above and let C be a convex cone with C ′

a polyhedral cone. Assume that F : D → 2Y is upper C-convex and upper C-
continuous on dom F with F (x)+C convex for all x ∈ D. Then F is weak upper
C-continuous on dom F .

Proof. Assume that

C ′ = cone (conv {ξ1, . . . , ξn}).

It is clear that for i = 1, . . . , n, gξi
is a convex and lower semicontinuous from D

to R. Therefore, it is weak lower semicontinuous from D to R.

Suppose, that x0 ∈ dom F . We show that F is weak upper C-continuous at
x0. Indeed, for given ε > 0 and i = 1, . . . , n, we can find a neighborhood Ui of x0

in the weak topology of X such that

gξi
(x) ≥ gξi

(x0) − β0ε, for all x ∈ Ui ∩ D,

where β0 = min
{

∥

∥

n
∑

i=1
λiξi

∥

∥

∣

∣

n
∑

i=1
λi = 1

}

. Remarking that 0 /∈ conv{ξ1, . . . , ξn}

we conlude that β0 > 0. Putting U =
n
⋂

i=1
Ui we obtain

gξi
(x) ≥ gξi

(x0) − β0ε for all x ∈ U ∩ D and i = 1, . . . , n.

This shows that the family {gξi
| i = 1, . . . , n} is weak lower equisemicontinuous

at x0. Now, we claim that

gξ(x) ≥ gξ(x0) − ε for all x ∈ U ∩ D and ξ ∈ C ′, ‖ξ‖ = 1.
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Indeed, for ξ ∈ C ′, ‖ξ‖ = 1 we can write ξ = β
n
∑

i=1
λiξi for some β > 0. We have

1 = ‖ξ‖ = β
∥

∥

∥

n
∑

i=1

λiξi

∥

∥

∥
.

Therefore

β =
1

∥

∥

∥

n
∑

i=1
λiξi

∥

∥

∥

≤
1

β0

or, ββ0 ≤ 1. Since

gξ(x) = inf
y∈F (x)

〈ξ, y〉

= inf
y∈F (x)

〈β
n

∑

i=1

λiξi, y〉

= β

n
∑

i=1

λi inf
y∈F (x)

〈ξi, y〉

≥ β

n
∑

i=1

λi

(

inf
y∈F (x0)

〈ξi, y〉 − β0ε)

= inf
y∈F (x0)

〈 β

n
∑

i=1

λiξi, y〉 − ββ0ε

≥ gξ(x0) − ε for all x ∈ U ∩ D, ξ ∈ C ′, ‖ξ‖ = 1.

Consequently, the family {gξ | ξ ∈ C ′, ‖ξ‖ = 1} is weak lower equisemicontinuous
at x0. Applying Theorem 4.1 we conclude that F is weak upper C-continuous at
x0. This completes the proof of the theorem.

Similarly, we have

Theorem 4.6. Let F : D → 2Y be a lower (−C)-continuous and upper C-
concave mapping with F (x) + C convex for all x ∈ D. Then F is weak lower
(−C)-continuous on domF .

Theorem 4.7. Let X and Y be barrel spaces and F : X → 2Y be upper C-convex
and upper C-continuous on some neighborhood U0 of x0 ∈ domF . In addition,
assume that F (x) + C is convex for all x ∈ D and for any x ∈ X and any
bounded neighborhood V of the origin in Y there is a constant γ > 0 such that
F (x) ∩ (γV − C) 6= ∅. Then F is lower (−C)-continuous at x0.

Proof. By part (a) of Propositions 2.2 and 2.3, for any ξ ∈ C ′ ‖ξ‖ = 1, gξ is
a convex lower semicontinuous function on the neighborhood U0 of x0. Since
for any x ∈ X and any bounded neighborhood V of the origin in Y there is a
constant γ > 0 such that F (x) ∩ (γV − C) 6= ∅, we conclude that.
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gξ(x) = inf
y∈F (x)

〈ξ, y〉 ≤ sup
y∈γV −C

〈ξ, y〉 ≤ γ sup
y∈V

〈ξ, y〉 = K < +∞

for all ξ ∈ C ′, ‖ξ‖ = 1. Applying Theorem 3.1, we conclude that the family
{gξ | ξ ∈ C ′, ‖ξ‖ = 1} is upper equisemicontinuous at x0. Then, from Theorem
4.4 it follows that F is lower (−C)-continuous at x0.

The proof of the following theorems proceeds similarly as the one of Theorem
4.7.

Theorem 4.8. Let X and Y be barrel spaces and F : X → 2Y be lower C-
convex and lower C-continuous on some neighborhood U0 of x0 ∈ dom F . In
addition, assume that F (x)−C convex for all x ∈ D and for any x ∈ X and any
bounded neighbborhood V of the origin in Y there is a constant γ > 0 such that
F (x) ⊂ γV − C. Then F is upper (−C)-continuous at x0.

Theorem 4.9. Let X and Y be barrel spaces and F : X → 2Y be upper C-
concave and upper (−C)-continuous on some neighborbood U0 of x0 ∈ domF . In
addition, assume that F (x)+ C convex for all x ∈ D and for any x ∈ X and any
bounded neighborhood V of the origin in Y there exists a constant γ > 0 such
that F (x) ∩ (γV + C) 6= ∅. Then F is lower C-continuous at x0.

Theorem 4.10. Let X and Y be barrel spaces and F : X → 2Y be lower C-
concave and lower (−C)-continuous on some neighborhood U0 of x0 ∈ dom F . In
addition, assume that F (x) − C is convex for all x ∈ X and for any x ∈ X and
any bounded neighorhood U of the origin in Y there exists a constant γ > 0 such
that

F (x) ⊂ γV + C.

Then F is upper C-continuous at x0.

Corollary 4.1. Let C have a closed convex bounded base and f : X → Y be a
singlevalued C-convex and C-continuous on some neighborhood U0 of x0 ∈ X. In
addition, assume that for any x ∈ X and any neighborhood V of the origin in Y
there is a constant γ > 0 such that f(x) ∈ γV − C. Then f is continuous at x0.

Proof. Let W be a given neighborhood of the origin in Y . We claim that there
is a neighborhood U of x0 in X such that f(x) ∈ f(x0) + W holds for all x ∈
U . Indeed, applying Proposition 1.8 in [7] it follows that there exists another
neighborhood V of the origin in Y such that.

(V + C) ∩ (V − C) ⊆ W.

Since f is C-continuous at x0, there exists a neighborhood U1 of x0 such that
f(x) ∈ f(x0) + V + C holds for all x ∈ U1. Using Theorem 4.7, we conclude that
f is (−C)-continuous. Therefore, there is a neighborhood U2 of x0 such that

f(x0) ∈ f(x) + V + C, for all x ∈ U2,
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or

f(x) ∈ f(x0) + V − C for all x ∈ U2.

Putting U = U1 ∩ U2, we obtain for all x ∈ U

f(x) ∈ (f(x0) + V + C) ∩ (f(x0) + V − C)

= f(x0) + (V + C) ∩ (V − C) ⊂ f(x0) + W.
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