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THE WRONSKIAN SOLUTIONS

OF THE MODIFIED KORTEWEG-DE VRIES EQUATION

HA TIEN NGOAN AND NGUYEN HUY HOANG

Abstract. The generalized sufficient condition equations for the Wronskian
determinants are proposed, which guarantee that they solve the modified
Korteweg-de Vries equation (mKdV) in the bilinear form. Some new explicit
Wronskian solutions to mKdV are constructed by applying variation of pa-
rameters.

1. Introduction

The modified Korteweg-de Vries (mKdV) equation is of the form

(1.1) ut + 6u2ux + uxxx = 0.

It is a soliton equation and has connections with shallow water wave equations.
In equation (1.1), u = u(x, t), (x, t) ∈ R2 is the unknown function and subscripts
with respect to x and t denote partial derivatives. There are some methods for
solving the mKdV equation and other soliton equations, for example, the inverse
scattering method [1, 12, 15], Hirota’s method [1-3, 7-11, 13, 14, 16-18, 20], the
Wronskian technique [2-11, 16-20], . . .

In this paper we follow the Wronskian technique to construct explicit solu-
tions of the mKdV equation (1.1). We note that in recent years, various classes
of explicit solutions of many soliton equations were constructed in the form of
Wronskian determinants [9-11, 19].

First, we mention some works that closely border on the problem to be dis-
cussed in this paper. Hirota and Satsuma [1, 3] have introduced the transforma-
tion

(1.2) u(x, t) = i
(

ln
f̄(x, t)

f(x, t)

)

x
,

where i2 = −1, f̄(x, t) is the complex conjugate of f(x, t), and f(x, t) 6= 0.
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They have proved that if f(x, t) is a solution of the system of bilinear equations

(ftf̄ − f f̄t) + (fxxxf̄ − 3fxxf̄x + 3fxf̄xx − f f̄xxx) = 0,(1.3)

fxxf̄ − 2fxf̄x + f f̄xx = 0,(1.4)

then u(x, t) defined by (1.2) is a solution of (1.1).
The above mentioned result of Hirota and Satsuma gives a way to construct

a solution u(x, t) of equation (1.1) from a solution f(x, t) of system (1.3), (1.4).
The converse problem of constructing a solution f(x, t) from a solution u(x, t) of
(1.2) will be discussed in Corollary 2.2 in Section 2, which is a consequence of
our main results.

Theorem 1.1. Assume that α(x, t) and β(x, t) are real-valued functions. Then

a function of the form

(1.5) f(x, t) = eα(x,t)+iβ(x,t)

satisfies system (1.3), (1.4) if and only if α and β satisfy the system of equations

αxx = 2β2x,(1.6)

βt + 8β3x + βxxx = 0.(1.7)

Next, we discuss classes ofN -soliton solutions of the bilinear system (1.3), (1.4).
In [3], Hirota constructed an explicit N -soliton solution that is represented in the
form

(1.8) fN (x, t) =
∑

µ=0,1

exp
{

N
∑

j=1

µj

(

ηj + i
π

2

)

+
∑

16l<j6N

µlµjAlj

}

,

where µ = (µ1, µ2, . . . , µN ), the summation is taken over all possible combinations

of µj = 0 or 1 for j = 1, 2, . . . , N , ηj = 2kjx− 8k3j t+ η
(0)
j , exp(Alj) =

(kj − kl
kj + kl

)2

and kj , η
(0)
j are some real constants.

Nimmo and Freeman also constructed N -soliton solutions (1.8) by using the
form of Wronskian determinant (see [4])

(1.9) f(x, t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ
(0)
1 φ

(1)
1 . . . φ

(N−1)
1

φ
(0)
2 φ

(1)
2 . . . φ

(N−1)
2

...
...

. . .
...

φ
(0)
N φ

(1)
N . . . φ

(N−1)
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the entries φ
(l)
j of the Wronskian are φ

(l)
j = φ

(l)
j (x, t) =

∂l

∂xl
φj(x, t) with

(1.10) φj(x, t) = ei
π
4

[

eξj+iπ
4 − (−1)je−ξj−iπ

4

]

,

where ξj = kjx− 4k3j t− ξ
(0)
j , ξ

(0)
j are some constants.
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The function φj(x, t) in (1.10), which is used to determine the Wronskian de-
terminant form of N -soliton solutions (1.8), was generalized by Nimmo, Freeman
and Zhang (see [4,16]) in the following theorem.

Theorem 1.2 ([4,16]). Suppose that for each j = 1, 2, . . . , N , φj(x, t) satisfies

the following system

φjx = −kj φ̄j ,(1.11)

φjt = −4φjxxx.(1.12)

Then f(x, t) defined by (1.9) is a solution of (1.3), (1.4).

The system (1.11), (1.12) is called the condition equations.
Our purpose in this paper is to construct some new classes of explicit solutions

of the modified Korteweg-de Vries equation. In order to do this, we will extend
the condition equations (1.11), (1.12) in such a way that f(x, t) defined by (1.9)
is still a solution of (1.3), (1.4). Our main result is the following theorem, in
which we replace the condition equations (1.11), (1.12) by more general ones that
guarantee the Wronskian determinant (1.9) to be a solution of the bilinear system
(1.3), (1.4).

Theorem 1.3. Assume that φj = φj(x, t) satisfy the generalized condition equa-

tions

φjx =

N
∑

l=1

ajl(t)φ̄l, 1 6 j 6 N,(1.13)

φjt = −4φjxxx +

N
∑

l=1

bjl(t)φl, 1 6 j 6 N,(1.14)

where A(t) ≡ (ajl(t))N×N and B(t) ≡ (bjl(t))N×N are real-valued continuously

differentiable and continuous matrices, respectively, and satisfy the relation

(1.15) At +AB −BA = 0.

Then the Wronskian determinant f(x, t) defined by (1.9) satisfies the bilinear

equations (1.3), (1.4). Consequently, the function

(1.16) u(x, t) = i
(

ln
f̄

f

)

x

is a solution of the mKdV equation (1.1).

The condition equations (1.13), (1.14) can be rewritten in the matrix form

φx = A(t)φ̄,(1.13′)

φt = −4φxxx +B(t)φ,(1.14′)

where φ(x, t) = (φ1(x, t), φ2(x, t), . . . , φN (x, t))T .
Our next result shows that the condition equations (1.13′), (1.14′) can be reduced
to a simple canonical form.
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Theorem 1.4. The system (1.13′), (1.14′) can be transformed into the canonical

form

ψx = Γψ̄,(1.17)

ψt = −4ψxxx,(1.18)

in which B(t) is the zero matrix and A(t) is a constant matrix Γ in real Jordan

form.

Remark 1. Suppose that F (x, t) and G(x, t) are the real and imaginary parts,
respectively, of the solution f(x, t) of the system (1.3), (1.4). Then the function
u(x, t) defined by (1.16) can be expressed in terms of F (x, t) and G(x, t) as follows
[1]:

(1.19) u(x, t) = 2
(

arctan
G(x, t)

F (x, t)

)

x
.

This paper is organized as follows. In Section 2 we present the proof of The-
orem 1.1. The proof of Theorems 1.3 and 1.4 will be given in Section 3. In
Section 4 the condition equations (1.17), (1.18) will be discussed. In that section
some explicit examples of Wronskian solutions containing many parameters will
be constructed.

2. The relation between mKdV equation and its bilinear form

In this section we first give a proof of Theorem 1.1 and then derive two useful
corollaries. Corollary 2.2 allows us to construct the solution f(x, t) of the bilinear
system (1.3), (1.4) from a solution u(x, t) of the mKdV equation (1.1).

Proof of Theorem 1.1. Substituting f of the form (1.5) into equation (1.4), we
obtain

2f f̄(αxx − 2β2x) = 0.

Thus, f of the form (1.5) is a solution of the bilinear equation (1.4) if and only if
α and β satisfy equation (1.6). Next, by computing derivatives of f and f̄ from
(1.5), we get

fx = f(αx + iβx), f̄x = f̄(αx − iβx),

ft = f(αt + iβt), f̄t = f̄(αt − iβt),

fxx = f(αxx + iβxx) + f(αx + iβx)
2,

f̄xx = f̄(αxx − iβxx) + f̄(αx − iβx)
2,

fxxx = f(αxxx + iβxxx) + 3f(αxx − iβxx)(αx + iβx) + f(αx + iβx)
3,

f̄xxx = f̄(αxxx + iβxxx) + 3f̄(αxx − iβxx)(αx + iβx) + f̄(αx + iβx)
3.

It follows that

(ftf̄−f f̄t)+(fxxxf̄−3fxxf̄x+3fxf̄xx−f f̄xxx) = 2if f̄(βt+βxxx−4β3x+6αxxβx).

Combining the above equation with (1.3) we obtain

(2.1) βt + βxxx − 4β3x + 6αxxβx = 0.
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From (2.1) and using (1.6) we have (1.7). Hence, the proof of Theorem 1.1 is
complete. �

It is easy to get from Theorem 1.1 the following corollaries.

Corollary 2.1. Suppose that f(x, t) is a solution of the form (1.5) of the system

(1.3), (1.4) and that h(x, t) is a function of the form

h(x, t) = eh1(t)x+h2(t)+iC ,

where h1(t) and h2(t) are arbitrary real-valued differentiable functions, and C is

any real constant.

Then the product function h(x, t)f(x, t) is also a solution of the system (1.3), (1.4).

Corollary 2.2. Suppose that u(x, t) is a solution of (1.1) and f(x, t) is defined

from u(x, t) by the relation

f(x, t) = eα(x,t)+iβ(x,t),

where

α(x, t) =
1

2

x
∫

0

η
∫

0

u2(ξ, t)dξdη + C1(t)x+ C2(t),(2.2)

β(x, t) =
1

2

x
∫

0

u(ξ, t)dξ −
1

2

t
∫

0

[2u3(0, τ) + uxx(0, τ)]dτ + C,(2.3)

C1(t), C2(t) are real-valued differentiable functions, and C is a real constant.

Then

1) f(x, t) is a solution of the system (1.3), (1.4),
2) f(x, t) relates to u(x, t) by (1.2).

Proof. First, we will show that α, β satisfy (1.6), (1.7). Indeed, from (2.2) and
(2.3) we have

βx =
1

2
u,(2.4)

αxx =
1

2
u2,(2.5)

which imply (1.6).
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By using (2.3), (2.4) and (1.1) we have the relations

βt(x, t) =
1

2

x
∫

0

ut(ξ, t)dξ −
1

2
[2u3(0, t) + uxx(0, t)]

=
1

2

x
∫

0

[−6u2(ξ, t)uξ(ξ, t)− uξξξ(ξ, t)]dξ −
1

2
[2u3(0, t) + uxx(0, t)]

= −
1

2

[

2u3(x, t) + uxx(x, t)
]

= −[8β3x(x, t) + βxxx(x, t)].

It follows that β satifies equation (1.7).

Therefore, α, β satisfy (1.6) and (1.7), and by virtue of Theorem 1.1 f(x, t) sat-
isfies the bilinear system (1.3), (1.4).
Next, since f = eα+iβ we have the relation

f̄

f
= e−2iβ .

Then by using (2.4) we obtain

u = 2βx = i
(

ln
f̄

f

)

x
.

Hence the proof of Corollary 2.2 is complete. �

3. Proof of Theorems 1.3 and 1.4

In what follows we need two properties of determinants that have been indi-
cated in [3, 11].

Lemma 3.1 (Plücker relation). Let M be an N × (N − 2) matrix, let O be an

N×(N−2) zero matrix, and let a, b, c, d be N -column vectors. Then, the 2N×2N
block determinant

∣

∣

∣

∣

M O a b c d
O M a b c d

∣

∣

∣

∣

is equal to zero. �

Lemma 3.2. Let |A|, denoted by |α1, α2, . . . , αN |, be an N×N determinant with

column vectors αj = (α1j , α2j , . . . , αNj)
T and let B = (bij) be an N ×N matrix.

Then, the following formula holds:

N
∑

j=1

|α1, . . . , αj−1, Bαj , αj+1, . . . , αN | = Tr(B)|A|.(3.1)

�
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Proof of Theorem 1.3. First, we show that the relation (1.15) is a necessary condi-
tion which guarantees that the bilinear system (1.13), (1.14) is consistent. Indeed,
from (1.13′) and (1.14′), we have

φxt = Atφ̄− 4Aφ̄xxx +ABφ̄,

φtx = −4Aφ̄xxx +BAφ̄,

and from φxt = φtx (1.15) follows.
In the Wronskian determinant (1.9) we denote the single column

φ(N−k) = (φ
(N−k)
1 , φ

(N−k)
2 , . . . , φ

(N−k)
N )T ,

by N − k and the set of consecutive (ordered) columns φ(0), φ(1), . . . , φ(N−k) by

N̂ − k. Then, the Wronskian determinant f can be written in the compact form

(3.2) f =W (φ) = |φ(0), φ(1), . . . , φ(N−1)| = |0, 1, . . . , N − 1| = |N̂ − 1|.

The derivatives of f can be easily computed in the compact form

fx = |N̂ − 2, N |,(3.3)

fxx = |N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|,

(3.4)

fxxx = |N̂ − 4, N − 2, N − 1, N | + 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|.

(3.5)

Taking the complex conjugate in both sides of equation (1.13) we have

φ̄jx =

N
∑

l=1

ajl(t)φl, j = 1, 2, . . . , N.

Therefore

φ̄j =

N
∑

l=1

ajl(t)∂
−1φl, j = 1, 2, . . . , N,

where ∂−1φl is a primitive function of φl with respect to x.
Then, from the last equation, the relations

(3.6) φ̄(0) = A∂−1φ(0) = Aφ(−1), φ̄(k) = Aφ(k−1), k ≥ 1

hold. Hence,

f̄ = |φ̄(0), φ̄(1), . . . , φ̄(N−1)| = (detA)|φ(−1), φ(0), . . . , φ(N−2)|(3.7)

= (detA)| − 1, N̂ − 2|.
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From (3.7), we can compute the derivatives of f̄ to be

f̄x = (detA)| − 1, N̂ − 3, N − 1|,(3.8)

f̄xx = (detA)
[

| − 1, N̂ − 4, N − 2, N − 1|+ | − 1, N̂ − 3, N |
]

,(3.9)

f̄xxx = (detA)
[

| − 1, N̂ − 5, N − 3, N − 2, N − 1|(3.10)

+ 2| − 1, N̂ − 4, N − 2, N |+ | − 1, N̂ − 3, N + 1|
]

.

Next, we rewrite equation (1.13′) as follows

φ
(0)
t = −4φ(3) +Bφ(0).

Then we obtain

φ
(j)
t = −4φ(j+3) +Bφ(j), j = 0, 1, . . . , N − 1.

Using the last equations and Lemma 3.2 we have

ft =
N−1
∑

j=0

|φ(0), . . . , φ(j−1),−4φ(j+3) +Bφ(j), φ(j+1), . . . , φ(N−1)|(3.11)

= −4
[

|N̂ − 4, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 1|

+ |N̂ − 2, N + 2|
]

+ tr(B)|N̂ − 1|.

From (3.6) and (3.11) we can also show that

f̄t = (detA)

{

− 4
[

| − 1, N̂ − 5, N − 3, N − 2, N − 1|

(3.12)

− | − 1, N̂ − 4, N − 2, N |+ | − 1, N̂ − 3, N + 1|
]

+ tr(B)| − 1, N̂ − 2|

}

.

By using Lemma 3.2 we can obtain the following identities

tr(A2)|N̂ − 1| = −|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|,(3.13)

tr(A2)|N̂ − 2, N | = −|N̂ − 4, N − 2, N − 1, N |+ |N̂ − 2, N + 2|,(3.14)

tr(A2)| − 1, N̂ − 2| = −| − 1, N̂ − 4, N − 2, N − 1|+ | − 1, N̂ − 3, N |,(3.15)

tr(A2)| − 1, N̂ − 3, N − 1| = −| − 1, N̂ − 5, N − 3, N − 2, N − 1|(3.16)

+ | − 1, N̂ − 3, N + 1|.
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Substituting the derivatives of f and f̄ into the left-hand side of equations (1.3)
we have

∆ ≡ ftf̄ − f f̄t + fxxxf̄ − 3fxxf̄x + 3fxf̄xx − f f̄xxx(3.17)

= −3(detA)
[

|N̂ − 4, N − 2, N − 1, N | − 2|N̂ − 3, N − 1, N + 1|

+ |N̂ − 2, N + 2|
]

| − 1, N̂ − 2|

+ 3(detA)
[

3| − 1, N̂ − 5, N − 3, N − 2, N − 1|

− 6| − 1, N̂ − 4, N − 2, N | + 3| − 1, N̂ − 3, N + 1|
]

|N̂ − 1|

+ 3(detA)
[

|N̂ − 3, N − 1, N | + |N̂ − 2, N + 1|
]

| − 1, N̂ − 3, N − 1|

− 3(detA)
[

| − 1, N̂ − 4, N − 2, N − 1|+ | − 1, N̂ − 3, N |
]

|N̂ − 2, N |.

By the identities (3.12)-(3.16) we may reduce ∆ in (3.17) to the form

∆ = (detA)
[

6| − 1, N̂ − 3, N + 1||N̂ − 1|+ 6|N̂ − 3, N − 1, N + 1|| − 1, N̂ − 2|

− 6| − 1, N̂ − 3, N − 1||N̂ − 2, N + 1|
]

+ (detA)
[

6| − 1, N̂ − 4, N − 2, N ||N̂ − 1|+ 6|N̂ − 4, N − 2, N − 1, N || − 1, N̂ − 2|

− 6| − 1, N̂ − 4, N − 2, N − 1||N̂ − 2, N |
]

.

By using the Laplace expansion by N ×N minors we can rewrite ∆ in the form

∆ = (−1)N−2(3 detA)

∣

∣

∣

∣

∣

N̂ − 3 O −1 N − 2 N − 1 N + 1

O N̂ − 3 −1 N − 2 N − 1 N + 1

∣

∣

∣

∣

∣

(3.18)

+(−1)N−2(3 detA)

∣

∣

∣

∣

∣

N̂ − 4, N − 2 O −1 N − 3 N − 1 N

O N̂ − 4, N − 2 −1 N − 3 N − 1 N

∣

∣

∣

∣

∣

.

By virtue of Lemma 3.1, the two determinants on the right-hand side of (3.18)
are zero. Therefore f satisfies the bilinear equation (1.3).

In a similar way, from the left-hand side of equation (1.4) we get

fxxf̄ − 2fxf̄x + f f̄xx = (detA)
[

2| − 1, N̂ − 2||N̂ − 3, N − 1, N |(3.19)

− 2|N̂ − 2, N || − 1, N̂ − 3, N − 1|+ 2| − 1, N̂ − 3, N ||N̂ − 1|
]

= (−1)N−2(detA)

∣

∣

∣

∣

∣

N̂ − 3 O −1 N − 2 N − 1 N

O N̂ − 3 −1 N − 2 N − 1 N

∣

∣

∣

∣

∣

= 0.
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Thus, f is a Wronskian solution of the bilinear equations (1.3), (1.4) and u =

i
(

ln
f̄

f

)

x
is a solution of the mKdV equation (1.1). The proof of Theorem 1.3 is

complete. �

Now we bring out some overview for the condition equations (1.13) and (1.14).

Lemma 3.3 ([19]). Suppose that B = (bjl(t))N×N ∈ C[a, b] is a real-valued ma-

trix depending continuously on t. Then there exists a non-singular continuously

differentiable real N ×N matrix H(t) satisfying the equation

Ht(t) = B(t)H(t),(3.20)

H(a) = D,(3.21)

where D is an invertible constant matrix. �

By using the matrix H(t) in Lemma 3.3 and putting

(3.22) φ = H(t)ψ

it holds φ(j) = H(t)ψ(j) and

W (φ) = |H(t)ψ(0),H(t)ψ(1), . . . ,H(t)ψ(N−1)|

= det(H(t))|ψ(0), ψ(1), . . . , ψ(N−1)| = (detH(t))W (ψ).

We also obtain
∂

∂x
ln

(W (φ)

W (φ)

)

=
∂

∂x
ln

(W (ψ)

W (ψ)

)

.

From the above equation and (1.2) it follows that the vector functions φ and
ψ give the same solutions to the mKdV equation. Thus, we can replace the
Wronskian W (φ) by W (ψ).

Lemma 3.4. The initial matrix D of problem (3.20), (3.21) can be chosen in such

a way that ψ(x, t) as determined by (3.22) is a solution of the condition equations

ψx = Γψ̄,(3.23)

ψt = −4ψxxx,(3.24)

where Γ is the constant matrix in the real Jordan form of the matrix A(a).

Proof. Since φ = H(t)ψ we have φ̄ = H(t)ψ̄ and ψ = H−1φ. By using (1.13) we
obtain

ψx = H−1φx = H−1Aφ̄ = (H−1AH)ψ̄.

Next, from Lemma 3.3 we have

φt = Htψ +Hψt = BHψ +Hψt,

and by using (1.14) we obtain

ψt = H−1
[

φt −BHψ
]

= H−1
[

− 4φxxx +Bφ−BHψ
]

= −4ψxxx.
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Next, note that H−1
t = −H−1HtH

−1, so by using (1.15) and (3.20) we have

(H−1AH)t = H−1
t AH +H−1AtH +H−1AHt

= H−1(At +AB −BA)H = 0.

Then H−1AH must be a constant matrix, and therefore, H−1(t)A(t)H(t) =
D−1A(a)D. We can choose the initial matrix D in such way that Γ = D−1A(a)D
is a matrix in the real Jordan form of the matrix A(a), Lemma 3.4 is proved. �

Proof of Theorem 1.4. In (3.20) we can choose the matrix D such that Γ =
D−1A(a)D is an N × N matrix in the real Jordan form. By virtue of Lem-
mas 3.3 and 3.4, the condition equations (1.13′), (1.14′) can be transformed into
the system (3.23), (3.24). Thus, the system (1.13), (1.14) can be reduced to the
system (1.17), (1.18), that is

ψx = Γψ̄,

ψt = −4ψxxx,

where Γ is a constant N ×N matrix in the real canonical Jordan form. �

4. Solutions of the condition equations

In this section we will discuss the condition equations of the form (1.17), (1.18).
Since Γ is a real canonical Jordan matrix, we can separate the condition equations
into several independent systems of the form

φx = Γmφ̄,(4.1)

φt = −4φxxx,(4.2)

where Γm is a real Jordan block of order m.
We consider various cases of real Jordan blocks Γm and give general solutions
of (4.1), (4.2) in each case. We show that the set of all solutions of the system
(4.1), (4.2) form a vector space over R of dimension 2m. Then, some classes of
explicit solutions of the mKdV equation (1.1) will be obtained below.

4.1. Case: The Jordan block Γm is diagonal. First, we consider the case
that Γm = diag(λ1, λ2, . . . , λm), λj ∈ R, j = 1, 2, . . . ,m. For each index j we
can solve the corresponding equations to obtain the general solutions

(4.3) φj = Cj1e
(λjx−4λ3

j t) + iCj2e
−(λjx−4λ3

j t),

where Cj1 and Cj2 are arbitrary real constants.
This means that in this case the vector space over R of all solutions φ(x, t) of
(4.1), (4.2) is of dimension 2m.

If we put gj = e(λjx−4λ3
j
t), then (4.3) can be written as

(4.4) φj =
∑

εj=±1

[1 + εj
2

Cj1 + i
1− εj

2
Cj2

]

g
εj
j .
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From (1.9), we have for N = m

fm :=W (φ1, φ2, . . . , φm)(4.5)

=
∑

(ε1,ε2,...,εm)

{

m
∏

j=1

[1 + εj
2

Cj1 + i
1− εj

2
Cj2

]

W (gε11 , g
ε2
2 , . . . , g

εm
m )

}

,

where the summation is taken over all m-tuples (ε1, ε2, . . . , εm) with εj = ±1 for
j = 1, 2, . . . ,m.

By computing the x-direction derivatives of gj we obtain

g
(k)
j :=

∂k

∂xk
gj = λkj gj , k = 1, 2, . . .(4.6)

(

g
εj
j

)(k)
= εkjλ

k
j g

εj
j , k = 1, 2, . . .(4.7)

From (4.6) and (4.7) we have the relation

W (gε11 , g
ε2
2 , . . . , g

εm
m ) =

m
∏

j=1

g
εj
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ε1λ1 . . . εm−1
1 λm−1

1

1 ε2λ2 . . . εm−1
2 λm−1

2
...

...
. . .

...
1 εmλm . . . εm−1

m λm−1
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.8)

=

m
∏

j=1

g
εj
j

∏

16k<l6m

(εlλl − εkλk).

Next, by using (4.5) and (4.8) we have

(4.9) fm =
∑

(ε1,ε2,...,εm)

{(

m
∏

j=1

[1 + εj
2

Cj1+i
1− εj

2
Cj2

]

g
εj
j

)

∏

16k<l6m

(εlλl−εkλk)
}

.

In the representation (4.9) the summation is taken over 2m terms which corre-
spond to the set of m-tuples (ε1, ε2, . . . , εm) with εj = ±1. The set of Wronskian
solutions fm(x, t) represented by (4.9) contains 2m arbitrary real parameters
Cj1, Cj2, j = 1, 2, . . . ,m.

We note that the factor
[1 + εj

2
Cj1 + i

1− εj
2

Cj2

]

is either real-valued or pure-imaginary-valued. It is pure-imaginary-valued if and
only if εj = −1. So, in case the m-tuple (ε1, ε2, . . . , εm) has an even number of
components εj = −1 then the corresponding term is real-valued. Then the set of
those m-tuples is denoted by X1. In other words, X1 is the set of all m-tuples
(ε1, ε2, . . . , εm) such that

∏m
j=1 εj = 1. The set of all other m-tuples is denoted

by X2, i.e. X2 is the set of all m-tuples (ε1, ε2, . . . , εm) such that
∏m

j=1 εj = −1.

We can represent the solution fm(x, t) in the form

fm(x, t) = Fm(x, t) + iGm(x, t),
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where Fm(x, t) andGm(x, t) are its real and imaginary parts, respectively. Namely,

Fm =
∑

(ε1,ε2,...,εm)∈X1

{(

m
∏

j=1

[1 + εj
2

Cj1 + i
1− εj

2
Cj2

]

g
εj
j

)

∏

16k<l6m

(εlλl − εkλk)
}

,

(4.10)

Gm = (−i)
∑

(ε1,ε2,...,εm)∈X2

{(

m
∏

j=1

[1 + εj
2

Cj1 + i
1− εj

2
Cj2

]

g
εj
j

)

∏

16k<l6m

(εlλl − εkλk)
}

.

(4.11)

According to (1.19), the functions

(4.12) u(x, t) = 2
(

arctan
Gm

Fm

)

x

are solutions of (1.1). Note that u(x, t) in (4.12) contains 2m arbitrary real
parameters.

To connect our results with well-known ones we will write the functions φj in
(4.3) in another form. Suppose that Cj1Cj2 6= 0 for all j = 1, 2, . . . ,m. Then, we
can rewrite φj as follows:

(4.13) φj = Cj2

√

∣

∣

∣

Cj1

Cj2

∣

∣

∣
ei

π
4

[

eξj+iπ
4 − (−1)αje−ξj−iπ

4

]

,

where
|Cj1|

√

|Cj1Cj2|
= eξ

(0)
j , ξj = −λjx+ 4λ3j t− ξ

(0)
j and αj =

1

2

(

1 +
Cj1Cj2

|Cj1Cj2|

)

.

If m = N = 2 and if we choose

φ1 = ieξ1 + e−ξ1 , φ2 = ieξ2 − e−ξ2 ,

then

f =

∣

∣

∣

∣

ieξ1 + e−ξ1 λ1(−ie
ξ1 + e−ξ1)

ieξ2 − e−ξ2 λ2(−ie
ξ2 − e−ξ2)

∣

∣

∣

∣

= (λ2 − λ1)(e
ξ1+ξ2 − e−(ξ1+ξ2))− i(λ1 + λ2)(e

ξ1−ξ2 + e−(ξ1−ξ2)).

Thereby, we can obtain the 2-soliton solution

u = i
(

ln
f̄

f

)

x
= 2

{

arctan
[(λ1 + λ2
λ1 − λ2

)eξ1−ξ2 + e−(ξ1−ξ2)

eξ1+ξ2 − e−(ξ1+ξ2)

]}

x
(4.14)

= 2
{

arctan
[(λ1 + λ2) cosh(ξ1 − ξ2)

(λ1 − λ2) sinh(ξ1 + ξ2)

]}

x
.

On the other hand, if we choose

φ1 = ieξ1 + e−ξ1 , φ2 = ieξ2 + e−ξ2 ,

then

(4.15) u = 2
{

arctan
[ (λ1 + λ2) sinh(ξ2 − ξ1)

(λ1 − λ2) cosh(ξ1 + ξ2)

]}

x
.
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We will show that if the set of real numbers λj is fixed, then our family of
solutions fm (4.9) contains the set of solutions represented by (1.8) as a particular
case. Indeed, if the functions φj in (4.13) are chosen as

(4.16) φj = ei
π
4

[

eξj+iπ
4 − (−1)je−ξj−iπ

4

]

,

where ξj = kjx − 4k3j t − ξ
(0)
j , kj = −λj, j = 1, 2, . . . , N, (m = N), then the

Wronskian solution fN can be described by the following corollary.

Corollary 4.1 ([17,18]). If φj , j = 1, 2, . . . , N are chosen as in (4.16), then the

Wronskian solution fN can be written in the form

fN =
(

N
∏

j=1

e−ξj
)(

∏

16l<j6N

(kj − kl)
)

∑

µ=0,1

exp
{

N
∑

j=1

µj

(

ηj + i
π

2

)

+
∑

16l<j6N

µlµjAlj

}

,

(4.17)

where ηj = 2ξj −
1

2

N
∑

l=1,l 6=j

Alj , exp(Alj) =
(kj − kl
kj + kl

)2
,

which is connected to the solution (1.8) by Corollary 2.1. �

4.2. Case: Γm is a Jordan block with a real eigenvalue λ. In this subsection
we consider the system (4.1), (4.2) in case the matrix Γm is of the form

(4.18) Γm =











λ 0
1 λ

. . .
. . .

0 1 λ











m×m

,

where λ is a real eigenvalue.
In this case, by using the transformation

φ1 = φ̃1,

φ2 = φ̃2 +
∂

∂λ
φ̃1,

. . .

φm = φ̃m +
∂

∂λ
φ̃m−1 + . . . +

1

(m− 1)!

∂m−1

∂λm−1
φ̃1,

we can obtain that

φ̃jx = λ
¯̃
φj ,(4.19)

φ̃jt = −4φ̃jxxx,(4.20)

for j = 1, 2, . . . ,m.
As shown in subsection 4.1 it follows from (4.19) and (4.20) that

φ̃j = Cj1 e
λx−4λ3t + iCj2 e

−λx+4λ3t, j = 1, 2, . . . ,m,

where C11, C21, . . . , Cm1; C12, C22, . . . , Cm2 are 2m arbitrary real constants.
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Thus, we can obtain the following theorem.

Theorem 4.1. The general solutions φ of system (4.1), (4.2) with the Jordan

block Γm in (4.18) are of the form

(4.21)










φ1
φ2
...

φm











=











1 0 . . . 0
∂
∂λ 1 . . . 0
...

...
. . .

...
1

(m−1)!
∂m−1

∂λm−1
1

(m−2)!
∂m−2

∂λm−2 . . . 1





















C11e
λx−4λ3t + iC12e

−λx+4λ3t

C21e
λx−4λ3t + iC22e

−λx+4λ3t

...

Cm1e
λx−4λ3t + iCm2e

−λx+4λ3t











,

where C11, C21, . . . , Cm1, C12, C22, . . . , Cm2 are arbitrary real constants. �

By (4.21) we can write φj as

(4.22) φj = Pj1g + iPj2h, j = 1, 2, . . . ,m,

where g = eλx−4λ3t, h = g−1 = e−λx+4λ3t and Pj1 ≡ Pj1(x, t), Pj2 ≡ Pj2(x, t) are
some polynomials with respect to variables x and t determined by the relations

Pj1(x, t) = e−λx+4λ3t
j

∑

l=1

Cl1
1

(j − l)!

∂j−l

∂λj−l
eλx−4λ3t,(4.23)

Pj2(x, t) = eλx−4λ3t
j

∑

l=1

Cl2
1

(j − l)!

∂j−l

∂λj−l
e−λx+4λ3t.(4.24)

Next, the derivatives of φj can be written as

(4.25) φ
(k)
j =

∂k

∂xk
φj = Qj1(k)g + iQj2(k)h, j = 1, 2, . . . ,m,

where the polynomials Qj1(k), Qj2(k) are calculated by the formulas

Qj1(k) ≡ Qj1(x, t, k) =
k

∑

l=0

C l
kλ

k−l ∂
l

∂xl
Pj1(x, t),(4.26)

Qj2(k) ≡ Qj2(x, t, k) =

k
∑

l=0

C l
k(−1)k−lλk−l ∂

l

∂xl
Pj2(x, t).(4.27)

We now can rewrite (4.25) as

(4.28) φ
(k)
j =

∑

εj=±1

[1 + εj
2

Qj1(k) + i
1− εj

2
Qj2(k)

]

gεj .

We set

(4.29) D(ε1, ε2, . . . , εm) = det
[1 + εj

2
Qj1(k) + i

1− εj
2

Qj2(k)
]

16j,k6m
.

Note that in the above determinant, if εj = 1 then the j-th row is a real-valued
vector, and if εj = −1 then the j-th row is a pure-imaginary-valued vector. Now
we define the sets X1,X2 as in subsection 4.1. Then, the value of determinant
(4.29) is real if (ε1, ε2, . . . , εm) ∈ X1, and is pure-imaginary if (ε1, ε2, . . . , εm) ∈ X2.
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By using (4.28) and (4.29) we can transform the Wronskian determinant
fm =W (φ1, φ2, . . . , φm) into the form

(4.30) fm =
∑

(ε1,ε2,...,εm)

(

m
∏

j=1

gεj
)

D(ε1, ε2, . . . , εm).

By using the sets X1,X2 we separate fm into real and imaginary parts. Note
that (ε1, ε2, . . . , εm) ∈ X1 if and only if

∑m
j=1 εj = m− 4α, where α is an integer

such that 0 6 α 6 m/2. On the other hand, (ε1, ε2, . . . , εm) ∈ X2 if and only if
∑m

j=1 εj = m − 4α − 2, where α is an integer such that 0 6 α < m/2. So, we
have the following representation of fm:

fm = Fm + iGm,

u = 2
(

arctan
Gm

Fm

)

x
,

where

Fm =
∑

06α6m/2

gm−4α
[

∑

ε1+ε2+...+εm=m−4α

D(ε1, ε2, . . . , εm)
]

,(4.31)

Gm = (−i)
∑

06α<m/2

gm−4α−2
[

∑

ε1+ε2+...+εm=m−4α−2

D(ε1, ε2, . . . , εm)
]

.(4.32)

As shown in subsection 4.1, in this case the Wronskian solutions fm depend on
2m arbitrary real constants.

Next, we give some examples of the so-called bi-directional Wronskian. To do
this, we choose C21 = C22 = . . . = Cm1 = Cm2 = 0 in (4.21). Then we have the
following Wronskian:

(4.33) fm =W (φ1,
∂φ1
∂λ

,
1

2!

∂2φ1
∂λ2

, . . . ,
1

(m− 1)!

∂m−1φ1
∂λm−1

).

We note that the function fm in (4.33) can be regarded as a Wronskian determi-
nant for both x-direction and λ-direction. This is why it is called bi-directional.

We have from (4.33) the following bi-directional Wronskian solution for the
case m = 2:

(4.34) f = (C2
11e

2λx−8λ3t + C2
12e

−2λx+8λ3t) + 4λC11C12(x− 12λ2t)i.

Due to (1.19) the solution u of the mKdV equation for m = 2 is given by

(4.35) u = 2
(

arctan
4λC11C12(x− 12λ2t)

C2
11e

2λx−8λ3t + C2
12e

−2λx+8λ3t

)

x
.

It follows from (4.33) that the bi-directional Wronskian solution for the case
m = 3 is

f = C11e
−λx+4λ3t

{

C2
11e

4λx−16λ3t + C2
12

[

4λ(x− 36λ2t) + 1 + 8λ2(x− 12λ2t)2
]}

(4.36)

+ C12e
λx−4λ3t

{

C2
12e

−4λx+16λ3t + C2
11

[

− 4λ(x− 36λ2t) + 1 + 8λ2(x− 12λ2t)2
]}

i.
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Analogously, the solution u of the mKdV equation for m = 3 is

u(x, t)

(4.37)

=2

(

arctan
C12e

λx−4λ3t
{

C2
12e

−4λx+16λ3t+C2
11

[

−4λ(x−36λ2t) + 1 + 8λ2(x− 12λ2t)2
]}

C11e−λx+4λ3t
{

C2
11e

4λx−16λ3t + C2
12

[

4λ(x− 36λ2t) + 1 + 8λ2(x− 12λ2t)2
]}

)

x.

4.3. Case: Γm is a 2× 2 real Jordan block with a pair of complex eigen-

values. We consider the case that the matrix Γm = Γ2 corresponds to a pair of
complex eigenvalues λ = α+ iβ and λ = α− iβ, i.e.

(4.38) Γ2 =

(

α −β
β α

)

,

where α, β are real constants, β 6= 0.
In this case, system (4.1), (4.2) is of the form

φ1x = αφ̄1 − βφ̄2,(4.39)

φ2x = βφ̄1 + αφ̄2,(4.40)

φ1t = −4φ1xxx,(4.41)

φ2t = −4φ2xxx.(4.42)

Theorem 4.2. The general solutions φ of (4.39)-(4.42) can be given by

φ1 = eαx−4α(α2−3β2)t
{

C1 cos[βx− 4β(3α2 − β2)t]− C2 sin[βx− 4β(3α2 − β2)t]
}

(4.43)

+ ie−αx+4α(α2−3β2)t
{

C3 cos[βx− 4β(3α2 − β2)t] + C4 sin[βx− 4β(3α2 − β2)t]
}

,

φ2 = eαx−4α(α2−3β2)t
{

C1 sin[βx− 4β(3α2 − β2)t] + C2 cos[βx− 4β(3α2 − β2)t]
}

(4.44)

+ ie−αx+4α(α2−3β2)t
{

− C3 sin[βx− 4β(3α2 − β2)t] + C4 cos[βx− 4β(3α2 − β2)t]
}

,

where C1, C2, C3, C4 are arbitary real constants.

Proof. Putting φ1 = u1 + iv1, φ2 = u2 + iv2, we can easily show that

u1x = αu1 − βu2,(4.45)

u2x = βu1 + αu2,(4.46)

u1t = −4u1xxx,(4.47)

u2t = −4u2xxx,(4.48)
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and

v1x = −αv1 + βv2,(4.49)

v2x = −βv1 − αv2,(4.50)

v1t = −4v1xxx,(4.51)

v2t = −4v2xxx.(4.52)

First, we solve system (4.45)-(4.48) with respect to u1, u2. By eliminating u2
from (4.45), (4.46) we have the second-order differential equation

u1xx − 2αu1x + (α2 + β2)u1 = 0.

This equation has general solutions as

(4.53) u1 = eαx[D1(t) cos βx+D2(t) sin βx],

where D1,D2 do not depend on x.
After substituting u1 into (4.45), we get

(4.54) u2 = eαx[D1(t) sin βx−D2(t) cos βx].

From (4.45), (4.46) we have

u1xxx = α(α2 − 3β2)u1 − β(3α2 − β2)u2,

u2xxx = β(3α2 − β2)u1 + α(α2 − 3β2)u2.

From these equations and (4.47), (4.48) we have the system

D1t = −4α(α2 − 3β2)D1 − 4β(3α2 − β2)D2,(4.55)

D2t = 4β(3α2 − β2)D1 − 4α(α2 − 3β2)D2.(4.56)

The general solutions of (4.55), (4.56) are of the form

D1(t) = e−4α(α2−3β2)t
{

C1 cos[4β(3α
2 − β2)t] + C2 sin[4β(3α

2 − β2)t]
}

,(4.57)

D2(t) = e−4α(α2−3β2)t
{

C1 sin[4β(3α
2 − β2)t]− C2 cos[4β(3α

2 − β2)t]
}

,(4.58)

where C1, C2 are two arbitrary real constants.
Thereby, we have the general solution of system (4.45)-(4.48)

u1 = eαx−4α(α2−3β2)t
{

C1 cos[βx− 4β(3α2 − β2)t]− C2 sin[βx− 4β(3α2 − β2)t]
}

,

(4.59)

u2 = eαx−4α(α2−3β2)t
{

C1 sin[βx− 4β(3α2 − β2)t] + C2 cos[βx− 4β(3α2 − β2)t]
}

.

(4.60)

Similarly, from (4.49)-(4.52) we have

v1 = e−αx+4α(α2−3β2)t
{

C3 cos[βx− 4β(3α2 − β2)t] + C4 sin[βx− 4β(3α2 − β2)t]
}

,

(4.61)

v2 = e−αx+4α(α2−3β2)t
{

−C3 sin[βx− 4β(3α2 − β2)t] + C4 cos[βx− 4β(3α2 − β2)t]
}

,

(4.62)

where C3, C4 are two arbitrary real constants.
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From (4.59)-(4.62), it follows that (4.43), (4.44) are a solution of the system
(4.39) − (4.42). �

Next, from (4.43), (4.44) we have

f =W (φ1, φ2)(4.63)

= β
[

(C2
1 +C2

2 )e
2αx−8α(α2−3β2)t + (C2

3 + C2
4 )e

−2αx+8α(α2−3β2)t
]

+ 2iα
{

(C2C3 − C1C4) cos[2βx− 8β(β2 − 3α2)t]

+ (C1C3 + C2C4) sin[2βx− 8β(β2 − 3α2)t]
}

.

Thus, the solution u of the mKdV equation is given as follows:

u =2
∂

∂x
arctan

{[

β
{

(C2
1 +C2

2 )e
2αx−8α(α2−3β2)t + (C2

3 + C2
4 )e

−2αx+8α(α2−3β2)t
}

]−1

(4.64)

×
[

2α
{

(C2C3 − C1C4) cos[2βx− 8β(β2 − 3α2)t]

+ (C1C3 + C2C4) sin[2βx− 8β(β2 − 3α2)t]
}

]}

.

We note that in this case the Wronskian solution (4.63) depends on 4 arbitrary
real numbers.

4.4. Case: Γ is constructed from several 2 × 2 real Jordan blocks. We
consider the case that N = m = 2n, in which the matrix Γ = Γ2n is of the form

(4.65) Γ2n =











Γ1,2 O . . . O
O Γ2,2 . . . O
...

...
. . .

...
O O . . . Γn,2











,

where O is 2× 2 zero matrix and Γj,2 =

(

αj −βj
βj αj

)

, βj 6= 0.

The matrix Γ2n in (4.65) corresponds to the composition of n pairs of complex
eigenvalues λj = αj+iβj , λ̄j = αj−iβj , j = 1, 2, . . . , n. In this case, the condition
equations can be separated into n independent systems that had been considered
in Subsection 4.3. Then, by virtue of Theorem 4.2, the Wronskian solution is
given as

(4.66) f2n =W (φ11, φ12, . . . , φn1, φn2),
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where for j = 1, 2, . . . , n it holds

φj1=e
αjx−4αj(α2

j
−3β2

j
)t{Cj1 cos[βjx−4βj(3α

2
j−β

2
j )t]−Cj2 sin[βjx−4βj(3α

2
j−β

2
j )t]

}

(4.67)

+ ie−αjx+4αj(α2
j
−3β2

j
)t{Cj3 cos[βjx−4βj(3α

2
j−β

2
j )t]+Cj4 sin[βjx−4βj(3α

2
j−β

2
j )t]

}

,

φj2=e
αjx−4αj(α

2
j−3β

2
j )t

{

Cj1 sin[βjx−4βj(3α
2
j−β

2
j )t] + Cj2 cos[βjx−4βj(3α

2
j−β

2
j )t]

}

(4.68)

+ie−αjx+4αj (α2
j
−3β2

j
)t{−Cj3 sin[βjx−4βj(3α

2
j−β

2
j )t]+Cj4 cos[βjx−4βj(3α

2
j−β

2
j )t]

}

,

and Cj1, Cj2, Cj3, Cj4 are arbitrary real constants.

Now, we put gj = eαjx−4αj(α
2
j−3β2

j )t, ηj = βjx−4βj(3α
2
j−β

2
j )t, and then (4.67)(4.68)

can be rewritten in the form

φj1 = gj [Cj1 cos ηj − Cj2 sin ηj ] + ig−1
j [Cj3 cos ηj + Cj4 sin ηj ],

φj2 = gj [Cj1 sin ηj + Cj2 cos ηj ] + ig−1
j [−Cj3 sin ηj + Cj4 cos ηj].

By direct computation we can show that for k = 0, 1, 2, . . . it holds

φ
(k)
j1 = gj [Dj1(k) cos ηj −Dj2(k) sin ηj ] + ig−1

j [Dj3(k) cos ηj +Dj4(k) sin ηj ],

(4.69)

φ
(k)
j2 = gj [Dj1(k) sin ηj +Dj2(k) cos ηj ] + ig−1

j [−Dj3(k) sin ηj +Dj4(k) cos ηj],

(4.70)

where the coefficients Djl(k) are given by the following recursion relations:

Dj1(k) = αjDj1(k − 1)− βjDj2(k − 1),(4.71)

Dj2(k) = βjDj1(k − 1) + αjDj2(k − 1),(4.72)

Dj3(k) = −αjDj3(k − 1) + βjDj4(k − 1),(4.73)

Dj4(k) = −βjDj3(k − 1)− αjDj4(k − 1)(4.74)

and Djl(0) = Cjl for j = 1, 2, . . . , n; l = 1, 2, 3, 4.

Note that in case C2
j1 + C2

j2 6= 0, C2
j3 + C2

j4 6= 0 for j = 1, 2, . . ., n the difference

equations (4.71)-(4.74) can be solved as follows:

Dj1(k) =
√

C2
j1 +C2

j2

√

(α2
j + β2j )

k cos(ξj1 + kζj),

Dj2(k) =
√

C2
j1 +C2

j2

√

(α2
j + β2j )

k sin(ξj1 + kζj),

Dj3(k) = (−1)k
√

C2
j3 + C2

j4

√

(α2
j + β2j )

k cos(ξj2 + kζj),

Dj4(k) = (−1)k
√

C2
j3 + C2

j4

√

(α2
j + β2j )

k sin(ξj2 + kζj),
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where

cos ξj1 =
Cj1

√

C2
j1 + C2

j2

, cos ξj2 =
Cj3

√

C2
j3 + C2

j4

, cos ζj =
αj

√

α2
j + β2j

,

sin ξj1 =
Cj2

√

C2
j1 + C2

j2

, sin ξj2 =
Cj4

√

C2
j3 +C2

j4

, sin ζj =
βj

√

α2
j + β2j

.

For any k if Cj1 = Cj2 = 0 then Dj1(k) = Dj2(k) = 0, and if Cj3 = Cj4 = 0
then Dj3(k) = Dj4(k) = 0.

Next, (4.69), (4.70) can be rewritten in the form

φj1 =
∑

εj1=±1

{

[Dj1(k) cos ηj −Dj2(k) sin ηj]
1 + εj1

2

(4.75)

+ i[Dj3(k) cos ηj +Dj4(k) sin ηj ]
1− εj1

2

}

gεj1 ,

φj2 =
∑

εj2=±1

{

[Dj1(k) sin ηj +Dj2(k) cos ηj]
1 + εj2

2

(4.76)

+ i[−Dj3(k) sin ηj +Dj4(k) cos ηj]
1− εj2

2

}

gεj2 .

We denote by D(ε11, ε12, . . . , εn1, εn2) the 2n × 2n determinant whose entries of
the (2j − 1)-th row and the (2j)-th row for each j are respectively equal to

(

[Dj1(k) cos ηj −Dj2(k) sin ηj]
1 + εj1

2
+ i[Dj3(k) cos ηj +Dj4(k) sin ηj ]

1− εj1
2

)

,

k = 0, 1, 2, . . . , 2n − 1,
(

[Dj1(k) sin ηj +Dj2(k) cos ηj]
1 + εj2

2
+ i[−Dj3(k) sin ηj +Dj4(k) cos ηj ]

1− εj2
2

)

,

k = 0, 1, 2, . . . , 2n − 1.

Then we can write the Wronskian (4.66) in the form

(4.77) f2n =
∑

(ε11,ε12,...,εn1,εn2)

[(

n
∏

j=1

g
εj1+εj2
j

)

D(ε11, ε12, . . . , εn1, εn2)
]

.

Note that for l = 1 or 2 all entries of the (2j + l − 2)-th row of the determinant
D(ε11, ε12, . . . , εn1, εn2) are real-valued if εjl = 1, and they are pure-imaginary-
valued if εjl = −1. Consequently, if

∏n
j=1(εj1.εj2) = 1 then the determinant

D(ε11, ε12, . . . , εn1, εn2) is real-valued, and if otherwise, then it is pure-imaginary-
valued. We define the sets X1,X2 as in Subsection 4.1. From (4.77) we can
obtain a class of Wronskian solutions in the following form:

(4.78) f2n = F2n + iG2n,
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where F2n, G2n are respectively real and imaginary parts of the Wronskian (4.77)
and are given by

F2n =
∑

(ε11,ε12,...,εn1,εn2)∈X1

[(

n
∏

j=1

g
εj1+εj2
j

)

D(ε11, ε12, . . . , εn1, εn2)
]

,(4.79)

G2n = (−i)
∑

(ε11,ε12,...,εn1,εn2)∈X2

[(

n
∏

j=1

g
εj1+εj2
j

)

D(ε11, ε12, . . . , εn1, εn2)
]

.(4.80)

In this case, the Wronskian solutions depend on 4n arbitrary real constants. In
particular, if n = 1 then we have the solution (4.63).

In the case that n = 2, it is complicated to compute f4 by using (4.78)-(4.80)
since one has to compute 16 determinants D(ε11, ε12, ε21, ε22) of order 4. To avoid
this process, we propose another way to compute f4. From (4.66) we have

(4.81) f4 =

∣

∣

∣

∣

∣

∣

∣

∣

φ11 φ11x φ11xx φ11xxx
φ12 φ12x φ12xx φ12xxx
φ21 φ21x φ21xx φ21xxx
φ22 φ22x φ22xx φ22xxx

∣

∣

∣

∣

∣

∣

∣

∣

.

By using the Laplace expansion, the determinant (4.81) can be expressed in terms
of 2 by 2 minors. After some calculations, we can rewrite f4 in the form

f4 =
{

β1β2
[

(α2
1 + α2

2 + β21 + β22)
2 + 4(α2

1α
2
2 − β21β

2
2)
]

(e11 + e12)(e21 + e22)

(4.82)

− 4α1β1α2β2(α
2
1 + α2

2 + β21 + β22)[(e11 − e12)(e21 − e22) + 4e13e23]

− 4α1α2

[

(α2
1 + α2

2 + β21 + β22)
2 − 4(α2

1α
2
2 − β21β

2
2)
]

e14e24

}

+ i
{

2α2β1[(α
2
1 + β21 − α2

2 − β22)
2 + 4(β21α

2
2 − α2

1β
2
2)](e11 + e12)e24

+ 2α1β2[(α
2
1 + β21 − α2

2 − β22)
2 − 4(β21α

2
2 − α2

1β
2
2)](e21 + e22)e14

+ 8α1β1α2β2(α
2
1 + β21 − α2

2 − β22)[(e21 − e22)e13 − (e11 − e12)e23]
}

,

where the auxiliary functions ejl are given by

ej1 =(C2
j1 + C2

j2)g
2
j , ej2 = (C2

j3 + C2
j3)g

−2
j ,

ej3 =(Cj1Cj3 +Cj2Cj4) cos(2ηj)− (Cj2Cj3 − Cj1Cj4) sin(2ηj),

ej4 =(Cj2Cj3 −Cj1Cj4) cos(2ηj) + (Cj1Cj3 + Cj2Cj4) sin(2ηj),

for j = 1, 2.

4.5. Case: Γm is a real Jordan block with a pair of multiple complex

eigenvalues. We consider the case that Γm in (4.1) correspond to two complex
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Jordan blocks

(4.83)











λ 0
1 λ

. . .
. . .

0 1 λ











n×n

and











λ̄ 0
1 λ̄

. . .
. . .

0 1 λ̄











n×n

,

where λ = α+ iβ, λ̄ = α− iβ, β 6= 0 and m = 2n.
In this case, the matrix Γ2n is of the form

(4.84) Γ2n =













U O O . . . O O
I U O . . . O O
O I U . . . O O
. . . . . . . . . . . . . . . . . .
O O O . . . I U













2n×2n

,

where U =

(

α −β
β α

)

, I =

(

1 0
0 1

)

and O is 2× 2 zero matrix.

We need to use the following 2n × 2n lower triangular matrix consisting 2 × 2
blocks of operators:

(4.85) V =













I O O . . . O O
V1 I O . . . O O
V2 V1 I . . . O O
. . . . . . . . . . . . . . . . . .
Vn−1 Vn−2 Vn−3 . . . V1 I













2n×2n

,

where

I =

(

1 0
0 1

)

, Vj =









1

j!

∂j

∂αj
0

0
1

j!

∂j

∂αj









·

For convenience we put φ = (φ11, φ12, φ21, φ22, . . . , φn1, φn2)
T .

Theorem 4.3. The general solutions Φ of system (4.1), (4.2) with the Jordan

block Γ2n in (4.84) are of the form

(4.86) φ = V φ̃,

where φ̃ = (φ̃11, φ̃12, φ̃21, φ̃22, . . . , φ̃n1, φ̃n2)
T ,

φ̃j1 =e
αx−4α(α2−3β2)t

{

Cj1 cos[βx−4β(3α2−β2)t]− Cj2 sin[βx−4β(3α2−β2)t]
}

(4.87)

+ ie−αx+4α(α
2−3β2)t

{

Cj3 cos[βx−4β(3α2−β2)t] + Cj4 sin[βx−4β(3α2−β2)t]
}

,

φ̃j2 =e
αx−4α(α2−3β2)t

{

Cj1 sin[βx−4β(3α2−β2)t] + Cj2 cos[βx−4β(3α2−β2)t]
}

(4.88)

+ie−αx+4α(α
2−3β2)t

{

−Cj3sin[βx−4β(3α2−β2)t]+Cj4 cos[βx−4β(3α2−β2)t]
}

,

and Cj1, Cj2, Cj3, Cj4, j = 1, 2, . . . , n are arbitrary real constants.
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Proof. In this case, using the transformation

φ11 = φ̃11,

φ12 = φ̃12,

φ21 = φ̃21 +
∂

∂α
φ̃11,

φ22 = φ̃22 +
∂

∂α
φ̃12,

...
...

φn1 = φ̃n1 +
∂

∂α
φ̃n−1,1 + · · ·+

1

(n− 1)!

∂n−1

∂αn−1
φ̃11,

φn2 = φ̃n2 +
∂

∂α
φ̃n−1,2 + · · ·+

1

(n− 1)!

∂n−1

∂αn−1
φ̃12

we obtain

φ̃j1x = αφ̃j1 − βφ̃j2,(4.89)

φ̃j2x = βφ̃j1 + αφ̃j2,(4.90)

φ̃j1t = −4φ̃j1xxx,(4.91)

φ̃j2t = −4φ̃j2xxx,(4.92)

for j = 1, 2, . . . , n.
By virtue of Theorem 4.2 and from (4.89)-(4.92) it follows that (4.87), (4.88) are
general solutions of (4.1), (4.2). �

Now we give an explicit representation for the Wronskian

(4.93) f2n =W (φ11, φ12, . . . , φn1, φn2),

where φ is determined by (4.86).

We put g = eαx−4α(α2−3β2)t and η = βx − 4β(3α2 − β2)t. By (4.86)-(4.88), the
functions φj1, φj2 can be rewritten in the forms

φj1 = g
[

Pj1 cos η − Pj2 sin η
]

+ ig−1
[

Pj3 cos η + Pj4 sin η
]

,(4.94)

φj2 = g
[

Pj1 sin η + Pj2 cos η
]

+ ig−1
[

− Pj3 sin η + Pj4 cos η
]

,(4.95)

where Pjl ≡ Pjl(x, t, α, β), j = 1, 2, . . . , n; l = 1, 2, 3, 4 are some polynomials
of variables x, t, α, β and can be determined from the following linear algebraic
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systems























g
[

Pj1 cos η − Pj2 sin η
]

=

j
∑

l=1

[

Cl1

1

(j − l)!

∂j−l

∂αj−l
(g cos η)−Cl2

1

(j − l − 1)!

∂j−l

∂αj−l
(g sin η)

]

,

g
[

Pj1 sin η+Pj2 cos η
]

=

j
∑

l=1

[

Cl1

1

(j − l)!

∂j−l

∂αj−l
(g sin η)+Cl2

1

(j − l)!

∂j−l

∂αj−l
(g cos η)

]

,























g−1
[

Pj3 cos η + Pj4 sin η
]

=

j
∑

l=1

[

Cl3

1

(j − l)!

∂j−l

∂αj−l
(g−1 cos η)+Cl4

1

(j−l)!

∂j−l

∂αj−l
(g−1sin η)

]

,

g−1
[

−Pj3 sin η+Pj4 cos η
]

=

j
∑

l=1

[

−Cl3

1

(j−l)!

∂j−l

∂αj−l
(g−1sin η)+Cl4

1

(j−l)!

∂j−l

∂αj−l
(g−1cos η)

]

.

Next, we see that the derivatives φ
(k)
j1 and φ

(k)
j2 of φj1, φj2 can be written in the

form

φ
(k)
j1 = g

[

Qj1(k) cos η −Qj2(k) sin η
]

+ ig−1
[

Qj3(k) cos η +Qj4(k) sin η
]

,

(4.96)

φ
(k)
j2 = g

[

Qj1(k) sin η +Qj2(k) cos η
]

+ ig−1
[

−Qj3(k) sin η +Qj4(k) cos η
]

,

(4.97)

where the polynomials Qjl(k) ≡ Qjl(x, t, k) are given by the following recursion
relations

Qj1(k) = αQj1(k − 1)− βQj2(k − 1) +Qj1x(k − 1),(4.98)

Qj2(k) = βQj1(k − 1) + αQj2(k − 1) +Qj2x(k − 1),(4.99)

Qj3(k) = −αQj3(k − 1) + βQj4(k − 1) +Qj3x(k − 1),(4.100)

Qj4(k) = −βQj3(k − 1)− αQj4(k − 1) +Qj4x(k − 1),(4.101)

Qjl(0) = Qjl(x, t, 0) = Pjl(x, t),

for j = 1, 2, . . . , n; l = 1, 2, 3, 4.
Then we can rewrite (4.96), (4.97) as follows:

φ
(k)
j1 =

∑

εj1=±1

{

[

Qj1(k) cos η −Qj2(k) sin η
]1 + εj1

2
(4.102)

+ i
[

Qj3(k) cos η +Qj4(k) sin η
]1− εj1

2

}

gεj1 ,

φ
(k)
j2 =

∑

εj2=±1

{

[

Qj1(k) sin η +Qj2(k) cos η
]1 + εj2

2
(4.103)

+ i
[

−Qj3(k) sin η +Qj4(k) cos η
]1− εj2

2

}

gεj2 .
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We denote by D(ε11, ε12, . . . , εn1, εn2) the 2n × 2n determinant whose entries of
the (2j − 1)-th and the (2j)-th rows for each j are respectively equal to
(

{[

Qj1(k) cos η −Qj2(k) sin η
]1 + εj1

2
+ i

[

Qj3(k) cos η +Qj4(k) sin η
]1− εj1

2

}

)

,

k = 0, 1, 2, . . . , 2n − 1,
(

{[

Qj1(k) sin η +Qj2(k) cos η
]1 + εj2

2
+ i

[

−Qj3(k) sin η +Qj4(k) cos η
]1− εj2

2

}

)

,

k = 0, 1, 2, . . . , 2n − 1.

Now, the Wronskian (4.93) can be transformed into the form

(4.104) f2n =
∑

(ε11,ε12,...,εn1,εn2)

[(

n
∏

j=1

gεj1+εj2
)

D(ε11, ε12, . . . , εn1, εn2)
]

.

Note that for l = 1 or 2 all entries of the (2n + l − 2)-th row of the determinant
D(ε11, ε12, . . . , εn1, εn2) are real-valued if εjl = 1, and they are pure-imaginary-
valued if εjl = −1. Consequently, the value of the determinant D(ε11, ε12, . . . ,
εn1, εn2) is real-valued if

∏n
j=1(εj1.εj2) = 1, and else it is pure-imaginary-valued.

We say that the m-tuple (ε11, ε12, . . . , εn1, εn2) belongs to X1 if
∏n

j=1(εj1.εj2) =

1. Otherwise, it belongs to X2. Thus, from (4.104) we obtain a class of the
Wronskian solutions in the form

(4.105) f2n = F2n + iG2n,

where F2n, G2n are respectively real and imaginary parts of the Wronskian (4.104)
and are given by the relations

F2n =
∑

(ε11,ε12,...,εn1,εn2)∈X1

[(

n
∏

j=1

gεj1+εj2
)

D(ε11, ε12, . . . , εn1, εn2)
]

,(4.106)

G2n = (−i)
∑

(ε11,ε12,...,εn1,εn2)∈X2

[(

n
∏

j=1

gεj1+εj2
)

D(ε11, ε12, . . . , εn1, εn2)
]

.(4.107)

The solutions of (4.105) depend on 4n arbitrary real constants. Note that if n = 1
we have the solution (4.63).

In particular, if we choose Cj1 = Cj2 = Cj3 = Cj4 = 0 for j ≥ 2, then we have
the bi-directional Wronskian solutions
(4.108)

f2n =W
(

φ11, φ12,
∂

∂α
φ11,

∂

∂α
φ12, . . . ,

1

(n− 1)!

∂n−1

∂αn−1
φ11,

1

(n− 1)!

∂n−1

∂αn−1
φ12

)

.

When N = 2n = 4 the Wronskian determinant (4.108) becomes

(4.109) f4 =W (φ11, φ12, φ11α, φ12α) =

∣

∣

∣

∣

∣

∣

∣

∣

φ11 φ11x φ11xx φ11xxx
φ12 φ12x φ12xx φ12xxx
φ11α φ11αx φ11αxx φ11αxxx
φ12α φ12αx φ12αxx φ12αxxx

∣

∣

∣

∣

∣

∣

∣

∣
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where φ11, φ12 are given in (4.87), (4.88).
In order to avoid the complicated computation that had been described at the
end of subsection 4.4, we propose here another way to compute f4 instead of
using (4.105)-(4.108). By direct computing, the α-direction derivatives φ11α and
φ12α can be written in the form

φ11α =
[

x− 12(α2 − β2)t
]

φ11 + 24αβtφ12,(4.110)

φ12α = −24αβtφ11 +
[

x− 12(α2 − β2)t
]

φ12.(4.111)

By virtue of the Laplace expansion the determinant (4.109) can be expressed in
terms of 2×2 minors. By using equations (4.1), (4.2), (4.110), (4.111), after some
calculations, we can rewrite the Wronskian f4 in the explicit form

f4 =
{

[

8α2β2(α2 + β2)R− 12α2β2 + 4β4
]

(e1 + e2)
2

(4.112)

−
[

8α2β2(α2 + β2)R+ 12α2β2
]

(e1 − e2)
2 +

[

32α2β2(α2 + β2)R

− 48α2β2
]

e23 +
[

32α2β2(α2 + β2)R + 48α2β2 − 16α4
]

e24

}

+ i
{

32α2β2(−αh1 + βh2)(e1 + e2)e3 − 32α2β2(βh1 + αh2)(e1 − e2)e4

− 32αβ(α2 + β2)(e1 + e2)e4

}

,

where

e1 =(C2
11 + C2

12)g
2, e2 = (C2

13 + C2
14)g

−2,

e3 =(C11C13 + C12C14) cos(2η) − (C12C13 − C11C14) sin(2η),

e4 =(C12C13 − C11C14) cos(2η) + (C11C13 + C12C14) sin(2η),

h1 = x− 12(α2 − β2)t, h2 = −24αβt, R = h21 + h22.

Note that the Wronskian f4 contains only 4 arbitrary real numbers.

Remark 2. We can also consider the case that the matrix Γm in system (4.1), (4.2)
is of the form

(4.113) Γm =













U O O . . . O O
Σ U O . . . O O
O Σ U . . . O O
. . . . . . . . . . . . . . . . . .
O O O . . . Σ U













2n×2n

where m = 2n,U =

(

α −β
β α

)

, β 6= 0, Σ =

(

0 −1
−1 0

)

and O is 2 × 2 zero

matrix.
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In this case, we use the following transformation

φ11 = φ̃11,

φ12 = φ̃12,

φ21 = φ̃21 +
∂

∂β
φ̃11,

φ22 = φ̃22 +
∂

∂β
φ̃12,

...
...

φn1 = φ̃n1 +
∂

∂β
φ̃n−1,1 + · · ·+

1

(n− 1)!

∂n−1

∂βn−1
φ̃11,

φn2 = φ̃n2 +
∂

∂β
φ̃n−1,2 + · · ·+

1

(n− 1)!

∂n−1

∂βn−1
φ̃12,

for obtaining systems (4.89)-(4.92).
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N-soliton solutions in Wronskian form, J. Phys. A: Math. Gen. 17 (1984), 1415-1424.

[5] J. J. C. Nimmo, A method of obtaining the N-soliton solution of the Boussinesq equation
in terms of Wronskian, Phys. Lett. 95 (1983), 4-6.
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