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SOLUTIONS TO LINEAR PROGRAMS
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ABSTRACT. A mathematical program with equilibrium constraints is an op-
timization problem with two sets of variables z and y, in which some or all
of its constraints are defined by a parametric variational inequality or com-
plementarity system with y as its primary variables and = the parameter
vector. This problem even in the linear case is a difficult global optimiza-
tion problem because of its nested structure. We use a dual formulation of
this problem to develop two decomposition branch-and-bound algorithms for
finding a global optimal solution of a linear mathematical program with equi-
librium constraints. The first algorithm uses a simplicial subdivision whereas
the second one uses a binary tree defined by using the sign (zero or positive)
of the dual variables. The searching trees in both algorithms are created in
the dual space. Preliminary computational experiences and results show that
on a PC computer the algorithm using binary tree can solve linear problems
with equilibrium constraints up to twenty-five dual variables; the number of
the primal variables may be larger.

1. INTRODUCTION

A mathematical program with equilibrium constraints, shortly MPEC, is an
optimization problem with two sets of variables, x € R™ and y € R™, in which
some or all of its constraints are defined by a parametric variational inequality
or complementarity system with y as its primary variables and x the parameter
vector. More specifically, this problem is defined as follows.

Suppose that f : R"*™ — R, F': R"™™ — R™ are given functions, D C R**™
is a nonempty closed set, and C' : R — R™ is a set-valued map with closed
convex values, i.e, for each x € R", C(x) is a (possibly empty) closed convex
subset of R™. The set of all vectors x € R" for which C(z) # ) is the domain of
C and denoted by dom(C).
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The function f is the overall objective function to be minimized; F' is the
equilibrium function of the inner problem, D is a joint upper-level feasible region
of the pair (z,y), and C(x) defines the restriction of the variable y for each given
x. With this setup, the problem can be given as:

(1) min f(z,y)

(P) subject to (z,y) € D,
where y solves the parametric variational inequality

(VI(x)) find ye C(z): (v—y) F(z,y) >0, forall v € C(x)

This problem has some important applications, for example, in the design of
transportation networks, in economic modeling. The MPEC problem includes,
as a special case, the so called bilevel convex programming problem [8, 14, 17]
where some variables are restrict to be in the solution-set of a parametric convex
optimization problem. Material on the MPEC problem and its applications can
be found in [1, 6]. Problem (P) is called a linear mathematical programming
problem with equilibrium constraints LMPEC if D, C'(x) are polyhedral convex
sets for every x, and f, F' are affine functions.

The MPEC problem, even in linear case, is known to be a difficult multi-
extremal problem because of its nested structure. Few numerical methods have
been proposed for solving the MPEC problem (P) (see e.g. [2-7, 11-13]). All of
the existing methods can compute only a local solution or a stationary point. To
our knowledges, to date no method has been developed for solving the MPEC or
LMPEC problem globally.

This work is an attempt in developing solution methods for globally solving
LMPEC problem. By using Kuhn-Tucker theorem for the variational inequality
constraints, we reformulate the LMPEC problem as an ordinary linear program
with an additional complementarity constraint. For globally solving the latter
problem we propose two branch-and-bound algorithms. The first algorithm uses
a simplicial subdivision accompanied with a decoupling technique for bounding.
The second one uses a binary tree defined according to the sign (zero or positive)
of the dual variables appearing in the complementarity condition. The branching
in both algorithms takes place in the space of the dual variables whose dimension
is just equal to the number of the constraints of the inner variational inequality.
Preliminary computational experiences and results show that the algorithm using
binary tree is more efficient than the simplicial subdivision algorithm. A lot of
randomly generated problems up to twenty five - dual variables are solved by the
binary tree algorithm on a PC Pentium II computer.

The remaining of the paper is organized as follows. The next section contains
preliminaries including the dual formulation of the problem LMPEC. Section 3
describes the algorithm using simplicial subdivision. Section 4 is devoted to de-
scription of the binary tree-algorithm. We close the paper with some preliminary
computational experiences and results.
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2. PRELIMINARIES

Throughout the paper we suppose that
(2) Cz)={ye R" :g(x,y) = Az + By +b >0},
3) F(z,y) = Pr+Qy+q
where b € R', ¢ € R™ and A, B, P, Q are appropriate given matrices. By

applying the Kuhn-Tucker theorem for the linear variational inequality (VI(x))
we can see that LMPEC problem is equivalent to the problem

(CP) fi:=min f(z,y)
subject to

(4) (z,y) € D,

(5) Pz +Qy+q—B"A=0,
(6) Az + By +b>0,

(7) A>0, NT'(Az + By +b) =0

in the sense that if the pair (z,y) is a global minimizer of (P) then for any A
satisfying (5) and (7) the triple (A, z,y) is a global minimizer of (CP); conversely,
if the triple (\,z,y) is a global minimizer of (CP), then the pair (z,y) is a
global minimizer of (P). As usual we shall call A dual variables and (z,y) primal
variables.

Solving LMPEC thus amounts to solving Problem (CP). The main difficulty
in the latter problem is the complementarity constraint (7). We note that when
A =0, Problem (CP) becomes

(CPO) fo:=min f(z,y)

subject to
(z,y) € D

Pr+Qy+q=0, Ax + By +b> 0.

When f is linear and D is a polyhedral convex set given by a system of linear
inequalities and /or equalities, Problem (CPO0) is an ordinary linear program that
can be solved by techniques of linear mathematical programming. Thus we focus
on the difficult case when A # 0. In this case Problem (CP) takes the form

(CP1) fi:=min f(z,y)

subject to
(z,y) € D,

Pz +Qy+q—BTA=0,
A>0, A#0, Az+ By+b >0,
M(Az + By +b) = 0.
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Clearly, f. = min{fo, f1} (as usual we take fp or fi = o0 if (CP) or (CP1) is
infeasible).

3. A SIMPLICIAL SUBDIVISION BRANCH-AND-BOUND ALGORITHM

The branch-and bound technique are widely used in integer programming as
well as in global optimization. Branch-and-bound algorithms differ from each
other by rules they use for branching and bounding. In order to solve Problem
(CP1) we propose two branch-and-bound algorithms. The first algorithm uses
an adaptive simplicial subdivision accompanied with a decoupling technique for
bounding. The second algorithm uses a binary tree defined according to the sign
(zero or positive) of the dual variables. The branching in both algorithms takes
place in the A-space whose dimension, in general, is much less than those of the
x and y-spaces.

To be precise, let € (i = 1,...,£) be the ith unit vector of R’, and S; be the

convex hull of ¢! (i = 1,....,£). Thus S; is the ¢ — 1-simplex whose vertices are

el,...,e’. Let S be a fully dimensional subsimplex of S;, and Cg be the polyhedral

cone vertexed at the origin whose extreme edges are halflines passing the vertices
of S. Clearly Cg is a subcone of the cone Rﬁ (the nonnegative orthant). Consider
Problem (CP1) restricted to this cone. That is

(CPS) f(S) :=min f(z,y)
subject to
(x,y) € D, Ax+ By+b>0,
Pr+Qy+q—BTA=0,
M(Az 4+ By +0b) =0,A € Cs, A #0.
Clearly if S = S Problems (CPS) and (CP1) coincide.

Note that if v > 0 for every v € V(S), then A > 0 for every A € Cg \ {0}.
In this case Problem (CPS) is reduced to the following two linear programs, one
corresponds to A # 0, the other to A = 0:

f(S) := min f(z,y)

subject to
(x,y) € D, Ax+ By +b=0.
Pr+Qy+q—BT"A=0, A€ Cs,A#0,
and
f(S) :=min f(z,y)
subject to

(x,y) € D, Ax+ By +b>0,
Px+ Qy+q=0.
In the general case, corresponding to (CPS) we consider the relaxed problem

(RCPS) B(S) := min f(x,y)
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subject to
(x,y) € D,Ax+ By +b >0,
Pr+Qy+q—BT2=0,z ¢ Cg,
M(Az + By +b) =0, € S.
As usual we set 3(S) = +oo if this problem has nofeasible solution. In this case
the simplex S is not of interest.

The decoupling by introducing the variable z in the relaxed problem (RCPS)
has the following advances.

e The variable A now can be kept in the unit simplex 5j.

e Solution of Problem (RCPS) gives conditions indicating when the lower
bound ((S) is exact. In an other word when the partition set S can be deleted
from further consideration. Otherwise it suggests an adaptive simplicial subdivi-
sion.

e Problem (RCPS) can be solved by using only linear programming methods.
Namely we have the following lemma which is the core of the algorithm to be
described below.

Lemma 1. (i) If (A, z,y) is feasible for Problem (CPS), then ( , T, Y, A) is

Y

i

=1

feasible for (RCPS) and 3(S) < f(S).
(ii) If (A%, 2%, y5, 2%) is optimal for (RCPS) and the condition
(*) (2°)"(Az” + By® +b) =0
is satisfied, then (2°,2°,y°) is optimal for (CPS) and 3(S) = f(S).
(iii) If Problem (RCPS) is solvable, then there is an optimal solution (X, x,y, z)
such that A € V(S) (the set of the vertices of S).

Proof. (i) is obvious from the definition of Problems (CPS) and (RCPS).
(ii) Suppose that z° satisfies the complementarity condition
(z°)T(Az® + By® +b) = 0.
Then (2°,2%,y") is feasible for (CPS). Hence (2°,2%,4%) is optimal for (CPS)
and therefore 3(5) = f(5).
(iii) Let (A%, 2%, 5%, 2%) be an optimal solution to (RCPS). Let v, ..., v* denote
the vertices of the simplex S. If A¥ ¢ V/(S), then there exist

such that
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Since (A)T(Az® + By® +b) = 0, replacing \° by

14
A = Z a; v’
i=1

we obtain
4
(8) D ai(v)(Az® + By® +b) = 0.
i=1
Since '
' >0, a; >0 Vi
and

Az® + By® +b >0,
it follows that
9) ()T (A2 + By® +b) =0 for every i.

Thus (v, 2%, y*, 2°) is feasible (RCPS), and therefore it is also optimal for (RCPS).
O

Remark 1. Clearly, if 2% = a)\® for some a > 0, then from (A\*)7(Az® + By® +
b) = 0 follows (2°)T(Az® + By® +b) = 0.

Remark 2. Suppose S1 = U;e1S;. Let S (k € I) such that
B(Sk) = min{5(S;) : i €I}
where (3(S;) is the optimal value of the relaxed problem (RCPS;). Let o) be an

upper bound for the optimal value of Problem (CP1). If 5(Sg) = ag, then oy, is
the global optimal value of (CP1).

Remark 3. Let S be a subsimplex of S7. Consider the problem
(10) §(S) := min \T'(Az 4 By + b)
subject to

(x,y) € D, Ax+ By+b>0,

Dr+Qy+q—Blz2=0,2e€Cg,AeS.

Clearly that if §(S) > 0, then the relaxed problem (RCPS) has nonfeasible point.
The subsimplex .S then can be eliminated from further consideration. Note that
the objective function (10) is a bilinear function which implies that this problem

attains its optimal value at a point (A, x,y, z) such that A € V(S). Thus §(S5)
can be computed by solving linear programs, one for each vertex of S.

Computing Upper Bound

The feasible domain of Problem (CPS), in general, is nonconvex. However
unlike general mathematical programming problems having nonconvex feasible
domains, a feasible point of this problem can be computed with a reasonable effort
due to the specific structure of the complementarity constraint A (Az+ By +b) =
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0. Without any additional assumption on the matrices A and B, a feasible point,
thereby an upper bound, can be computed, for example, as follows.

Let (A%, 2%,4°, 2%) be an optimal solution to the relaxed problem (RCPS). Let
Je (A= {j: )\]S > 0}.
Solve the linear program
(UCPS) a(S) :=min f(z,y)

subject to
(z,y) €D, (Az+ By +b); >05 ¢ J.(\°)
Pr+Qy+q— BT\ =0,
(Az + By +b); = 0,(j € J+(X%)).

Clearly, if (z,%) is an optimal solution of this linear program, then (A%, x,y) is
feasible for (CP1) , and therefore «(S) is an upper bound for f;.

A Simplicial Subdivision

A subdivision is said to be simplicial subdivision if its every partition set is
simplex. Simplicial subdivisions are often used in global optimization (see e.g.
[4]). The main advantage of a simplicial subdivision is that the number of the
vertices of every generated partition set is not larger than the dimension of the
space where the subdivision takes place. In the algorithm 1 to be described below
we shall use the following simplicial subdivision [4].

Suppose that S is the simplex to be subdivided. Let (v!, ..., vg) be the vertices
of S. We may assume that Problem (RCPS) is solvable because if it is infeasible,
then S can be deleted. Let (A%, 2% y%, 2%) be an optimal solution of Problem
(RCPS).

Note that if the condition (*) in Lemma 1 is fulfilled, then (2,2, %) is
optimal for (CPS) and therefore 5(S) = «(S). In this case the simplex S can
also be deleted. So we may assume that this condition does not hold. Let 7(2%)
be the point where the halfline connecting the origin and z° meets S. Since the
condition (*) does not hold, A% # m(2°) (Remark 1). Let w® := (7(2°) + \%)/2.
Since w® € S, we have

l l

wS = Ztﬂ]i, Ztl = 1, t; > 0, (2 = 1,...,6).
i=1 i=1

Let I(w®) := {i : t; > 0}. We then subdivide S into subsimplices S;, where S;
(i € I(w?)) is obtained from S by replacing the vertex v* of S with w®. In the
literature this subdivision is often called radial subdivision. The points 7(z°) and
A9 are called subdivision points for S (see e.g.[4]). Note that if 7(z%) and \° are
two adjacent vertices of S and the edge connecting 7(2°) and \° is longest, then
this is an exhaustive bisection process. We recall that a subdivision process is
said to be exhaustive if its every infinite sequence of nested partition sets shinks
to a singleton [4, 16].
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Definition 1. The above defined radial simplicial subdivision is said to be locally
erhaustive if any two infinite sequences of the subdivision points for an infinite
nested partition sets have a common cluster point.

Clearly, every exhaustive simplicial subdivision is locally exhaustive.

ALGORITHM 1. Choose a tolerance € > 0.

Computing lower bound 3(S7) by solving the linear program (RC'PSy). If this
problem has nonfeasible point, then Problem (CP1) has nonfeasible point too.
The algorithm terminates. Otherwise, let (A, 2!y, 2!) be the obtained solution.

If
(2}, Azt + By' +b) =0,
then let a; = 31 = B(S1) and (¢4, ul, b)) := (21, 2, 9h).
Otherwise, let a1 = f(z!,y') where (A1, !, y!) is a feasible point of (CP1)
known in advance (if no feasible point is known take ay = +00).
Take

0 otherwise.

_— {{Sl} it ar — B> e(lon| + 1),
1=

Let k:=1.

Iteration k ( k = 1,2...) At each iteration k we have a family T'j of simplices.
To each S € Ty, we associate a real number 3(S) which serves as a lower bound
for the optimal value a(S), and we have an optimal solution (\°,z%,y%, 2%) of
(RCPS). Also we may have an feasible point (&¥,u*,v¥) (incumbent) and an
upper bound oy = f(u¥, v¥).

a) If Ty = 0, then terminate: (&%, u*,v*) is an e-global optimal solution to
(CP1).

b) If Ty # 0, then choose Sy such that
Bk = B(Sk) = min{B(S) : § € I';}.
Subdivide S, into subsimplices Sy;, i € I(w®*) according to the simplicial subdi-
vision described above.
Compute B(Sy;) by solving linear programs (RCPSy;) (i € I(wF)).
Compute upper bounds a(Sy;) by solving the linear programs (UCPSy;) (i €

I(wSk)). Use a(Sy;) to update currently best upper bound a1 and the incum-
bent (¥ wk+1 ok +1). Set

Dt = Tk \ {Sk}) U{Ski : i € I(w™)}.
D1 = {S € Ty s a1 — B(S) > efaga| + 1}
Increase k£ by 1 and go to iteration k.

Remark 4. In order to enhance convergence, in Algorithm 1, for each generated
simplex S we may compute §(5) by solving the problem (10) (see Remark 3). If
d(S) > 0, then the simplex S can be deleted from further consideration.
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Theorem 1. (i) If the algorithm terminates at some iteration k, then oy is an
e-global optimal value and (€F,u¥ v¥) is an e-global optimal solution to Problem
(CP1).

(ii) Suppose that the sequence {(z*,z* y*)} is bounded and the subdivision used
in the algorithm is locally exhaustive. Then if the algorithm does not terminate
we have By, /' f1 and the sequence {(2*, 2% y*)} has a cluster point that solves

Problem (CP1). Moreover if the subdivision is ezhaustive, then any cluster point
of (2%, 2%, y*) solves (CP1).

Proof. (i) If the algorithm terminates at iteration k, then I'y = (). This means
that oy — Ok < e(|ag| + 1). Since ay is an upper bound and f is a lower bound
for the optimal value of (CP1), it follows that ay is an e-global optimal value.
Thus the currently best feasible point (£¥,u*,v*) is an e-global optimal solution
to (CP1).

(ii) If the algorithm never terminates, then it generates a nested sequence of
simplices, say {S;}. Let (A%,29,y%, 29) be the obtained solution of (RCPS,).
Then

By = B(Sg) = f(a%,97) < fr.
Since the sequences {z?} and {y?} are bounded, by taking subsequences if nec-
essary, we may assume that 2?9 — z*, and y? — y* as ¢ — oo.

Note that {/3,} is an increasing sequence, letting ¢ — oo we get
(11) B =limf; < f(z%,y") < f1.

Since the subdivision, by the assumption, is locally exhaustive, the sequences
{m(27)} and {\?} has a common cluster point, say \*. For simplicity of notation,
by taking subsequences if necessary, we may assume that lim, \? = lim, 7(29) =

¥,
Since (A?, 29, y9, 2%) is optimal for the relaxed problem (RCPS), we have
(z?,y?) € D, Az? + By? + b > 0,
Pzl +Qyi+q—Bl21=0,27>0,
(AT (A2? + By? +b) = 0,17 > 0.
Letting ¢ — oo we obtain in the limit that
(z*,y*) € D,Az* + B*'y +b >0,
Pr* 4+ Qy* +q— BTz =0,2" >0,
(AT (Az* 4+ By* +b) = 0,\* > 0.

This and z* = a,\* for some a, > 0 imply that (z*, z*,y*) is feasible for (CP1),
and therefore f(z*,y*) > fi. Combining this with (11) we have

B =f"y") = h
which means that (3, is the optimal value and (z*,x*, y*) is a global optimal
solution to (CP1).
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Now assume that the subdivision is exhaustive. Let (z*,z*, y*) be any cluster
point of the sequence {(z*, 2% 4*)}, and let {(29,29,49)} be the subsequence that
converges to (2*,x*,y*). Since S; is the selected partition set at iteration g, it is
easy to see (see also [9, 10]) that one can choose a subsequence of {S;}, which,
for simplicity of notation, we also denote by {S;}, and a nested subsequence {5;}
of {Sk} such that for every g there is j, satisfying S, C Sj,. Since the sequence
{S;} is nested, by exhaustiveness we have S; — A. This implies S; — . Hence
A* = X. By the same way as above we can show that (\*,z*, y*) is feasible for
(CP1), and therefore f(z*,y*) = fi. O

Remark 5. The sequence {(z*, 2%, y*)} is bounded if the set
{\2,y): (z,y) € D,AN>0,Az + By +b>0,Pr+Qy+q— BTA\=0}

is bounded.
Remark 6. Theoretically, in the above algorithm it may happens that no one
of feasible points are found (Problems (UCPSy) are infeasible). Then oy = +oo
for every k. In this case, we terminate the algorithm if either

(zM7T(Az" + By* +b) < <o,
or

| Pz + Qy* + ¢ — BTXF|| < gy
where €9 > 0 and £ > 0 are given tolerance. In the first case, since (\¥, 2%, y¥, 2¥)
is an optimal solution of Problem (RCPS}), we have f(z*,y*) < f; and
(%, y*) € D, Az* + By* + b >0,
Pa* +Quf +q—BT2F =0,2F >0,

(z8)T (A2 + By? +b) < e,

i.e., all constraints are satisfied except the complementarity constraint is satisfied

with eo-tolerance. Thus the trip (2*, 2%, 4*) can be regarded as an approximate
solution.

Similarly, if
1Pz* + Qy* + g — BTA|| < ey,
then the trip (\*, 2%, y*) satisfies all constraints except the constraint
Pr+Qy+q—B'A=0

is satisfied with an e;-tolerance. In this case the trip (A¥,z¥, 4*) can also be
regarded as an approximate solution.

Remark 7. The weak exhaustiveness assumption in the convergence theorem is
fulfilled if the simplicial subdivision is defined according to the following rule.

Rule 1. Let N > 1 be a given natural number. Let Si be the simplex to
be subdivided at iteration k. If k is a multiplier of N, then we use the radial
subdivision with w* being the midpoint of a longest edge of Si. Otherwise w* is
the midpoint of the segment connecting A and 7 (z%).
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4. BRANCHING AND BOUNDING BY BINARY TREE

It is well known that the binary tree has been successfully applied for solving a
lot number of zero-one mathematical programming problems [15]. In this section
we shall use the complementarity condition to construct a binary tree which allow
us to derive a branch-and-bound algorithm for solving Problem (CP). Here we
do not distinguish two cases A # 0 and A = 0 as the previous section. By f, we
will denote the optimal value of Problem (CP).

First let us define a binary tree as follows:

The tree is defined according to the sign of the dual variables Ay, ..., Ay. To each
node of the tree we associate a dual variable by fixing it to be zero or positive.
Every node has exactly two branches. The node corresponding to the variable
A; has two branches: one corresponds to Ajy1 = 0, the other to Aj;1 > 0. The
root has two branches corresponding to Ay = 0 and A; > 0. Note that a variable
A; may correspond to one or more nodes, but a node corresponds to exactly one
variable. We agree to call a node partition set. The initial partition set 77 is the
root of the tree. Since the number of variables A; is finite, the binary tree is finite
too, i.e., it has only a finite number of nodes.

Let P(T) denote the path from the root 77 to the node T, and let J(T') C
{1, ..., £} denode the set of indeces that correspond to the nodes belonging to the
path P(T'). Let

Jo(T) :={j € J(T): \j =0}
Ji(T) :={j € J(T): A\j; > 0}
Since at the root the sign of every variable \; is free, Jo(T1) = J1(T1) = 0.

Let (CPT) denote the problem (CP) restricted to the partition set T, i.e.,
(CPT) f(T) :=min f(x,y)
subject to

(z,y) € D,
Pr+Qy+q—B'A=0, Ax+By+b>0,
M(Az 4+ By +b) =0,A>0, \; =0 j € Jo(T),
(Az+ By +b); =0, j e Ji(T).
Since Jo(T1) = J1(T1) = 0, Problem (C'PT}) is just (CP).

To obtain a lower bound for f(7") we consider the relaxed problem
(RCPT) B(T) := min f(z,y)
subject to

(z,y) € D,
Pr+Qy+q—B'A=0, (Az+By+b); >0 j & J(T)
A> 0,0 =0 je Jo(T),(Ax + By +b); =05 € Jy(T).
Since the feasible domain of (CPT) is contained in that of (RCPT), we have
B(T) < f(T). In particular 5(T1) < f(T1) = f.. Note that §(T") is an upper
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bound for f, if T is an end node of the free. To obtain an upper bound for the
optimal value of Problem (CP) we solve the following problems

(UCPT) a(T) :=min f(z,y)
subject to
(z,y) € D,
Pr+Qy+q—BTA=0, (Az+ By +b); >0 j € Jo(T)
(Az+ By +0b); =0,j & Jo(T), A>0,); =03 € Jo(T),
or
(UCPT) a(T) := min f(z,y)
subject to
(z,y) € D,
Pr+Qy+q—B"X\=0, (Az+ By +b); >0 j & Ji(T)
(Az+ By +b); =0,j € J(T),A\>0,\; =04 & Jy(T).
Clearly, any solution of one of these problems is feasible for Problem (CP). A
node (partition set) 7' is deleted (dead) if (T") > a where « is an upper bound
for the optimal value of (CP). If a node corresponding to some variable, say A;,
is not deleted, it is branched (bisected) into two nodes by setting A;1; = 0 and
/\j+1 > 0.
Having this binary tree the algorithm can be described as follows.

ALGORITHM 2. Let the tolerance € > 0 be chosen in advance.

Compute the lower bound ((77) by solving linear program (RCPTy). Let
(AL, 2!, y1) be the obtained solution. If

(A, Az' + By' +b) =0,

then let a; = 31 = B(T1) and (¢4, ul,vt) := (AL, 2t yt).

Otherwise, let a1 = f(x!,y!) where (A!,z!,y!) is a feasible point of (CP)
known in advance. ay = +00).

Take

I — {Tl} if 051—51 >€(‘061‘+1)
! 0 otherwise.

Let k:=1

Iteration k ( k=1,2...)

a) If T, = 0, then terminate: (£¥,u*,v*) is an e-global optimal solution to
(CP).

b) If Ty, # 0, then choose T}, such that

Br = B(Ty) = min{B(T) : T" € I'y}.

Branch T}, into two nodes Ty and Tk by setting A\; 11 = 0 for the node Tj; and
Ait+1 > 0 for T, where A; is the variable corresponding to the node T}.

Compute [(T};) by solving linear programs (RCPTy;) (i =1,2).
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Compute upper bounds a(7Ty1) and a(Tk2) by solving linear programs (UC PTj)
and (UCPT}s). Use aT}yy) and oTyz) to update the incumbent (€5F1 oF+1 pk+1)
and the currently best upper bound oy = f(uF+1, oF+1),

Set

ka1 = (D \ o) U{Th1, Tha},
Tpr:={T € Ty apy1 — Bry1 > (lapa| + 1)}
Increase k£ by 1 and go to iteration k.

Since the binary tree has a finite number of nodes, unlike Algorithm 1, Algo-
rithm 2 always terminates after a finite iterations yielding an e- global optimal
solution to Problem (CP).

5. COMPUTATIONAL EXPERIENCES AND RESULTS

In order to obtain a preliminary evaluation of the performance of the proposed
algorithms, we have written computer codes by PASCAL TURBO 7.0 that imple-
ments the algorithms. The codes used the ordinary simplex method for solving
the linear programs called for by the algorithms. We use the codes to solve hun-
dred randomly generated problems on a Pentium II personal computer. For all
test problems we take ¢ = 1074, The computed results are reported in Table 1
for Algorithm 1 and in Table 2 for Algorithm 2.

In the tables we use the following headings:

- £: the number of the dual variables which equals to the number of constraints
(without nonnegative one) of the inner variational inequality,

- n,m: the number of variables x and y respectively,
- iter : the average number of the iterations
- time: the average CPU time (in second),

- 0 the average deviation (in time).

Table 1
Prob. 1 n  m=p iter. time(s) o
1-10 3 30 10 1.0 0.731 0.0727
11-20 4 30 10 46.7 115.389 330.295
21-30 5 30 10 36.1 103.633 190.338
31-36 6 30 10 148.3 283.85 500.628
37-44 3 20 30 374 285.166 456.730
4

45-53 20 30 110.7  1626.383  3053.979

The results in the tables show that Algorithm 1 is efficient for problems where
¢ is small (< 6). Algorithm 2 is much more efficient than Algorithm 1. In fact,
Algorithm 2 can be used to solve problems up to 25-dual variables.
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As it is expected, the running time is much more sensitive to growth in ¢, the
number of constraints of the follower variational inequality, than to growth in the
numbers of the z-variables (parametric) and the y-variables, the number of the
constraints of the leader problem.

Table 2
Prob. 1 n  m=p iter. time(s) o
1-10 7 50 30 114 48.170 31.536

11-20 10 50 30 45.2 217.924 295.999
21-30 15 20 35 123.5 678.846 402.214
31-40 20 20 20 932.3 1963.848  2030.305
41-46 25 25 25 1736.2  12838.056  7877.376

Remark. A very short version without proofs and detail description of the algo-
rithms will appear as a short communication in Vietnam Journal of Mathematics.
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