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INCREASING POSITIVELY HOMOGENEOUS

FUNCTIONS DEFINED ON R
n

J. E. MARTINEZ-LEGAZ1 AND A. M. RUBINOV2

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. The theory of IPH (increasing positively homogeneous of degree
one) functions defined on the cone R

n
+ of all vectors with nonnegative coordi-

nates is well developed. In this paper we present a suitable extension of this
theory for IPH functions defined on the entire space R

n.

1. Introduction

In this paper we study IPH (increasing positively homogeneous of degree one)
functions defined on the n-dimensional space R

n. The theory of IPH functions
defined on the cone R

n
+ of all vectors with nonnegative coordinates is well devel-

oped [6]. Two main results form the core of this theory. First, each IPH function
p defined on R

n
+ can be represented as the Minkowski gauge of a certain normal

closed subset U of R
n
+, namely U = {x ∈ R

n
+ : p(x) ≤ 1}. (A set U is called

normal if (x ∈ U, y ∈ R
n
+, y ≤ x) =⇒ y ∈ U). Vice versa, the Minkowski gauge

of a normal closed set is an IPH function. The second result is based on ideas
of abstract convexity: each IPH function defined on R

n
+ can be represented as

the upper envelope of a set of so-called min-type functions. This result can be
considered as a certain form of a dual representation of IPH functions.

IPH functions can be useful for the description of radiant and co-radiant down-
ward sets and, through them, can have applications to the study of some NTU
games arising in Mathematical Economics [1, 8, 5] and to the analysis of topical
functions, which are used in the analysis of discrete event systems [2, 3, 4]. IPH
functions defined on R

n
+ have many interesting applications (see, for example, [7],

where some applications to nonlinear penalty functions have been examined). In
order to extend these applications to a more general class of problems we need to
extend, in a suitable way, the above mentioned results to IPH functions defined
on the entire space R

n.
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Thus we need to give two kinds of presentations of IPH functions defined on
R

n: one of them, which can be called primal, is an analogue of a representation
through the Minkowski gauge of a normal set for IPH functions defined on R

n
+.

The other, which can be called dual, is based on the representation of an IPH
function as the upper envelope of a certain set of simple (elementary) functions.
In the current paper we examine both primal and dual representations.

As it turns out, the theory of IPH functions defined on R
n is much more

complicated than that for IPH functions defined on R
n
+. Namely, a primal repre-

sentation for IPH functions that attend both positive and negative values can be
given only through a certain pair of sets. We cannot use min-type functions for
a dual representation. This presentation can be given by functions that coincide
with a min-type function on a certain cone, which depends on the function, and
is equal to −∞ outside of this cone.

The paper has the following structure. In Section 2 we provide some brief
preliminary definitions and results related to IPH functions. The primal repre-
sentation of IPH functions is examined in Section 3. Abstract convexity of IPH
functions is studied in Section 4. Finally in Section 5 abstract convexity and
abstract concavity of nonnegative IPH and DPH functions are examined.

2. The basic properties of IPH functions

Let I = 1, . . . , n be a finite set of indices. Consider the space R
n of all vectors

(xi)i∈I . We shall use the following notations:

• if x ∈ R
n, then xi is the i-th coordinate of x;

• if x, y ∈ R
n then x ≥ y ⇔ xi ≥ yi for all i ∈ I;

• if x, y ∈ R
n then x� y ⇔ xi > yi for all i ∈ I;

• R
n
+ = {x = (xi)i∈I ∈ R

I : xi ≥ 0 for all i ∈ I};
• R

n
−

= {x = (xi)i∈I ∈ R
I : xi ≤ 0 for all i ∈ I};

• R := R
1

• R̄ = R ∪ {−∞} ∪ {+∞} ≡ [−∞,+∞].
• R+∞ = R ∪ {+∞} ≡ (−∞,+∞].
• R++ = {x ∈ IR : x > 0}
In this paper we accept the following conventions:

0 × (+∞) = 0, 0 × (−∞) = 0,
0

0
= 0.

We need to define the supremum and the infimum over the empty set. This
definition depends on the universal set. If A ⊆ R is the universal set of numbers
then the supremum of the empty set is equal to inf A and the infimum of the
empty set is equal to supA. Thus to define the supremum of the empty set we
need to indicate the universal set A. In the sequel we consider either A = R or
A = R++ := {x ∈ R : x > 0}. In the former case sup ∅ = −∞, in the latter case
sup ∅ = 0, in both cases inf ∅ = +∞.

Let K be either the space R
n, the cone R

n
+ or the cone R

n
−
. A function

p : K → R̄ is called increasing if x ≥ y =⇒ p(x) ≥ p(y). A function p : K → R̄
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is called positively homogeneous of degree one if p(λx) = λp(x) for all x ∈ R
n

and λ ≥ 0. In this paper we shall study IPH (increasing positively homogeneous
of degree one) functions p : R

n → ĪR. We shall consider only IPH functions p
such that 0 ∈ dom p := {x ∈ R

n : −∞ < p(x) < +∞}.
We now describe some simple properties of IPH functions p defined on R

n.

Proposition 2.1. Let p : R
n → R̄ be an IPH function. Then

1) p(0) = 0;
2) p(x) ≥ 0 for x ≥ 0 and p(x) ≤ 0 for x ≤ 0;
3) If p(x) = 0 for a strictly positive vector x then p(y) ≤ 0 for all y ∈ R

n; if
p(x) = 0 for a strictly negative vector x then p(y) ≥ 0 for all y ∈ R

n.
4) If there exists a point x ∈ R

n such that p(x) = +∞, then p(y) = +∞ for all
y � 0; if there exists a point x ∈ R

n such that p(x) = −∞ then p(y) = −∞
for all y � 0.

5) p is continuous on int R
n
+ and int R

n
−
.

Proof. 1) It follows from positive homogeneity of p.

2) It follows from monotonicity of p.

3) Let p(x) = 0 for a point x ∈ int R
n
+. Since x � 0, it follows that for each

y ∈ R
n there exists λ > 0 such that y ≤ λx. Hence p(y) ≤ λp(x) = 0. The

similar argument shows that p(y) ≥ 0 for each y ∈ R
n if there exists x� 0 such

that p(x) = 0.

4) Let x ∈ R
n be a point such that p(x) = +∞ and y � 0. Then there exists

λ > 0 such that x ≤ λy. Since p is IPH, it follows that p(y) = +∞. A similar
argument shows that p(y) = −∞ if there exists x ∈ R

n such that p(x) = −∞.

5) We shall prove continuity only for x� 0. Due to 4) we only need to consider
functions p that are finite on int R

n
+. Let xn → x and ε > 0. Then

(1 − ε)x ≤ xn ≤ (1 + ε)x

for sufficiently large n, so

(1 − ε)p(x) = p((1 − ε)x) ≤ p(xn) ≤ p((1 + ε)x) = (1 + ε)p(x).

Thus p(xn) → p(x).

If x 6∈ (int R
n
+) ∪ (int R

n
−
) then an IPH function p can be discontinuous at x.

We now give a corresponding example.

Example 2.1. Let n = 2. Consider the following function p:

p(x) =

{

x1 + x2 x ∈ R
2
−
∪ R

2
+

0 otherwise

It is easy to check that p is an IPH function. This function is discontinuous,
moreover it is neither lower semicontinuous nor upper semicontinuous.

A set U ⊂ IRn is called downward if (x ∈ U, x′ ≤ x) =⇒ x′ ∈ U (in particular,
the empty set is downward).
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Proposition 2.2. If p is an IPH function then its level sets {x ∈ R
n : p(x) ≤ c}

are downward for all c ∈ R̄.

Proof. It follows from the monotonicity of p.

The set of all IPH functions p : R
n → R+∞ is a convex cone, the set of all

IPH functions p : R
n → R̄ is a complete lattice (with respect to the pointwise

supremum and infimum).

Let p be an IPH function and let

p+(x) = max(p(x), 0), p−(x) = min(p(x), 0).

Then p+ and p− are IPH functions, p+ is nonnegative, p− is nonpositive and
p(x) = p+(x) + p−(x) for all x ∈ R

n.

A function q : R
n → R̄ is called decreasing if x ≥ y =⇒ q(x) ≤ q(y). We shall

also study DPH (decreasing positively homogeneous of the degree one) functions.

If p is an IPH function then the function p∗(x) = −p(−x) is again IPH. The
function p generates also two DPH functions: q(x) = p(−x) and q∗(x) = −p(x) ≡
−q(−x). Thus DPH functions can be studied with the help of IPH functions.
Vice versa, each DPH function q generates two IPH functions: p(x) = q(−x) and
p∗(x) = −q(x), hence IPH functions can be studied by means of DPH ones.

3. Primal representation of IPH functions

We need the following definitions. A set U ⊂ R
n is called radiant (star-shaped

with respect to zero) if (x ∈ U, λ ∈ (0, 1) =⇒ λx ∈ U). If U is a nonempty closed
radiant set then 0 ∈ U . We now define the Minkowski gauge of a radiant set. The
set R++ of positive numbers will be used as the universal set for this definition,
so we assume that the supremum of the empty set is equal to inf R++ = 0 and
the infimum of the empty set is equal to supR++ = +∞. Let U be a radiant set.
The function µU defined by

µU (x) = inf{λ > 0 : x ∈ λU}, (x ∈ R
n)

is called the Minkowski gauge of a set U . Clearly µU is a nonnegative positively
homogeneous function. The following proposition holds (see, for example, [6])

Proposition 3.1. Let P+ be the set of all nonnegative lower semicontinuous
positively homogeneous functions defined on R

n and U+ be the set of all closed
radiant sets. Then the mapping ϕ defined on P+ by

ϕ(p) = {x ∈ R
n : p(x) ≤ 1}(3.1)

is a one-to-one mapping of P+ onto U+. The inverse mapping ϕ−1 : U+ → P+

has the following form: ϕ−1(U) = µU .

Remark 3.1. Let p be a lower semicontinuous nonnegative positively homo-
geneous function. Then the set U = {x ∈ R

n : p(x) ≤ 1} is nonempty if and
only if p(0) 6= +∞, which is equivalent to 0 ∈ dom p. Indeed, if p(0) 6= +∞
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then p(0) = 0 so U is nonempty. If U is nonempty, then due to the positive
homogeneity and lower semicontinuity of p, we have p(0) = 0.

Due to Proposition 3.1 we can easily verify that a nonnegative lower semi-
continuous IPH function can be described as the Minkowski gauge of a closed
downward radiant set.

Proposition 3.2. Let P+
1 be the set of all nonnegative lower semicontinuous

IPH functions defined on R
n and U+

1 be the set of all closed downward radiant
sets. Then the restriction to P+

1 of the mapping ϕ defined on by (3.1) is a one-
to-one mapping of P+

1 onto U+
1 and the inverse mapping ϕ−1 : U+

1 → P+
1 has the

form: ϕ−1(U) = µU .

Proof. Due to Proposition 3.1, we need to check only that the following assertions
hold:

1) for an increasing function p the set Up = {x ∈ R
n : p(x) ≤ 1} is downward.

Indeed, it follows directly from the definition of a downward set.

2) for a closed downward radiant set U the function µU is increasing. In fact, if
U is empty then µU = +∞, hence µU is increasing. Assume that U is nonempty.
Let x ≥ y and λ > 0 be a number such that x/λ ∈ U . Since U is downward,
it follows that y/λ ∈ U . Thus {λ > 0 : x ∈ λU} ⊂ {λ > 0 : y ∈ λU}, so
µU(x) ≥ µU (y).

A set V ⊂ R
n is called co-radiant if (x ∈ V, λ > 1) =⇒ λx ∈ V . The

Minkowski co-gauge νV of a co-radiant set V is defined by

νV (x) = sup{λ > 0 : x ∈ λV }.
We again assume that the infimum of the empty set is equal to +∞ and the
supremum of the empty set is equal to zero. The following assertions hold ([6]):

Proposition 3.3. A set U is radiant if and only if its complement V = R
n \ U

is co-radiant. If U is radiant then µU = νV .

Proposition 3.4. Let P− be the set of all nonnegative upper semicontinuous
positively homogeneous functions defined on R

n and U− be the set of all closed
co-radiant sets. Then the mapping ψ defined on P− by

ψ(p) = {x ∈ R
n : p(x) ≥ 1}(3.2)

is a one-to-one mapping of P− onto U−. The inverse mapping ψ−1 : U− → P−

has the following form: ψ−1(V ) = νV .

Remark 3.2. Let p be an upper semicontinuous nonnegative positively homo-
geneous function. Then the set V = {x ∈ IRn : p(x) ≥ 1} is nonempty if and
only if p 6= 0.

Consider now a nonpositive IPH function p with 0 ∈ dom p. Let V = {x ∈
R

n : p(x) ≤ −1}. It is easy to check that this set is downward, co-radiant and
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0 /∈ V . Let us calculate the Minkowski co-gauge of the set V :

νV (x) = sup
{

λ > 0 :
x

λ
∈ V

}

= sup
{

λ > 0 : p
(x

λ

)

≤ −1
}

= sup{λ > 0 : −p(x) ≥ λ} = −p(x).
Using this presentation of the Minkowski co-gauge and Proposition 3.4, we can
easily prove that the following assertion holds:

Proposition 3.5. Let P−

1 be the set of all nonpositive lower semicontinuous IPH
functions defined on R

n and U−

1 be the set of all closed downward co-radiant sets.
Then the mapping ξ defined by ξ(p) = {x ∈ R

n : p(x) ≤ −1} is a one-to-one
mapping of P−

1 onto U−

1 . The inverse mapping ξ−1 : U−

1 → P−

1 has the following
form: ξ−1(V ) = −νV .

We now examine lower semicontinuous IPH functions p : R
n → R+∞ := R ∪

{+∞} that are not necessary nonpositive or nonnegative. For this purpose we
introduce some definitions. Let x ∈ R

n and let Rx = {λx : λ > 0} be the ray
emanating from the origin and passing through x. Let U be a closed downward
radiant set and V be a closed downward co-radiant set. Consider the sets

TU = {x ∈ U : Rx 6⊂ U}, QV = {x ∈ V : Rx ∩ V 6= ∅}.(3.3)

It is well-known and easy to check that x ∈ TU if and only if µU (x) > 0 and that
x ∈ QU if and only if νV (x) > 0. Let p : R

n → R+∞ be a lower semicontinuous
function with 0 ∈ dom p. Consider the sets

P+ = {x : p(x) > 0}, P0 = {x : p(x) = 0}, P− = {x : p(x) < 0}.(3.4)

If p is IPH and 0 ∈ dom p then P0 is nonempty, since 0 ∈ P0. Note that

P+ ∩ P− = ∅.(3.5)

Denote by P1 the set of all lower semicontinuous IPH functions p : R
n → R+∞

and by U1 the set of all pairs (U, V ) such that

1) U is a closed downward radiant set;
2) V is a closed downward co-radiant set such that Rx 6⊂ V for all x ∈ R

n;
3) the following holds:

TU ∩QV = ∅.(3.6)

Theorem 3.1. The mapping χ1 defined on P1 by χ(p) = (U, V ), where

U = {x ∈ R
n : p(x) ≤ 1} and V = {x ∈ R

n : p(x) ≤ −1},

is a one-to-one mapping of P1 onto U1. The inverse mapping χ−1
1 : U1 → P1 has

the following form: χ−1
1 (U, V ) = µU − νV .

Proof. Let p ∈ P1. Consider the functions p+(x) = max(p(x), 0) and p−(x) =
min(p(x), 0). Then

p = p+ + p−, p+ ≥ 0, p− ≤ 0.(3.7)
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Clearly p+ and p− are lower semicontinuous IPH functions. We have U = {x :
p+(x) ≤ 1}. It follows from Proposition 3.2 that U is a closed downward radiant
set and p+ = µU . We also have V = {x : p−(x) ≤ −1}. Due to Proposition 3.5
V is a closed downward co-radiant set and p− = −νV . Since p(x) > −∞ for all
x, it follows that p− is finite, so νV is finite. Applying the definition of νV we
conclude that V does not contain any ray Rx with x ∈ R

n. We have

p = µU − νV .(3.8)

Note that µU (x) > 0 if and only if the ray Rx is not contained in the set U and
that νV (x) > 0 if and only if Rx ∩ V 6= ∅. Therefore TU = P+, and QV = P−. It
follows from (3.5) that (3.6) holds. Thus (U, V ) ∈ U1, so χ maps P1 into U1.

Let (U, V ) ∈ U1. Then U is a closed downward radiant set, so the function µU

is well defined; this function is nonnegative, IPH and lower semicontinuous; V is a
closed downward co-radiant set and V does not contain any ray Rx with x ∈ R

n.
Then the function νV is well-defined, nonnegative, DPH, upper semicontinuous
and finite. Thus the difference p = µU − νV is well defined. Clearly, p ∈ P1. It
follows from the definition of U1 that (3.6) holds; hence

µU(x) > 0 =⇒ νV (x) = 0, νV (x) > 0 =⇒ µU (x) = 0.(3.9)

Consider the set U ′ = {x : p(x) ≤ 1}. Let x ∈ U ′. If p(x) < 0 then νV (x) > 0,
so µU(x) = 0. If p(x) = 0 then also µU (x) = 0. If p(x) > 0 then µU (x) > 0,
so νV (x) = 0, which implies µU (x) = p(x) ≤ 1. Thus for all x ∈ U ′ we have
µU(x) ≤ 1. It follows from Proposition 3.2 that x ∈ U , therefore U ′ ⊂ U .
Assume now that x ∈ U . Then p(x) ≤ µU (x) ≤ 1, so x ∈ U ′. We have proved
that U = {x : p(x) ≤ 1}. Consider now a point x such that p(x) ≤ −1. We
have νV (x) > 0, so µU (x) = 0 and p(x) = −νV (x). Since (see Proposition 3.5)
V = {x : νV (x) ≥ 1}, it follows that V = {x : p(x) ≤ −1}. We have proved
that there exists p ∈ P1 such that (U, V ) = χ(p). Thus χ maps P1 onto U1. It
easily follows from Propositions 3.2 and 3.5 that χ is a one-to-one one-to-one
mapping.

Remark 3.3. Let p : R
n → R+∞ be a lower semicontinuous IPH function,

U = {x : p(x) ≤ 1} and V = {x : p(x) ≤ −1}. Assume that both U and V are
nonempty. We have

⋃

λ>0

λU = dom p and
⋃

λ>0

λV = P−. Since

⋂

λ>0

λU = {x : p(x) ≤ 0},

it follows that

P0 =
(

⋂

λ>0

λU
)

\ P− =
(

⋂

λ>0

λU
)

\
(

⋃

λ>0

λV
)

.

Remark 3.4. A similar scheme can be applied for a primal representation of
lower semicontinuous IPH functions mapping into R−∞ := R ∪ {−∞}. Such
functions p have the form p = µU − νV , where V is a closed downward co-radiant
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set and U is a closed downward radiant set that enjoys the following property:
for each x ∈ R

n there exists λ > 0 such that λx ∈ U .

We now give a primal presentation for upper semicontinuous IPH functions
p∗ : R

n → R−∞. Let p∗ be such a function. Then the function p defined by
p(x) = −p∗(−x) is a lower semicontinuous IPH function mapping into R+∞,
hence (see Theorem 3.1) p = µU − νV , where

U = {x : p(x) ≤ 1} = {x : p∗(−x) ≥ −1},
V = {x : p(x) ≤ −1} = {x : p∗(−x) ≥ 1},

and (U, V ) ∈ U1. Using this construction and Theorem 3.1 we can conclude that
the following assertion holds.

Theorem 3.2. Let P2 be the set of all upper semicontinuous functions p∗ : R
n →

R−∞. The mapping ω defined on P2 by ω(p∗) = (U, V ), where

U = {x ∈ R
n : p∗(−x) ≥ −1} and V = {x ∈ R

n : p∗(−x) ≥ 1},

is a one-to-one mapping of P2 onto U1. The inverse mapping ω−1 : U1 → P2 has
the following form: ω−1(U, V ) = p∗, where p∗(x) = −µU(−x) + νV (−x).

Let q : R
n → R̄ be a DPH function. Then the functions p(x) = −q(x) and

p∗(x) = q(−x) are IPH. Applying the results obtained for IPH functions we can
easily give a representation of lower semicontinuous and upper semicontinuous
DPH functions through the Minkowski gauges and the Minkowski co-gauges of
suitable sets.

4. Abstract convexity of IPH functions

We need the following definitions [6]. A set K ⊂ R
n is called conic if λK ⊂ K

for all λ. Let L be the set of positively homogeneous functions l : K → R̄ defined
on a conic set K. A function f : K → R̄ is called abstract convex with respect
to L, or L-convex if f(x) = sup{l(x) : l ∈ supp(f, L)}, where

supp(f, L) = {l ∈ L : l(x) ≤ f(x) (x ∈ K)}(4.1)

is the set of all L-minorants of f. Since the functions l ∈ L are positively homo-
geneous, it follows that each L- convex function is positively homogeneous, too.
Let f be an L-convex function. A set ∂Lf(x) = {l ∈ supp(f, L) : l(x) = f(x)} is
called the L-subdifferential of the function f . Clearly ∂Lf(x) is nonempty if and
only if f(x) = max{l(x) : l ∈ supp(f, L)}.

Abstract concavity with respect to L can be defined in a similar manner. A
function f : K → R̄ is called abstract concave with respect to L, or L-concave, if
f(x) = inf{l(x) : l ∈ supp+(f, L)}, where

supp+(f, L) = {l ∈ L : (∀x ∈ K) l(x) ≥ f(x)}
is the set of all L-majorants of f .
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In the study of abstract convexity of IPH functions we need a certain notation.
Each vector l ∈ R

n generates the following sets of indices

I+(l) = {i ∈ I : li > 0}, I0(l) = {i ∈ I : li = 0}, I−(l) = {i ∈ I : li < 0}
(4.2)

(recall that I = {1, 2, . . . , n}). Let l ∈ IRn and c ∈ R. Denote by c/l the vector
with coordinates

(c

l

)

i
=

{ c

li
i /∈ I0,

0 i ∈ I0.

First we recall some results related to IPH functions defined on R
n
+. For each

l ∈ R
n
+ consider the function ϕl defined on R

n
+ by

ϕl(x) = min
i/∈I0(l)

lixi, (l 6= 0), ϕl(x) = 0, (l = 0).(4.3)

We shall call ϕl the min-type function corresponding to l. Let L = {ϕl : l ∈ R
n
+}.

The following result holds ([6]).

Proposition 4.1. Let p : R
n
+ → [0,+∞) be an IPH function. Then for each x ∈

R
n
+ the L-subdifferential ∂Lp(x) is nonempty. If p(x) > 0 then p(x)/x ∈ ∂Lp(x).

Corollary 4.1. A lower semicontinuous function p : R
n
+ → [0,+∞] is L-convex

if and only if p is IPH.

Proof. Each L-convex function is IPH, as the upper envelope of IPH functions.
On the other hand, applying Proposition 4.1 we conclude that every IPH finite-
valued function p : R

n
+ → [0,+∞) is L-convex. Consider now an IPH function

p : R
n
+ → [0,+∞]. It is easy to check that p is the upper envelope of a family of

finite-valued IPH functions (for the proof of a similar result see Proposition 4.6),
hence p is L-convex as the upper envelope of a family of L-convex functions.

The question arises whether it is possible to generalize Corollary 4.1 for IPH
functions defined on R

n and mapping into R+∞. More precisely, for each l ∈ R
n
+

consider the function ϕ̃l defined on R
n by

ϕ̃l = min
i/∈I0(l)

lixi, (l 6= 0), ϕ̃l = 0, (l = 0).(4.4)

Let L̃ = {ϕ̃l : l ∈ IRn
+}. Then each L-convex function is IPH. Does the re-

verse assertion hold at least for finite-valued functions ? The answer is negative.
Moreover, the answer is negative in the following much more general situation.

Let L+
n be a set of all functions ` of the form

`(x) = min
i=1,... ,k

[li, x], li ∈ R
n
+, i = 1, . . . , k, k ≤ n(4.5)

Here [u, v] stands for the inner product of vectors u and v. Clearly each L+
n -convex

function is IPH and does not attain the value −∞. Note that L̃ ⊂ L+
n .

Proposition 4.2. There exists a continuous IPH function p defined on R
n and

mapping into R such that the support set supp(p,L+
n ) is empty.
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Proof. Let p : R
n → R be a superlinear (concave positively homogeneous) func-

tion. The function p is continuous. It is well known that there exists a unique
convex compact set U such that p(x) = infu∈U [u, x]. The function p is increasing
(hence IPH) if and only if U ⊂ R

n
+. Consider now a function ` ∈ L+

n . Then
there exists a positive integer k ≤ n such that `(x) = mini=1,... ,k[li, x], where
li ∈ R

n
+, i = 1, . . . , k. This function is superlinear and `(x) = minu∈U`

[u, x],
where U` is the convex hull of n vectors l1, . . . , ln. It is well-known (and easy to
check) that the inequality `(x) ≤ p(x) for all x ∈ R

n is equivalent to the inclusion
U` ⊇ U . Note that the convex hull U` of n points in the n-dimensional space
has an empty interior. Hence if the interior of the set U is nonempty, then the
inclusion U` ⊇ U is not possible.

Min-type functions are very simple and convenient. In order to apply these
functions to the study of IPH functions defined on R

n we shall consider their
restriction to certain cones. We begin with the definition of these cones.

For each l ∈ R
n consider the set

Kl = {y ∈ R
n : yi ≥ 0 (i ∈ I0(l)); max

i∈I−(l)
liyi ≤ min

i∈I+(l)
liyi}.(4.6)

Since we consider functions mapping into the real line, we assume that the max-
imum over the empty set is equal to inf R = −∞ and the minimum over the
empty set is equal to sup R = +∞.

Due to the equality maxi∈I−(l) liyi = −mini∈I |li|yi, we have

Kl = {y ∈ R
n : yi ≥ 0 (i ∈ I0(l)); min

i∈I+(l)
|li|yi + min

i∈I−(l)
|li|yi ≥ 0}.(4.7)

Consider also the sets

K+
l = {y ∈ Kl : (∀i ∈ I+(l)) yi ≥ 0};(4.8)

K−

l = {y ∈ Kl : (∃i ∈ I+(l)) yi ≤ 0}.(4.9)

Let us describe some properties of the sets Kl,K
+
l and K−

l .

1) Kl is a closed convex cone. This fact easily follows from the sublinearity
of the function x 7→ max

i∈I−(l)
liyi and the superlinearity of the function x 7→

min
i∈I+(l)

liyi.

2) K+
l is a closed convex cone; K−

l is a closed cone, which is the union over

the finite set I+
l of convex closed cones (K−

l )i = {y ∈ Kl : yi ≤ 0};
3) K+

l ∪K−

l = K l; K+
l ∩K−

l = {y ∈ Kl : (∀ i ∈ I+) yi ≥ 0 (∃ i ∈ I+) yi =
0}.

4) If l ∈ R
n
+ then Kl = {y ∈ R

n : (∀i ∈ I0(l))) yi ≥ 0} and K+
l = R

n
+. Indeed

for l ∈ R
n
+ we have I−(l) = ∅, so max

i∈I−(l)
liyi = −∞. In particular if l � 0

then Kl = R
n.

5) If l ∈ IRn
−

then Kl = {y ∈ R
n : (∀i ∈ I0) yi ≥ 0}. We also have K+

l = Kl.

If l � 0 then Kl = K+
l = R

n.
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6) The set {y : y ≥ 1/l} = (1/l) + R
n
+ is contained in K+

l . Indeed if y ≥ 1/l
then yi ≥ 0 for i ∈ I0(l) ∪ I+(l) and max

i∈I−(l)
liyi ≤ 1 ≤ min

i∈I+(l)
liyi.

7) The set {y : y ≥ (−1)/l} = (1/l) + R
n
+ is contained in Kl. In fact if

y ≥ (−1)/l then max
i∈I−(l)

liyi ≤ −1 ≤ min
i∈I+(l)

liyi and yi ≥ 0 for i ∈ I0(l).

The following property of the cone K l
+ will be very important in the sequel.

Proposition 4.3. For each l ∈ R
n the cone K+

l is upward, that is, (x ∈ K+
l , x

′ ≥
x) =⇒ x′ ∈ K+

l .

Proof. It follows directly from (4.7) and (4.8).

Lemma 4.1. Let x = 1/l, where l /∈ IRn
−
. Then

Kl =
{

y ∈ R
n : y ≥

(

min
i∈I+(x)

yi

xi

)

x
}

.

Proof. Since l /∈ R
n
−
, it follows that I+(l) 6= ∅. We have I+(l) = I+(x), I0(l) =

I0(x), I−(l) = I−(x). Let us verify that for all y ∈ Kl the inequality

y ≥
(

min
i∈I+(x)

yi

xi

)

x(4.10)

holds. Let j ∈ I+(x). Then xj > 0 and yj/xj ≥ min
i∈I+(x)

(yi/xi). So for each

y ∈ R
n:

yj = xj
yj

xj
≥ xj min

i∈I+(x)

yi

xi
, j ∈ I+(x).(4.11)

We also have for y ∈ Kl:

yj ≥ 0 = xj = xj min
i∈I+(x)

yj

xj
, j ∈ I0(x).(4.12)

Assume now that j ∈ I−(x). Since y ∈ Kl, it follows that

yj

xj
≤ max

i∈I−(x)

yi

xi
≤ min

i∈I+(x)

yi

xi
.

Since xi < 0, we have

yj = xj
yj

xj
≥ xj min

i∈I+(x)

yi

xi
.(4.13)

The inequality (4.10) follows directly from (4.11), (4.12) and (4.13).

Consider now a vector y ∈ R
n such that (4.10) holds. Clearly yi ≥ 0 for

i ∈ I0(x). Let I−(x) be nonempty and i ∈ I−(x). Then liyi = yi/xi ≤ min
i∈I+(x)

liyi,

so

max
i∈I−(x)

liyi ≤ min
i∈I+(l)

liyi.

We have proved that y ∈ Kl.
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Corollary 4.2. Let l = 1/x. Then

K+
l = {y ∈ R

n : y ≥
(

min
i∈I+(x)

yi

xi

)

x, min
i∈I+(x)

yi

xi
≥ 0}.

Lemma 4.2. Let l = (−1)/x and I+(l) 6= ∅. Then

K−

l =
{

y ∈ R
n : y ≥

(

max
i∈I−(x)

yi

xi

)

x, max
i∈I−(x)

yi

xi
≥ 0
}

.

Proof. We have I+(l) = I−(x), I0(l) = I0(x) and I−(l) = I+(x). Let y ∈ K−

l .
Then

max
i∈I−(x)

yi

xi
= max

i∈I+(l)
(−li)yi = − min

i∈I+(l)
liyi ≥ 0.

Let us check that

y ≥
(

max
i∈I−(x)

yi

xi

)

x.(4.14)

If j ∈ I−(x) then yj = xj(yj/xj) ≥ xj max
i∈I−(x)

(yi/xi). The same inequality trivially

holds for j ∈ I0(x). Let j ∈ I+(x). Since y ∈ K−

l , it follows that

yj

xj
≥ min

i∈I+(x)

yi

xi
≥ min

i∈I−(x)

yi

xi
.

Thus

yj = xj
yj

xj
≥ xj min

i∈I−(x)

yi

xi
.

We have checked (4.14).

Consider now a vector y such that c ≡ max
i∈I−(x)

(yi/xi) ≥ 0 and y ≥ cx. Clearly

yi ≥ 0 for i ∈ I0(x). Let j ∈ I+(x). Then yj/xj ≥ c = max
i∈I−(x)

(yi/xi), so

max
i∈I−(l)

liyi = − min
j∈I+(x)

yj

xj
≤ − max

i∈I−(x)

yi

xi
= min

i∈I+(l)
liyi.

Thus y ∈ Kl. Since min
i∈I+(l)

liyi = −c ≤ 0, it follows that y ∈ K−

l .

Each vector l ∈ R
n with nonempty I+(l) generates the following functions:

g+
l (x) =

{

min
i∈I+(l)

lixi x ∈ K+
l

−∞ x 6 ∈K+
l

(4.15)

g−l (x) =

{

min
i∈I+(l)

lixi x ∈ K−

l

−∞ x 6 ∈K−

l

(4.16)

Remark 4.1. The function g+
l is IPH for each l ∈ R

n with nonempty I+(l).

This follows easily from Proposition 4.3. The functions g−l are not IPH.

The following simple statement will be useful in the sequel.
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Proposition 4.4. Let p : R
n → R̄ be an IPH function and x ∈ dom p be a point

such that p(x) 6= 0. Then l = (p(x)/x) /∈ R
n
−
.

Proof. If x ≥ 0 then p(x) ≥ 0, so l ≥ 0. If x ≤ 0 then p(x) ≤ 0, so again l ≥ 0.
If there exist indices i1 and i2 such that xi1 < 0 and xi2 > 0 then I+(l) is again
nonempty.

Let G be the set of all functions of the form (4.15) or (4.16) with l ∈ (Rn \R
n
−
).

We also add the functions g0 and g−∞ to the set G. By definition g0(x) = 0 and
g−∞(x) = −∞ for all x ∈ R

n.

Theorem 4.1. Let p be an IPH function and x ∈ dom p be a point such that
p(x) 6= 0. Let l = p(x)/x. Then the subdifferential ∂Gp(x) is nonempty and the
following statements hold:

1) If p(x) > 0 then g+
l ∈ ∂pG(x).

2) If p(x) < 0 then g−l ∈ ∂pG(x).

Proof. It follows from Proposition 4.4 that I+(l) 6= ∅.
1) Let p(x) > 0. In this case I+(l) = I+(x), I0(l) = I0(x) and I−(l) = I−(x).

The cone K+
l can be represented in the following form:

K+
l = {y ∈ R

n : (∀ (i ∈ I+(x) ∪ I0(x))yi ≥ 0; max
i∈I−(x)

yi

xi
≤ min

i∈I+(x)

yi

xi
}.

Let y ∈ K+
l . Applying the monotonicity of p and Lemma 4.1 (with x replaced

by
x

p(x)
), we can conclude that p(y) ≥ p(cx), where c = min

i∈I+(x)
(yi/xi). It follows

from the definition of K+
l that yi ≥ 0 for i ∈ I+(x), so c ≥ 0. The positive

homogeneity of p implies

p(y) ≥ p(cx) = cp(x) = p(x) min
i∈I+(x)

yi

xi
= min

i∈I+(x)

p(x)

xi
yi = min

i∈I+(l)
liyi.

It follows from this inequality and (4.15) that g+
l (y) ≤ p(y) for all y ∈ R

n. Since

x ∈ K+
l , we have g+

l (x) = min
i∈I+(x)

lixi = p(x). Thus g+
l ∈ ∂Gp(x).

2) Let p(x) < 0. If p(x) = −∞ then g−∞ ∈ ∂G(x). Assume that p(x) > −∞.
In this case we have I+(l) = I−(x), I0(l) = I0(x), I−(l) = I+(x). We also have

K−

l = {y : (∀i ∈ I0(x)) yi ≥ 0;

max
i∈I+(x)

p(x)

xi
yi ≤ min

i∈I−(x)

p(x)

xi
yi, min

i∈I−(x)

p(x)

xi
yi ≤ 0}.

Since p(x) < 0, it follows that the following inequalities hold for y ∈ K−

l :

min
i∈I+(x)

yi

xi
≥ max

i∈I−(x)

yi

xi
; max

i∈I−(x)

yi

xi
≥ 0.(4.17)



326 J. E. MARTINEZ-LEGAZ AND A. M. RUBINOV

Let y ∈ K−

l . Since p is increasing it follows from Lemma 4.2 (with x replaced by
x

|p(x)| ) that p(y) ≥ p(c(y)x), with c(y) = max
i∈I−(x)

yi/xi ≥ 0. Hence

p(y) ≥ c(y)p(x) = p(x) max
i∈I−(x)

yi

xi
= min

i∈I+(l)
liyi.(4.18)

Thus p(y) ≥ g−l (y) for all y ∈ R
n. Let y = x. We have

min
i∈I+(l)

lixi = p(x) < 0.

So x ∈ K−

l . Thus g−l (x) = min
i∈I+(l)

lixi = p(x)

Let p be an IPH function. The following example demonstrates that the sub-
differential ∂Gp(x) may be empty if p(x) = 0.

Example 4.1. Let n = 2 and

p(x) =

{

−√
x1x2 x ∈ R

2
−
,

0 otherwise.

Then ∂pGp(−1, 0) = ∅.
Indeed, assume on the contrary that there exists g ∈ ∂Gp(−1, 0). First assume

that g = g−l for a certain l /∈ R
2
−
. If l = (l1, l2), with l1 > 0 and l2 > 0 then, due

to Lemma 4.2, we have (−1, 0) ∈ K−

l . So

0 = p(−1, 0) = g−l (−1, 0) = min(−l1, 0),
and hence l1 ≤ 0, which is a contradiction. Thus at least one of the numbers l1,
l2 is nonnegative. Assume now that l1 > 0 and l2 = 0. Then K−

l = {y : y2 ≥
0, y1 ≤ 0}. Since (−1, 0) ∈ K−

l , it follows that g−l (−1, 0) = −l1 < 0, and hence

g−l (−1, 0) 6= p(−1, 0). If l1 = 0 and l2 > 0 then K−

l = {y : y1 ≥ 0, y2 ≤ 0}.
Since (−1, 0) /∈ K−

l , it follows that g−l = −∞ 6= p(−1, 0). Thus l has at least one

negative coordinate. If l1 > 0 and l2 <, then K−

l = {y : l2y2 ≤ l1y1, y1 ≤ 0}. If

l1 < 0, l2 > 0 then K−

l = {y : l1y1 ≤ l2y2, y2 ≤ 0}. Since (−1, 0) /∈ K−

l in both

cases, it follows that g−l /∈ ∂Gp(−1, 0) for all l /∈ R
2
−
.

We now demonstrate that the subdifferential ∂Gp(−1, 0) does not contain func-
tions of the form g+

l with l /∈ R
2
−
. We have g+

l (x) > 0 = p(x) for all x � 0, so

g+
l /∈ supp(p,G) for all such l.

We shall now discuss abstract convexity of IPH functions with respect to the
set G. Note that the functions in G are not lower semicontinuous, so the upper
envelope of a subset of G is not necessary a lower semicontinuous function.

Proposition 4.5. Let p be an IPH function and x ∈ dom p, p(x) 6= 0. Then
p(x) = max{g(x) : g ∈ G}.

Proof. It follows directly from Theorem 4.1.

Proposition 4.6. Let p : R
n → R̄ be an IPH function and y /∈ dom p. Then

p(y) = sup{g(y) : g ∈ supp(p,G)}.
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Proof. Since y /∈ dom p, it follows that either p(y) = −∞ or p(y) = +∞.
If p(y) = −∞ then p(y) = g−∞(y) = sup{g(y) : g ∈ supp(p,G)}. Assume
p(y) = +∞. Let p̄ be a finite IPH function such that p̄(y) > 0 (such a function
exists). Let pn(x) = inf(p(x), np̄(x)). It follows from Proposition 4.5 that pn(y) =
max{g(y) : g ∈ G, g ≤ pn}. We also have p(y) = supn pn(y). Hence, p(y) =
sup{g(y) : g ∈ G, g ≤ p}.

Thus the equality p(x) = sup{g(x) : g ∈ supp(p,G)} holds at all points x such
that p(x) 6= 0. We now give a simple sufficient condition, which guarantees that
this equality holds also at points x such that p(x) = 0.

Let y ∈ R
n, I+(y) 6= ∅. For each δ > 0 consider the element yδ = y− δ1, where

1 = (1, . . . , 1).

Proposition 4.7. Let p : R
n → R̄ be an IPH function and y /∈ R

n
−

be a point
such that p(y) = 0 and p is lower semicontinuous at y. Assume that p(yδ) < 0
for all δ > 0. Then p(y) = sup{g(y) : g ∈ supp(p,G)}.

Proof. Since p is lower semicontinuous at the point y we have lim inf
δ→+0

p(yδ) ≥ 0.

Due to the inequality p(yδ) < 0, we can conclude that lim
δ→+0

p(yδ) = 0. Let

lδ = p(yδ)/yδ. Since p(yδ) < 0, it follows that g−lδ ∈ ∂Gp(yδ), that is, g−lδ (x) ≤ p(x)

for all x ∈ R
n, and g−lδ (yδ) = p(yδ). Since p(yδ) → 0 = p(y), the result follows.

Remark 4.2. Using the functions p∗(x) = −p(−x), we can give a representation
of upper semicontinuous IPH functions as lower envelopes of a certain set of func-
tions that are of max-type on the cones K+

l or K−

l and identically +∞ on their
respective complements. Using the functions q(x) = p(−x) and q∗(x) = −q(x),
we can give a representation of lower semicontinuous (upper semicontinuous, re-
spectively) DPH functions.

5. Abstract convexity and concavity

of nonnegative IPH and DPH functions

For nonnegative IPH and DPH functions representations by means of restric-
tions of min-type functions or max-type functions are much simpler. It follows
from Theorem 4.1 that we do not need functions of the form (4.16) in the study
of nonnegative functions. Also we can consider the functions

hl(x) =

{

mini∈I+(l) lixi x ∈ K+
l

0 x /∈ K+
l

(5.1)

instead of the functions g+
l defined by (4.15), for l with nonempty I+(l). Let H

be the set of all functions of the form (5.1) with l ∈ R
n \ R

n
−
. We also add the

function g0 ≡ 0 to the set H. Since K+
l is an upward set (see Proposition 4.3),

it follows that H consists of nonnegative IPH functions, hence each H-convex
function is IPH.
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Proposition 5.1. Let p be a nonnegative IPH function. Then ∂Hp(y) is non-
empty for all y ∈ R

n.

Proof. If p(y) > 0, we can use the same argument as in the proof of the first
part of Theorem 4.1. If p(y) = 0 then g0 ∈ ∂p(y), so ∂p(y) 6= ∅.

Let

h′l(x) =

{

−maxi∈I+(l) lixi x ∈ K+
l

0 x /∈ K+
l

(5.2)

and H ′ = {h′l : l ∈ R
n \ R

n
−
} ∪ {g0}.

Considering the functions q(x) = p(−x), we can conclude that the following
proposition holds:

Proposition 5.2. Let q be a nonnegative DPH function. Then ∂H′q(y) is non-
empty for all y ∈ R

n.

Corollary 5.1. A nonnegative function p is H-convex if and only if p is IPH.
A nonnegative function q is H ′-convex if and only if q is DPH.

Proof. It follows directly from Proposition 5.1 and from Proposition 5.2, respec-
tively.

We now give an infimal representation of DPH nonnegative functions and a
supremal representation of IPH nonpositive functions. Let us begin with de-
creasing functions. For each l ∈ R

n \ R
n
+ consider the function sl defined on R

n

by

sl(x) =

{

(maxi∈I−(l) lixi)
+ x ∈ K+

l
+∞ otherwise,

(5.3)

with the convention that the maximum over the empty set is equal to −∞.
Here a+ = max(a, 0) is the positive part of a number a. Let S = {sl : l ∈
R

n \ R
n
+} ∪ {g+∞}, where g+∞(x) = +∞ for all x ∈ R

n.

Theorem 5.1. A function q : R
n → R is nonnegative and DPH if and only

if it is abstract concave with respect to S, that is, there exists a nonempty set
U ⊂ R

n \ R
n
+ such that

q(x) = inf
l∈U

sl(x) x ∈ R
n.(5.4)

If q 6= 0 then the infimum in (5.4) is attained if either q(x) > 0 or x ∈ R
n
+.

Proof. If For each l ∈ R
n \ R

n
+ the function sl is nonnegative. Since the cone

K+
l is upward (see Proposition 4.3), it follows that sl is DPH, so each S-concave

function is nonnegative and DPH.

Only if Let q be a nonnegative DPH function and let U = supp+(q, S) be the
upper support set of q with respect to S, that is, U = {s ∈ S : (∀x ∈ R

n) s(x) ≥
q(x)}. Consider separately three cases.
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1) First assume that q 6= 0 and consider a point x ∈ R
n such that q(x) > 0.

Since q is decreasing and q(0) = 0, it follows that x /∈ R
n
+, so I−(x) 6= ∅. Let

l = q(x)/x, then also l /∈ R
n
+ and I−(l) = I−(x).

Let us check that sl ∈ U , that is sl(y) ≥ q(y) for all y ∈ K+
l . It is enough to

consider points y ∈ K+
l such that q(y) > 0. Let Iy

−
= {i ∈ I−(l) : yi < 0}. If

Iy
−

= ∅ then yi ≥ 0 for all i ∈ I−(l). Since y ∈ K+
l , it follows that also yi ≥ 0

for all i ∈ I0(l)∪ I+(l). We have y ≥ 0, which is impossible due to the inequality
q(y) > 0. Thus Iy

−
is nonempty. We have

max
i∈I−(l)

liyi = max
i∈Iy

−

liyi = max
i∈Iy

−

q(x)

xi
yi = q(x)max

i∈Iy
−

yi

xi
= q
((

max
i∈Iy

−

yi

xi

)

x
)

.(5.5)

We now check that
(

max
i∈Iy

−

yi

xi

)

x ≤ y,(5.6)

which is equivalent to
(

max
i∈Iy

−

yi

xi

)

xj ≤ yj, j = 1, . . . , n.(5.7)

Indeed, if j ∈ Iy
−
, this inequality is obviously satisfied. If j ∈ I−(l) \ Iy

−
, it also

holds, as the left hand side is nonpositive and the right hand side is nonnegative.
The same situation occurs if j ∈ I0(l). Assume now that j ∈ I+(l), that is xj > 0.
Since y ∈ K+

l and l = q(x)/x, we have

max
i∈I−(x)

yi

xi
≤ min

i∈I+(x)

yi

xi
,

so
(

max
i∈Iy

−

yi

xi

)

xj ≤
(

max
i∈I(l)

yi

xi

)

xj ≤
yj

xj
xj = yj.

Thus (5.6) has been verified. Applying (5.6) and the monotonicity of q, we
conclude that

q
((

max
i∈Iy

−

yi

xi

)

x
)

≥ q(y).(5.8)

It follows from (5.5) and (5.8) that

sl(y) = ( max
i∈I−(l)

liyi)
+ = max

i∈I−(l)
liyi ≥ q(y).

We have proved that sl ∈ U . Since x ∈ K+
l , we have

sl(x) = max
i∈I−(l)

lixi = p(x).(5.9)

It follows from (5.9) that

q(x) = min
s∈U

s(x).
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2) Consider now a nonnegative decreasing function q 6= 0 and let x ∈ R
n
+.

Then q(x) = 0. It follows from 1) than the set U = supp+(q, S) is nonempty.
Since sl(x) = 0 for all l ∈ R

n \ R
n
+, it follows that q(x) = mins∈U s(x).

3) Consider now an arbitrary nonnegative decreasing function q and let x ∈
R

n \R
n
+ be a point such that q(x) = 0. Observe that q = inf

ε>0
qε, with qε : R

n → R

defined by

qε(y) = q(y) − ε( min
i=1,... ,n

yi)
−. (y ∈ R

n).

Here a− = min(a, 0) is the negative part of the number a. Since each qε is
nonnegative, DPH and strictly positive on R

n \ R
n
+, from the first part of the

proof it follows that there exists a nonempty set Uε ⊂ R
n \R

n
+ such that qε(x) =

mins∈Uε s(x). Hence q(x) = inf
s∈U

s(x), where U =
⋃

ε>0
Uε.

Let l ∈ R
n \ R

n
+. Consider the function sl defined by (5.3). Then

−sl(−x) =

{

(mini∈I−(l) lixi)
− −x ∈ K+

l
−∞ otherwise.

(5.10)

Let s′l(x) = −sl(−x). Denote by S′ the set of all the functions s′l, i.e. the
set of functions defined by (5.10), with l ∈ R

n \ R
n
+, together with g−∞, where

g−∞(x) = −∞ for all x ∈ R
n.

Remark 5.1. Let p be a nonpositive IPH function. Then the function q(x) =
−p(−x) is nonnegative IPH, therefore by Theorem 5.1 there exists a set U ⊂
R

n \ R
n
+ such that (5.4) holds. We have

p(x) = −q(−x) = − inf
l∈U

sl(−x) = sup
l∈U

(−sl(−x)) = sup
l∈U

s′l(x).

Thus each nonpositive IPH function is S′-convex. Clearly the inverse assertion
also holds: each S′-convex function is nonpositive IPH. Applying Theorem 5.1 we
can assert that the S′-subdifferential ∂S′p(x) is nonempty if p(x) < 0 or x ∈ R

n
+.
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