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ON PROPER EFFICIENCIES IN

LOCALLY CONVEX SPACES–A SURVEY

JING LIU AND WEN SONG

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. In this paper, we consider the main definitions of proper effi-
ciency in locally convex topological vector spaces and examine the relation-
ships among them.

1. Introduction

One important problem in vector optimization theory is to identify the efficient
points of a set (for an interesting survey on vector optimization, see for instance
[1], [2]. Various restrictions on efficient points have been suggested in order to
eliminate “improper” efficient points, and allow more satisfactory characteriza-
tion of the proper efficient points. The original concept of proper efficiency was
introduced by Kuhn-Tucker [3], Hurwciz [4], Geoffrion [5], and modified and for-
mulated in a more general framework by Borwein [6], Benson [7], Borwein [8],
Henig [9], Borwein and Zhuang [10], and others [11-19]. All definitions of proper
efficiencies are rather close to each other. They partly coincide. However, exact
comparisons are significant. This has been done by many authors (see [2-19]).
In particular, Guerraggio, Molho and Zaffaroni [13] give a detailed and compre-
hensive comparison among the main definitions of proper efficiency in normed
spaces. In [14], Makarov and Rachkovski present a unified form of some proper
efficiencies based on the notion of a dilating cone. This new form enables them to
obtain a comparison among these proper efficiencies in a normed space. In [15],
Zheng also presented an investigation on the relationships among several kinds
of proper efficiencies in locally convex spaces. In this paper, we make a survey on
a number of definitions of proper efficiency in locally convex spaces and examine
the relationships among these efficiencies.

2. Preliminaries and Definitions

Throughout this paper, we assume that X is a locally convex topological vector
space (in brief, LCS) with the topological dual space X∗, A ⊂ X is a nonempty
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subset of X, and S ⊂ X is a closed convex pointed cone. The dual cone of a cone
S ⊂ X is the set

S+ = {f ∈ X∗ : f(x) ≥ 0,∀x ∈ S},
and the strict polar of S is the set

S+i = {f ∈ X∗ : f(x) > 0, for all x ∈ S \ {0}}.
A convex subset Θ of the cone S is said to be a base for S if 0 6∈ clΘ and

S = cone(Θ) = {tθ|t ≥ 0, θ ∈ Θ}. Denoted by B(S) the set of all the bases of S.

A point x ∈ A is said to be a point of continuity, written as x ∈ PC(A), if for

every {xα}α∈I ⊂ A,xα
w→ x implies xα → x.

It has proved (see [15]) that if S has a bounded base, then 0 ∈ PC(S), but the
converse is not generally true.

Definition 2.1. A point x ∈ A is said to be an efficient point of A with respect
to S, written as x ∈ E(A,S), if (A−x)∩ (−S) = {0}. If a cone S is not pointed,
then x ∈ E(A,S) means that (A − x) ∩ (−S) ⊆ S.

Definition 2.2. A point x ∈ A is said to be a positive proper efficient point of
A with respect to S, written as x ∈ Pos(A,S), if there exists f ∈ S+i such that
f(x) = inf{f(a)|a ∈ A}.

Definition 2.3. [4] A point x ∈ A is said to be a Hurwicz proper efficient point of
A with respect to S, written as x ∈ Hu(A,S), if clconvcone((A−x)∪S)∩(−S) =
{0}.

Let Θ be a base of S. Then 0 6∈ clΘ. By a standard separation theorem,
there is fΘ ∈ X∗ \ {0} such that α = inf{fΘ(θ)|θ ∈ Θ} > fΘ(0) = 0. Let
VΘ = {x ∈ X||fΘ(x)| < α/2}. It is clear that VΘ is a neighborhood of 0. For
each convex neighborhood V of 0 with V ⊂ VΘ, Θ+V is convex and 0 6∈ cl(Θ+V ).
Let SV (Θ) = cone(Θ + V ).

Definition 2.4. [15] and [17] A point x ∈ A is said to be a Henig proper efficient
point of A with respect to Θ ∈ B(S), written as x ∈ HE(A,Θ), if there is a convex
neighborhood V of 0 with V ⊂ VΘ such that clcone(A − x) ∩ (−SV (Θ)) = {0}.

A point x ∈ A is said to be a Henig proper efficient point [resp. generalized
Henig proper efficient point] of A with respect to S, written as x ∈ HE(A,S)
[resp. x ∈ GHE(A,S)], if x ∈ ∩Θ∈B(S)HE(A,Θ) [resp. x ∈ ∪Θ∈B(S)HE(A,Θ)].

It is clear that x ∈ HE(A,Θ) iff there exists a convex neighborhood V of 0 with
V ⊂ VΘ such that x ∈ E(A,SV (Θ)), and HE(A,S) ⊂ HE(A,Θ) ⊂ GHE(A,S). It
has been proved (see [15]) that if Θ is bounded, then HE(A,S) = H(A,Θ).

Definition 2.5. [9] A point x ∈ A is said to be a globally Henig proper efficient
point of A with respect to S, written as x ∈ GHe(A,S), if there is a convex cone

S
′ 6= X with S \ {0} ⊂ intS

′

such that x ∈ E(A,S
′

).
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Definition 2.6. [7] A point x ∈ A is said to be a Benson proper efficient point
of A with respect to S, written as x ∈ Be(A,S) if

clcone(A + S − x) ∩ (−S) = {0}.

Definition 2.7. [8] A point x ∈ A is said to be a global Borwein proper efficient
point of A with respect to S, written as x ∈ GBo(A,S), if

clcone(A − x) ∩ (−S) = {0}.

Definition 2.8. [10] A point x ∈ A is said to be a superefficient point of A with
respect to S, written as x ∈ SE(A,S), if for each neighborhood V of 0, there is a
neighborhood U of 0 such that

clcone(A − x) ∩ (U − S) ⊂ V.

Definition 2.9. [19] A point x ∈ A is said to be a strict efficient point of A with
respect to S, written as x ∈ Str(A,S), if for each neighborhood V of 0, there is
a neighborhood U of 0 such that

(A − x) ∩ (U − S) ⊂ V.

It is clear that SE(A,S) ⊂ Str(A,S).

This notion was also introduced by Zheng (see [15]) (called strong efficient
point).

Definition 2.10. The Bouligand tangent (in short, B-tangent) cone to A at a
point x ∈ clA is the set

T (A,x) = {y : y = lim
n→∞

λn(xn − x), {λn} ⊆ R+, {xn} ⊆ A, lim
n→∞

xn = x}.

T (A,S) is closed when X is normed space, but not necessarily closed in a
general locally convex space.

Definition 2.11. [6] A point x ∈ A is said to be a Borwein proper efficient point,
written as x ∈ Bo(A,S), if x ∈ E(A,S) and

clT (A + S, x) ∩ (−S) = {0}.

Definition 2.12. [9] A point x ∈ A is said to be locally Henig proper efficient
point, written as x ∈ LHe(A,S), if for every neighborhood V of 0, there is a

convex cone S
′ 6= X with S \ {0} ⊂ intS

′

such that

x ∈ E((A + S) ∩ (x + V ), S
′

).

Definition 2.13. [13] A point x ∈ A is said to be a properly efficient point,
written as x ∈ LBo(A,S), if x ∈ E(A,S) and clT (A,x) ∩ (−S) = {0}.
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3. Main Results

In this section, we shall compare the above efficiencies in locally convex spaces
setting.

Theorem 3.1. (see [4, 12]) Pos(A,S) ⊆ Hu(A,S).

When X is a separable normed space, Hurwicz (see [4]) proved the converse
inclusion, i.e. Hu(A,S) ⊂ Pos(A,S). This inclusion was also proved in [12]
when X is a noremed space and S has a weakly compact base, and was proved in
[13] when X is locally convex space and S has a compact base.

We shall prove that this inclusion remains true in a locally convex space when
S has a weakly compact base.

Lemma 3.1. (see [18]) Let X be a locally convex spaces, let P and C be two
cones in X, and P ∩C = {0}. Assume that one of the following conditions holds.

(a) P is weakly closed and C has a weakly compact base;

(b) P is closed and C has a compact base.

Then there exists a pointed convex cone S such that C \ {0} ⊂ intS and P ∩C =
{0}. Furthermore, if P is convex, there is an element f ∈ C+i such that −f ∈ P+.

Theorem 3.2. If S has a weakly compact base, then Hu(A,S) ⊂ Pos(A,S).

Proof. If x ∈ Hu(A,S), then

clconvcone((A − x) ∪ S) ∩ (−S) = {0}.
From Lemma 3.1, there is an element f ∈ S+i such that f ∈ (clconvcone((A −
x) ∪ S))+. Hence f(a − x) ≥ 0, for all a ∈ A. Therefore x ∈ Pos(A,S).

Lemma 3.2. (see [22]) Let A be a convex subset of X and x ∈ clA. Then
clcone(A − x) is closed convex cone.

Theorem 3.3. If S has a base, then

(i) Pos(A,S) ⊂ GHE(A,S).

(ii) Pos(A,S) = GHE(A,S), whenever cl(A + S) is convex.

Proof. (i) For the proof see [15]. (ii) For every x ∈ GHE(A,S), there is Θ ∈ B(S)
and an open convex neighborhood V of 0 with V ⊂ VΘ such that

cone(A − x) ∩ (−SV (Θ)) = {0}.
Since S \ {0} ⊂ SV (Θ), we have

clcone(A + S − x) ∩ (−intSV (Θ)) = ∅.
Since cl(A + S) is convex, we have clcone(A + S − x) = clcone(cl(A + S) − x) is
convex too. By a standard separation theorem, there is f ∈ X∗ \ {0} such that

inf{f(x)|x ∈ intSV (Θ)} > α ≥ sup{f(x)|x ∈ −cone(A + S − x)}.
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Since cone(A + S − x) is a cone, we may take α = 0. Hence

f(x) ≤ f(a) for all a ∈ A.

Since Θ ⊂ intSV (Θ) and f 6= 0, we have f(θ) > 0 for all θ ∈ Θ. Hence f ∈ S+i.
It follows that x ∈ Pos(A,S). Thus, GHE(A,S) ⊂ Pos(A,S).

When A is a convex subset of X, Pos(A,S) = GHE(A,S) was proved in [15].

Theorem 3.4. If S has a base, then GHE(A,S) ⊂ GHe(A,S).

Proof. For each x ∈ GHE(A,S), there is Θ ∈ B(S) with x ∈ HE(A,Θ). Hence
there is V ⊂ VΘ such that

clcone(A − x) ∩ (−SV (Θ)) = {0}.
This implies that

(A − x) ∩ (−SV (Θ)) = {0}.
i.e. x ∈ GHe(A,S).

Theorem 3.5. If S has a base, then

(i) Pos(A,S) ⊂ GHe(A,S).

(ii) Pos(A,S) = GHe(A,S), whenever cl(A + S) is convex.

Proof. (i) From Theorem 3.3 and Theorem 3.4,

Pos(A,S) ⊂ GHE(A,S) ⊂ GHe(A,S).

(ii) For each x ∈ GHe(A,S), there is convex cone S
′

with S \ {0} ⊂ intS
′

such
that

(A − x) ∩ (−S
′

) ⊂ S
′

.

Since S \ {0} ⊂ intS′, we have

cl(A + S − x) ∩ (−intS
′

) = ∅.

Since cl(A + S) is convex, by the separation theorem, there is f ∈ (S
′

)+ \ {0}
such that

f(x) ≤ f(a), forall a ∈ A.

Since S \ {0} ⊂ intS
′

, we have f ∈ S+i. Hence x ∈ Pos(A,S).

When X is a normed linear space, one can see a proof of (i) in [13]. From
Theorem 3.3 and Theorem 3.5 we see that GHE(A,S) = GHe(A,S) whenever S
has a base and cl(A + S) is convex. We do not know whether this equality holds
without the condition that cl(A + S) is convex.
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Example 3.1. (see [23]) Let X = R2, S = R2
+, and

A = {(x, y) | − 2 ≤ x ≤ −1, y ≥ −
√

−x2 − 2x}
∪ {(x, y) | − 1 < x ≤ 0, y ≥ −1 −

√

1 − x2} \ {(0, 0)}.
Then

E(A,S) = {(x, y) | − 2 ≤ x ≤ −1, y = −
√

−x2 − 2x}
∪ {(x, y) | − 1 < x ≤ 0, y = −1 −

√

1 − x2},

GHE(A,S) = GHe(A,S) = E(A,S) \ {(−1,−1), (−2, 0), (0,−2)},

Pos(A,S) = GHe(A,S) \ {(x, y) ∈ E(A,S) | − 1 −
√

2/2 ≤ x ≤ −
√

2/2}.
Theorem 3.6. (see [16]) Let A be a nonempty weakly compact subset of X and
S a closed convex cone with base Θ. If 0 ∈ PC(S), then E(A,S) ⊆ cl(HE(A,Θ)).

Theorem 3.7. (see [15]) If S has a base, then

(i) SE(A,S) ⊂ HE(A,S).

(ii) SE(A,S) = HE(A,S), whenever S has a bounded base.

Example 3.2. Consider Example 3.1 again. Then

SE(A,S) = HE(A,S) = GHE(A,S) = E(A,S) \ {(−1,−1), (−2, 0), (0,−2)}.
Theorem 3.8. GHe(A,S) ⊂ Be(A,S).

Proof. For each x ∈ GHe(A,S). there is convex cone S
′

and S \ {0} ⊂ intS
′

such
that

(A − x) ∩ (−S
′

) ⊂ S
′

.

Since S \ {0} ⊂ intS
′

, we have

(A + S − x) ∩ (−S
′

) ⊂ S
′

.

Hence

cone(A + S − x) ∩ (−intS
′

) = ∅.
This implies

clcone(A + S − x) ∩ (−intS
′

) = ∅.
Thus

clcone(A + S − x) ∩ (−S) = {0},
i.e. x ∈ Be(A,S). Thus, GHe(A,S) ⊂ Be(A,S).

Theorem 3.9. (i) Be(A,S) ⊂ GBo(A,S).

(ii) Be(A,S) = GBo(A,S), whenever S has a weakly compact base and A is
closure convex.
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Proof. (i) It follows immediately from the definitions.

(ii) Let x ∈ GBo(A,S). Then clcone(A−x)∩(−S) = {0} , and then clcone(A−
x) ∩ (−Θ) = ∅. Since Ā is convex, we have

clcone(A − x) = clcone(Ā − x)

is convex. Hence it is also weakly closed. Noticing that Θ is weakly compact,
there is an open weakly neighborhood V of 0 such that

(clcone(A − x) + V ) ∩ (V − Θ) = ∅.
Without loss of generality, we may assume that V is balanced. Assume x 6∈
Be(A,S), there is s ∈ S \{0} such that −s ∈ clcone(A+S−x). Since S = coneΘ,
we have s = λθ with λ ≥ 0 and θ ∈ Θ. Without loss of generality, we may assume
s ∈ Θ(take λ = 1). This implies there is x

′ ∈ A,λ > 0, η ≥ 0, θ ∈ Θ, such that

λ(x
′

+ ηθ − x) ∈ −s + V.

Hence

λ

1 + λη
(x

′ − x) ∈ { λη

1 + λη
(−θ) +

1

1 + λη
(−s)} +

1

1 + λη
V,

and hence

λ

1 + λη
(x

′ − x) ∈ (−Θ) +
1

1 + λη
V ⊂ −Θ + V.

This contradicts clcone(A − x) ∩ (V − Θ) = ∅. Therefore, x ∈ Be(A,S).

Dauer and Saleh (see [18]) has proved Be(A,S) = GBo(A,S) when S has a
compact base.

Example 3.3. (see [18]) Let X = lp, 1 ≤ p ≤ ∞ S be the nonnegative orthant

of X, and A = {an = (a
(1)
n , a

(2)
n , . . . ) ∈ lp, n ∈ N}, where a1 = 0 and for

n ≥ 2 we take a
(1)
n = a

(n)
n = −1/n, a

(n+1)
n = 1/n2, and otherwise a

(i)
n = 0. Then

0 6∈ Be(A,S), 0 ∈ GBo(A,S).

Theorem 3.10. (i) Hu(A,S) ⊆ Be(A,S);

(ii) Hu(A,S) = Be(A,S), whenever cl(A + S) is convex.

Proof. (i) It follows immediately from the definitions.

(ii) Since cl(A + S) is convex, by Lemma 3.2

clcone(A + S − x) = clcone(cl(A + S) − x)

is convex too. Hence

clconvcone((A − x) ∪ S) ⊂ clcone(A + S − x)

and hence Be(A,S) ⊂ Hu(A,S).

Khanh (see [14]) showed that Hu(A,S) = Be(A,S) in normed spaces when
A + S is convex.
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Theorem 3.11. If S has a base, then

(i) SE(A,S) ⊆ HE(A,S) ⊆ GHE(A,S) ⊆ GHe(A,S) ⊆ Be(A,S) ⊆ GBo(A,S).

(ii) SE(A,S) = GBo(A,S), whenever S has a weakly compact base and the clo-
sure A is convex.

Proof. (i) It is clear from Theorem 3.7, Theorem 3.4, Theorem 3.8 and Theorem
3.9.

(ii) Assume GBo(A,S) 6⊂ SE(A,S). Then there is x ∈ GBo(A,S) and x 6∈
SE(A,S); i.e. there exists a neighborhood V of 0 such that for every neighborhood
U of 0,

cone(A − x) ∩ (U − S) 6⊂ V.

Hence there is tu > 0, au ∈ A,xu ∈ U, λu ≥ 0, θu ∈ Θ such that

tu(au − x) = xu − λuθu 6∈ V.

It is clear that {xu}u∈U → 0. Assume {λu} is bounded, without loss of generality,
we may assume that λu → λ > 0. So xu

λu

→ 0 (when {λu} is unbounded, the

above limits holds). Since Θ is weakly compact, without loss of generality, we

may assume that θu
w→ θ ∈ Θ. Hence

tu(au − x)

λu

=
xu

λu

− θu
w→ −θ ∈ −S.

Since A is closure convex and X is a locally convex space, we have clcone(A−x) =
clcone(Ā − x) is weakly closed. Hence −θ ∈ clcone(A − x). This implies that

clcone(A − x) ∩ (−S) 6= {0}.
This contradicts x ∈ GBo(A,S). Therefore, GBo(A,S) ⊂ SE(A,S).

When A is convex and S has a weakly compact base, Zheng (see [15]) has
proved SE(A,S) = GBo(A,S).

Corollary 3.1. If S has a weakly compact base, clA is convex, then

SE(A,S) = HE(A,S) = GHE(A,S) = GHe(A,S)

= Be(A,S) = GBo(A,S) = Pos(A,S) = Hu(A,S).

Theorem 3.12. (see [19])

(i) SE(A,S) ⊆ Str(A,S) ⊆ E(A,S).

(ii) Str(A,S) = E(A,S), whenever 0 ∈ PC(S) and A is weakly compact.

Proof. (i) It follows immediately from the definitions.

(ii) For each x ∈ E(A,S), we suppose that x 6∈ Str(A,S). Then there exists a
neighborhood V of 0 and for each a neighborhood U of 0, we have

(A − x) ∩ (U − S) 6⊂ V.
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There is {xv} such that xv ∈ (A−x)∩ (U −S) and xv 6∈ V . So there is {av} ⊂ A
and {uv} ⊂ U and {sv} ⊂ S such that

xv = av − x = uv − sv.

We obtain sv = uv−xv = uv−av+x. Since A is weakly compact and x ∈ E(A,S),
the net av tends weakly to some a ∈ A and a = x. Since 0 ∈ PC(S) and

sv = uv − av + x
w→ 0, we have sv → 0. Hence xv → 0. This contradicts xv 6∈ V .

Therefore, x ∈ Str(A,S).

Zheng (see [15]) proved (ii) whenever S has a bounded base.

Theorem 3.13. GHe(A,S) ⊂ LHe(A,S).

Proof. For each x ∈ GHe(A,S), there exists convex cone S
′

such that S \ {0} ⊂
intS

′

and x ∈ E(A,S
′

). Hence x ∈ E(A + S, S
′

). For every neighborhood V of 0,
one has

((A + S) ∩ (x + V ) − x) ∩ (−S
′

) ⊂ S
′

.

Thus, x ∈ LHe(A,S).

Theorem 3.14. If cl(A + S) is convex and S has a weakly compact base, then
Be(A,S) ⊂ LHe(A,S).

Proof. For each x ∈ Be(A,S), one has

clcone(A + S − x) ∩ (−S) = {0}.
Since cl(A+S) is convex and S has a weakly compact base, by Lemma 3.1, there

exists a pointed convex cone S
′

such that S \ {0} ⊂ intS
′

and

clcone(A + S − x) ∩ (−S
′

) = {0}.
It follows that x ∈ LHe(A,S).

Theorem 3.15. LHe(A,S) ⊂ Bo(A,S).

Proof. Let x ∈ LHe(A,S) \Bo(A,S). Since x ∈ E(A,S), we have clT (A + S, x)∩
(−S) 6= {0}, i.e., there is s0 6= 0 such that

clT (A + S, x) ∩ (−S) = {−s0}.

Since x ∈ LHe(A,S), for every neighborhood V of 0, there is a convex cone S
′

with S \ {0} ⊂ intS
′

such that ((A + S) ∩ (x + V ) − x) ∩ (−S
′

) ⊂ S
′

. Hence

clT (A + S, x) ∩ (−intS
′

) 6= ∅
and hence

T (A + S, x) ∩ (−intS
′

) 6= ∅.
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Thus there exist {λn} ⊆ R+, {xn} ⊆ A + S with lim
n→∞

xn = x such that

lim
n→∞

λn(xn − x) ∈ −intS
′

. There exists N > 0 large enough such that

λN (xN − x) ∈ −intS
′

(3.1)

and

(xN − x) ∈ −intS
′

.(3.2)

Thus

(xN − x) ∈ (−intS
′

) ∩ ((A + S) ∩ (x + V ) − x) 6⊂ S
′

.

This contradicts x ∈ LHe(A,S).

Lemma 3.3. (see [21]) Let x ∈ A. Then T (A,x) ⊂ clcone(A − x). If A is
starshape at x, then cone(A−x) ⊂ T (A,x). Consequently, clT (A,x) = clcone(A−
x).

Theorem 3.16. (see [19])

(i) Be(A,S) ⊂ Bo(A,S).

(ii) Be(A,S) = Bo(A,S), whenever cl(A + S) is convex.

As a consequence of Theorem 3.9 and Theorem 3.16, we obtain

Corollary 3.2. If cl(A + S) is convex, then Bo(A,S) ⊂ GBo(A,S).

As a consequence of Theorem 3.14 and Theorem 3.16, we obtain:

Corollary 3.3. If cl(A + S) is convex and S has a weakly compact base, then
Bo(A,S) ⊂ LHe(A,S).

Guerraggio, Molho and Zaffaroni (see [13]) proved Bo(A,S) ⊂ LHe(A,S) in
normed space whenever S has a compact base.

Theorem 3.17. (i) GBo(A,S) ⊂ LBo(A,S).

(ii) GBo(A,S) = LBo(A,S), whenever clA is convex.

Proof. (i) By Lemma 3.3

clT (A,x) ⊂ clcone(A − x).

Hence GBo(A,S) ⊂ LBo(A,S).

(ii) Since clA is convex, by Lemma 3.3,

clT (A,x) = clcone(A − x).

If x ∈ LBo(A,S), then

clT (A,x) ∩ (−S) = {0}.
Hence

clcone(A − x) ∩ (−S) = {0}.
i.e. x ∈ GBo(A,S).
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From Corollary 3.1 and Theorem 3.17, we have

Corollary 3.4. If clA is convex and S has a weakly compact base, then LBo(A,S) =
Hu(A,S) = Pos(A,S).

When X is a normed space and S has a compact base, LBo(A,S) ⊂ Pos(A,S)
was proved in [13].

In Fig. 1, we give a inclusion structure, where the relations among various
proper efficiencies will be made clear. The symbol “−→” denotes the usual in-
clusion relation between sets.

H1: S has a base;

H2: S has a bounded base;

H3: S has a weakly compact base;

H4: cl(A+S) is convex;

H5: clA is convex.
Fig. 1 The relationships among the proper efficiencies
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