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ON PROPER EFFICIENCIES IN
LOCALLY CONVEX SPACES-A SURVEY

JING LIU AND WEN SONG

Dedicated to Pham Huu Sach on the occasion of his siztieth birthday

ABSTRACT. In this paper, we consider the main definitions of proper effi-
ciency in locally convex topological vector spaces and examine the relation-
ships among them.

1. INTRODUCTION

One important problem in vector optimization theory is to identify the efficient
points of a set (for an interesting survey on vector optimization, see for instance
[1], [2]. Various restrictions on efficient points have been suggested in order to
eliminate “improper” efficient points, and allow more satisfactory characteriza-
tion of the proper efficient points. The original concept of proper efficiency was
introduced by Kuhn-Tucker [3], Hurwciz [4], Geoffrion [5], and modified and for-
mulated in a more general framework by Borwein [6], Benson [7], Borwein [§],
Henig [9], Borwein and Zhuang [10], and others [11-19]. All definitions of proper
efficiencies are rather close to each other. They partly coincide. However, exact
comparisons are significant. This has been done by many authors (see [2-19]).
In particular, Guerraggio, Molho and Zaffaroni [13] give a detailed and compre-
hensive comparison among the main definitions of proper efficiency in normed
spaces. In [14], Makarov and Rachkovski present a unified form of some proper
efficiencies based on the notion of a dilating cone. This new form enables them to
obtain a comparison among these proper efficiencies in a normed space. In [15],
Zheng also presented an investigation on the relationships among several kinds
of proper efficiencies in locally convex spaces. In this paper, we make a survey on
a number of definitions of proper efficiency in locally convex spaces and examine
the relationships among these efficiencies.

2. PRELIMINARIES AND DEFINITIONS

Throughout this paper, we assume that X is a locally convex topological vector
space (in brief, LCS) with the topological dual space X*, A C X is a nonempty
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subset of X, and § C X is a closed convex pointed cone. The dual cone of a cone
S C X is the set

ST ={feX*: f(z) >0,Vxr € S},
and the strict polar of S is the set
St ={feX*: f(x)>0, forall z € S\ {0}}.

A convex subset O of the cone S is said to be a base for S if 0 ¢ cl® and
S = cone(©) = {t0]t > 0, § € ©}. Denoted by B(S) the set of all the bases of S.

A point x € A is said to be a point of continuity, written as x € PC(A), if for
every {Zo}acr C A, 24 — x implies x4 — .

It has proved (see [15]) that if S has a bounded base, then 0 € PC(S), but the
converse is not generally true.

Definition 2.1. A point z € A is said to be an efficient point of A with respect
to S, written as x € E(A,9), if (A—z)N(=S) = {0}. If a cone S is not pointed,
then z € E(A, S) means that (A —z)N(=5) C S.

Definition 2.2. A point x € A is said to be a positive proper efficient point of
A with respect to S, written as x € Pos(A,S), if there exists f € S** such that

f(@) = inf{f(a)la € A}.

Definition 2.3. [4] A point x € A is said to be a Hurwicz proper efficient point of
A with respect to S, written as = € Hu(A, S), if clconvcone((A—z)US)N(=S) =
{0}.

Let © be a base of S. Then 0 ¢ cl®. By a standard separation theorem,
there is fo € X* \ {0} such that o = inf{fe(0)|0 € O} > fo(0) = 0. Let
Vo = {z € X||fo(x)| < a/2}. It is clear that Vg is a neighborhood of 0. For
each convex neighborhood V of 0 with V' C Vg, ©+4V is convex and 0 ¢ cl(©+V).
Let Sy (©) = cone(© + V).

Definition 2.4. [15] and [17] A point x € A is said to be a Henig proper efficient
point of A with respect to © € B(.S), written as € HE(A, ©), if there is a convex
neighborhood V' of 0 with V' C Vi such that clcone(A — z) N (=Sy(0)) = {0}.

A point x € A is said to be a Henig proper efficient point [resp. generalized
Henig proper efficient point] of A with respect to S, written as x € HE(A4, S)
[resp. x € GHE(A, S)], if € Ngep(s)HE(A, ©) [resp. = € Ugep(s)HE(A, O)].

It is clear that = € HE(A, ©) iff there exists a convex neighborhood V' of 0 with
V' C Vi such that z € E(A, Sy(0©)), and HE(A, S) C HE(A,0) € GHE(A, S). It
has been proved (see [15]) that if © is bounded, then HE(A, S) = H(A4, ©).

Definition 2.5. [9] A point x € A is said to be a globally Henig proper efficient
point of A with respect to S, written as x € GHe(A, S), if there is a convex cone
S # X with S\ {0} C intS" such that z € E(4,S").
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Definition 2.6. [7] A point x € A is said to be a Benson proper efficient point
of A with respect to S, written as x € Be(4,9) if

clcone(A + S —z) N (=S) = {0}.
Definition 2.7. [8] A point x € A is said to be a global Borwein proper efficient
point of A with respect to S, written as x € GBo(A4, 5), if
clcone(A — z) N (—S) = {0}.
Definition 2.8. [10] A point = € A is said to be a superefficient point of A with

respect to S, written as x € SE(A, S), if for each neighborhood V' of 0, there is a
neighborhood U of 0 such that

clcone(A—z)N (U —-S) C V.
Definition 2.9. [19] A point x € A is said to be a strict efficient point of A with

respect to S, written as x € Str(A, S), if for each neighborhood V' of 0, there is
a neighborhood U of 0 such that

(A—2)N(U—8)C V.

It is clear that SE(A,S) C Str(4,5).

This notion was also introduced by Zheng (see [15]) (called strong efficient
point).

Definition 2.10. The Bouligand tangent (in short, B-tangent) cone to A at a
point x € clA is the set
T(Ax)={y:y= lim \,(2, —2),{\,} C R, {z,} C 4, lim =z, = z}.
n—odo n—oo

T(A,S) is closed when X is normed space, but not necessarily closed in a
general locally convex space.

Definition 2.11. [6] A point x € A is said to be a Borwein proper efficient point,
written as z € Bo(4,9), if x € E(A4, S) and

clT'(A+ S,z)N(=S) = {0}.
Definition 2.12. [9] A point z € A is said to be locally Henig proper efficient

point, written as x € LHe(A,.S), if for every neighborhood V of 0, there is a
convex cone S’ # X with S\ {0} C intS" such that

t€E(A+8)N(x+V),S).

Definition 2.13. [13] A point z € A is said to be a properly efficient point,
written as © € LBo(A4, S), if z € E(A4,S) and clT'(A4,z) N (—S) = {0}.
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3. MAIN RESULTS
In this section, we shall compare the above efficiencies in locally convex spaces
setting.

Theorem 3.1. (see [4, 12]) Pos(A4,S) C Hu(A4,5).

When X is a separable normed space, Hurwicz (see [4]) proved the converse
inclusion, i.e. Hu(A,S) C Pos(A,S). This inclusion was also proved in [12]
when X is a noremed space and S has a weakly compact base, and was proved in
[18] when X s locally convez space and S has a compact base.

We shall prove that this inclusion remains true in a locally convex space when
S has a weakly compact base.

Lemma 3.1. (see [18]) Let X be a locally convex spaces, let P and C be two
cones in X, and PNC = {0}. Assume that one of the following conditions holds.

(a) P is weakly closed and C has a weakly compact base;

(b) P is closed and C has a compact base.

Then there exists a pointed convex cone S such that C'\ {0} C intS and PNC =
{0}. Furthermore, if P is convez, there is an element f € Ct* such that —f € PT.

Theorem 3.2. If S has a weakly compact base, then Hu(A, S) C Pos(4,95).

Proof. If x € Hu(A4,5), then
clconveone((A — z) U S) N (=S5) = {0}.

From Lemma 3.1, there is an element f € ST such that f € (clconvcone((A —
z)US))t. Hence f(a—x) >0, for all a € A. Therefore z € Pos(A, S). O

Lemma 3.2. (see [22]) Let A be a convex subset of X and = € clA. Then
clcone(A — x) is closed convex cone.

Theorem 3.3. If S has a base, then
(i) Pos(A4,S) c GHE(A4,S).
(ii) Pos(A,S) = GHE(A,S), whenever cl(A+ S) is convex.
Proof. (i) For the proof see [15]. (ii) For every x € GHE(A, S), there is © € B(S5)
and an open convex neighborhood V' of 0 with V' C Vg such that
cone(A —z) N (—=Sv(0)) = {0}.

Since S\ {0} C Sy (©), we have

clecone(A+ S —z) N (—intSy (0)) = 0.

Since cl(A 4 ) is convex, we have clcone(A + S — z) = clcone(cl(A + 5) — x) is
convex too. By a standard separation theorem, there is f € X*\ {0} such that

inf{f(x)|z € intSy(©)} > a > sup{f(x)|z € —cone(A + S — x)}.
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Since cone(A + S — ) is a cone, we may take a = 0. Hence
f(x) < f(a) for all a € A.

Since © C intSy(0) and f # 0, we have f(0) > 0 for all § € ©. Hence f € ST
It follows that x € Pos(A,S). Thus, GHE(A, S) C Pos(4, 5). O

When A is a convex subset of X, Pos(A4,S) = GHE(A, S) was proved in [15].
Theorem 3.4. If S has a base, then GHE(A, S) C GHe(A4, S).

Proof. For each x € GHE(A, S), there is © € B(S) with 2 € HE(A,©). Hence
there is V' C Vi such that

clcone(A —z) N (=Sv(0)) = {0}.
This implies that
(4 2) N (~5v(8)) = {0}.
ie. x € GHe(4,9). O
Theorem 3.5. If S has a base, then
(i) Pos(A,S) c GHe(A4,5).
(ii) Pos(A,S) = GHe(A4,S), whenever cl(A+ S) is convez.

Proof. (i) From Theorem 3.3 and Theorem 3.4,
Pos(A, S) C GHE(A, S) C GHe(4, S).

(ii) For each z € GHe(A, S), there is convex cone ' with S\ {0} C intS" such
that

(A-2)n(-5)cs.
Since S\ {0} C intS’, we have
A(A+ S —2z)N (—intS) = 0.

Since cl(A + S) is convex, by the separation theorem, there is f € (S')*\ {0}
such that

f(x) < f(a), forall a € A.

Since S\ {0} C intS’, we have f € ST, Hence x € Pos(A4, S). O

When X is a normed linear space, one can see a proof of (i) in [13]. From
Theorem 3.3 and Theorem 3.5 we see that GHE(A, S) = GHe(A4, S) whenever S
has a base and cl(A + S) is convex. We do not know whether this equality holds
without the condition that cl(A 4 S) is convex.
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Example 3.1. (see [23]) Let X = R?, S = R%, and

A = {(zyy) ]| —2<z<-1,y>—v—a%—2z}
U {@y | —1<z<0y=-1-vV1-22}\{(0,0)}.
Then
E(4,S8) = {(z,y)| —2<z<-1l,y=—v—2? -2z}
U {(y) | -1<z<0y=-1-v1-z?}
GHE(A4, S) = GHe(4, S) = E(4,S5) \ {(-1,-1),(—2,0),(0,—-2)},

Pos(A, S) = GHe(A4,9) \ {(z,y) € E(4,9) | —1—-+v2/2 <z < —V2/2}.

Theorem 3.6. (see [16]) Let A be a nonempty weakly compact subset of X and
S a closed convex cone with base ©. If 0 € PC(S), then E(A, S) C cl(HE(A, ©)).

Theorem 3.7. (see [15]) If S has a base, then
(i) SE(A,S) C HE(A, S).

(i) SE(A,S) =HE(A,S), whenever S has a bounded base.

Example 3.2. Consider Example 3.1 again. Then
SE(A,S) =HE(A,S) = GHE(A,S) = E(A,S) \ {(-1,-1),(-2,0), (0, —2)}.
Theorem 3.8. GHe(A,S) C Be(A4,95).
Proof. For each z € GHe(A, S). there is convex cone " and S\ {0} C intS" such
that
(A-z)Nn(=S)cCS.
Since S\ {0} C intS’, we have
(A+S—2)n(-S)cs.
Hence
cone(A + S — ) N (—intS") = 0.
This implies
cleone(A + 8 — z) N (—intS') = 0.
Thus
clcone(A+ S —z)N (=S) = {0},
i.e. x € Be(A4,S). Thus, GHe(4,S) C Be(A4,95). O
Theorem 3.9. (i) Be(A,S) C GBo(4,S).

(ii) Be(A,S) = GBo(A,S), whenever S has a weakly compact base and A is
closure convex.
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Proof. (i) It follows immediately from the definitions.

(ii) Let = € GBo(A, S). Then clcone(A—z)N(—-S) = {0} , and then clcone(A—
x) N (—=0) = 0. Since A is convex, we have

clcone(A — ) = clcone(A — x)
is convex. Hence it is also weakly closed. Noticing that © is weakly compact,
there is an open weakly neighborhood V' of 0 such that
(clecone(A — ) +V)N(V —0) = (.

Without loss of generality, we may assume that V is balanced. Assume z ¢
Be(4,5), there is s € S\ {0} such that —s € clcone(A+ S —x). Since S = cone®,
we have s = A0 with A > 0 and 6 € ©. Without loss of generality, we may assume
s € O(take A = 1). This implies there is 2 € A,N>0,n>0,0 €0, such that

Nz +n0—xz) € —s+V.

Hence
- —0 — V,
Ty @~ O e GO gt v
and hence
A /
1+An($ —z) € (—0)+ 1+)\77VC -0+ V.
This contradicts clcone(A — z) N (V — ©) = . Therefore, x € Be(4, 5). O

Dauer and Saleh (see [18]) has proved Be(A4,S) = GBo(A4,S) when S has a
compact base.

Example 3.3. (see [18]) Let X =1P,1 < p < 0o S be the nonnegative orthant
of X, and A = {a, = (a,(ll),ag),...) € P,n € N}, where ay = 0 and for
n > 2 we take ag) = aﬁz”) = —1/n, aﬁf“) = 1/n?, and otherwise agf) = 0. Then
0 ¢ Be(A,S), 0 € GBo(A4,5S).

Theorem 3.10. (i) Hu(A4,S) C Be(4,5);
(ii) Hu(A4,S) = Be(A4,5), whenever cl(A + 5) is convez.
Proof. (i) It follows immediately from the definitions.
(ii) Since cl(A + S) is convex, by Lemma 3.2
clcone(A + S — x) = clcone(cl(A + ) — z)
is convex too. Hence
clconveone((A — z) U S) C clcone(A + S — z)
and hence Be(A,S) C Hu(A4, S). O

Khanh (see [14]) showed that Hu(A,S) = Be(A4,S) in normed spaces when
A+ S is convex.
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Theorem 3.11. If S has a base, then
(i) SE(A,S) CHE(A,S) C GHE(A,S) C GHe(A4, S) C Be(4,5) € GBo(4,95).
(ii) SE(A,S) = GBo(A,S), whenever S has a weakly compact base and the clo-

sure A is convex.

Proof. (i) It is clear from Theorem 3.7, Theorem 3.4, Theorem 3.8 and Theorem
3.9.

(ii) Assume GBo(A4,S) ¢ SE(A,S). Then there is z € GBo(4,95) and = ¢
SE(A, S); i.e. there exists a neighborhood V' of 0 such that for every neighborhood
U of 0,

cone(A—xz)N(U—-S) ¢ V.
Hence there is t, > 0,a, € A, z, € U, \, > 0,6, € © such that
ty(ay —x) = 2y — Ay € V.

It is clear that {zy }uey — 0. Assume {\,} is bounded, without loss of generality,

we may assume that A, — A > 0. So §* — 0 (when {A,} is unbounded, the

above limits holds). Since O is weakly compact, without loss of generality, we
w

may assume that 6, — 6 € ©. Hence

M:ﬂ_guﬂ_ge_g‘

Ay Ay
Since A is closure convex and X is a locally convex space, we have clcone(A—x) =

clcone(A — x) is weakly closed. Hence —@ € clcone(A — x). This implies that
clcone(A — z) N (=S) # {0}.
This contradicts € GBo(A4, S). Therefore, GBo(A4,S) C SE(A4,5). O
When A is convex and S has a weakly compact base, Zheng (see [15]) has
proved SE(A,S) = GBo(A4, S).
Corollary 3.1. If S has a weakly compact base, clA is convex, then
SE(A,S) = HE(A, S) = GHE(A, S) = GHe(4, S)
= Be(A,S) = GBo(A4, S) = Pos(A4,S) = Hu(4, 5).

Theorem 3.12. (see [19])
(i) SE(A,S) C Str(A4,5) CE(A,S).

(ii) Str(A,S) =E(A,S), whenever 0 € PC(S) and A is weakly compact.

Proof. (i) It follows immediately from the definitions.

(ii) For each x € E(A4,S), we suppose that « ¢ Str(A4,S). Then there exists a
neighborhood V' of 0 and for each a neighborhood U of 0, we have

(A—2)N(U—8)¢ V.
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There is {z,} such that z, € (A—2z)N (U —S) and z, ¢ V. So there is {a,} C A4
and {u,} C U and {s,} C S such that
Ty = Ay — T = Uy — Sy-

We obtain s, = u, —x, = uy—a,+2x. Since A is weakly compact and = € E(A, S),
the net a, tends weakly to some a € A and a = x. Since 0 € PC(S) and

Sp = Uy — Ay + T — 0, we have s, — 0. Hence x,, — 0. This contradicts x, € V.
Therefore, x € Str(A4, S). O

Zheng (see [15]) proved (ii) whenever S has a bounded base.
Theorem 3.13. GHe(A,S) C LHe(A4,S).
Proof. For each z € GHe(A4, S), there exists convex cone S* such that S\ {0} C
intS" and z € E(A,S"). Hence z € E(A+S,S"). For every neighborhood V of 0,

one has

/ /

(A+9N(x+V)—z)n(=5)cCS.
Thus, = € LHe(A, S). O

Theorem 3.14. If cl(A + S) is conver and S has a weakly compact base, then
Be(A,S) C LHe(A4,S5).

Proof. For each = € Be(A, S), one has
clcone(A + S —z) N (—S) = {0}.

Since cl(A+ S) is convex and S has a weakly compact base, by Lemma 3.1, there
exists a pointed convex cone S such that S\ {0} C intS" and

cleone(A+ S —z) N (=5") = {0}.
It follows that = € LHe(A, S). O
Theorem 3.15. LHe(A,S) C Bo(A4,S).

Proof. Let x € LHe(A, S)\ Bo(A4,S). Since x € E(A,S), we have cIT(A+ S,z)N
(=S) # {0}, i.e., there is 59 # 0 such that

clT(A+ S,z)N(=S) ={—s0}.

Since x € LHe(A, S), for every neighborhood V' of 0, there is a convex cone s’
with S\ {0} C intS" such that (A+S)N(z+V)—z)N(=S) c S". Hence

AT(A+ 8,2)N (—intS') # 0
and hence

T(A+ S,z) N (=intS") # 0.
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Thus there exist {\,} € R*, {z,} € A+ S with lim z, = x such that

n—oo

lim A,(z, — ) € —intS . There exists N > 0 large enough such that
n—oo

(3.1) Av(zy —z) € —intS’
and

(3.2) (zy —z) € —intS'.
Thus

(zy —z) € (—itS) N (A+S)N(z+V)—xz) ¢ 5.
This contradicts € LHe(A, S). O

Lemma 3.3. (see [21]) Let x € A. Then T(A,z) C clcone(A — z). If A is
starshape at x, then cone(A—x) C T'(A,z). Consequently, cIT(A,x) = clcone(A—

Theorem 3.16. (see [19])
(i) Be(A,S) C Bo(4,5).
(ii) Be(A,S) =Bo(A,YS5), whenever cl(A+ S) is convexr.

As a consequence of Theorem 3.9 and Theorem 3.16, we obtain
Corollary 3.2. If cl(A + S) is convez, then Bo(A,S) C GBo(A4,S).

As a consequence of Theorem 3.14 and Theorem 3.16, we obtain:
Corollary 3.3. If cl(A + S) is convex and S has a weakly compact base, then
Bo(A,S) C LHe(A, S).

Guerraggio, Molho and Zaffaroni (see [13]) proved Bo(A4,S) C LHe(A4,S) in
normed space whenever S has a compact base.

Theorem 3.17. (i) GBo(4,S) C LBo(4,5).
(i) GBo(A4,S) =LBo(A,S), whenever clA is convex.

Proof. (i) By Lemma 3.3
clT(A,z) C clcone(A — z).
Hence GBo(A4,S) C LBo(4,S).
(ii) Since clA is convex, by Lemma 3.3,
clT'(A, z) = clcone(A — z).
If x € LBo(A4, S), then
cT(A,z) N (=S) = {0}.
Hence
clcone(A — z) N (—S) = {0}.
ie. x € GBo(4,9). O
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From Corollary 3.1 and Theorem 3.17, we have

Corollary 3.4. IfclA is convex and S has a weakly compact base, then LBo(A, S) =
Hu(A4,S) = Pos(4, 5).

When X is a normed space and S has a compact base, LBo(A, S) C Pos(A4,.5)
was proved in [13].

In Fig.1, we give a inclusion structure, where the relations among various
proper efficiencies will be made clear. The symbol “—” denotes the usual in-
clusion relation between sets.

H;i: S has a base;
Hs: S has a bounded base;
Hjs: S has a weakly compact base;
Hy: cl(A+S) is convex;
Hs: clA is convex.
Fig. 1 The relationships among the proper efficiencies
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